
3-D Geometry (overview)
Vectors and points are represented by a

triplet on numbers, e.g. (2,1,-4).
Length (magnitude): |a| =

q
a2x + a2y + a2z.

Unit vectors (lenght 1).
e1 (e2, e3) is the unit vector of the +x

(+y, +z) direction, respectively.
Zero vector.
Scalar multiplication, e.g. 3·(2,−1, 4) =

(6,−3, 12).
Addition (component-wise).
Dot (inner) [scalar] product of two

vectors is defined by
a • b ≡ |a| · |b| · cos γ

and is the length of the projection of a into the
direction of b, multiplied by |b| (or reverse).

Can be computed by
a • b ≡ a1b1 + a2b2 + a3b3

Proof based on distributive law:
(a + b) • c ≡ a • c + b • c

(clear geometrically).
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Cross (outer) [vector] product a× b
is defined as a vector whose length is |a| ·
|b| · sin γ (area of parallelogram with a and
b as sides), whose direction is perpendicular
(orthogonal) to each a and b, and whose
orientation is such that a, b and a× b
follow the right-handed pattern. [Note it’s
anti-commutative, i.e. a× b = −b× a.

Another way: Project a into the plane
perpendicular to b, rotate this projection by
+90o (counterclockwise) and multiply the
resulting vector by |b|.

Also note that this product is not associa-
tive: (a× b)× c 6= a× (b× c).

Can be computed by:

a× b =
¯̄̄̄
¯̄ e1 e2 e3a1 a2 a3
b1 b2 b3

¯̄̄̄
¯̄ = (a2b3 −

a3b2)e1+ (a3b1−a1b3)e2+ (a1b2−a2b1)e3 ≡
(a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

[e.g. (1, 3,−2)×(4,−2, 1) = (−1,−9,−14)].
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Proof based on distributive law:
(a + b)× c ≡ a× c + b× c

Another way of expressing the kth
component of (a× b) is:

(a× b)k =
3X

i=1

3X
j=1

aibj�ijk

(for k = 1, 2, 3), where �ijk [called a fully
antisymmetric tensor] changes sign when any
two indices are interchanged (⇒ � = 0 unless
i, j, k distinct) and �123 = 1 (this defines the
rest).

One can show that
3X

k=1

�ijk�kcm = δicδjm − δjcδim

(where δij = 1 when i = j and δij = 0 when
i 6= j; this is Kronecker’s delta).

Based on this result, one can prove several
useful formulas such as, for example:

(a× b)× c = (a • c)b− (b • c)a
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Proof:X
i,j,k,c

�ijkaibj�kcmcc =
X
i,j,c

(δicδjm − δjcδim)aibjcc

=
X
c

(acbmcc − ambccc)

and
(a×b)•(c×d) = (a•c)(b•d)−(a•d)(b•c)
having a similar proof.

Triple product of a, b and c is, by
definition, equal to a • (b× c) and can be

computed by

¯̄̄̄
¯̄ a1 a2 a3
b1 b2 b3
c1 c2 c3

¯̄̄̄
¯̄ .

It represents the volume of the paral-
lelepiped with a, b and c being three of its
sides (further multiplied by −1 if the three
vectors constitute a left-handed set).

This implies that a • (b × c) = b •
(c× a) = c • (a× b) = − b • (a× c) =
− c • (b× a) = a • (c× b) [its value does
not change under cyclic permutation of the
three vectors].
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A useful application of the triple product
is the following test: a, b and c are in the
same plane (co-planar) iff a • (b× c) = 0.

Another one is to compute the volume of
an (arbitrary) tetrahedron. Note that if you use
the three vectors as sides of the tetrahedron
(instead of parallelepiped), its base will be
half of the parallelepiped’s, and its volume
will thus be a•(b×c)6 .

Rotation is facilitated by an orthogonal
matrix R whose determinant is +1, thus Ra.

Straight Lines and Planes
There are two ways of defining a straight

line:
(i) parametric representation, i.e. a + b·t
where a is an arbitrary point on the straight
line and b is a vector along its direction, and
t (the actual parameter) is a scalar allowed to
vary from−∞ to +∞
(ii) by two linear equations, e.g.

½
2x + 3y − 4z = 6
x− 2y + z = −2
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(effectively an intersection of two planes).

Neither description is unique (a headache
when marking assignments).

Similarly, there are two ways of defining
a plane:
(i) parametric, i.e. a + b · u + c·v where a
is an arbitrary point in the plane, b and c are
two nonparallel vectors within the plane, and
u and v are scalar parameters varying over all
possible real values
(ii) by a single linear equation, e.g.
2x + 3y − 4z = 6. Note that (2, 3,−4) is a
vector perpendicular to the plane, its so called
normal – to prove it, substitute two distinct
points into the equation and subtract, getting
the dot product of the connecting vector and
(2, 3,−4), always equal to zero.

Again, neither description is unique.
EXAMPLES:

1. Convert
½
3x + 7y − 4z = 5
2x− 3y + z = −4 to its
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parametric representation.
Solution: The cross product of the two

normals must point along the straight line,
giving us
b = (3, 7,−4)×(2,−3, 1) = (−5,−11,−23)
Solving the two equations with an arbitrary
value of z (say = 0) yields a = (−1323, 2223, 0).

Answer: (−1323 − 5t, 2223 − 11t,−23t).
2. Find a equation of an (infinite)

cylindrical surface with (3− 2t, 1 + 3t,−4t)
as its axis, and with the radius of 5.

Solution: Let us first find an expres-
sion of the (shortest) distance from a point
r ≡(x, y, z) to a straight line a + b·t [bypass-
ing minimization]. Visualize the vector r− a.
We know that |r− a| is its length, and that
(r− a) • b

|b| is the length of its projection into
the straight line. By Pythagoras, the direct
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distance iss
|r− a|2 −

·
(r− a) • b|b|

¸2
=r

(x− 3)2 + (y − 1)2 + z2 − (−2x + 3y − 4z + 3)
2

29
Making this equal to 5 yields the desired
equation (square it to simplify).

Answer: (x − 3)2 + (y − 1)2 + z2 −
(−2x+3y−4z+3)2

29 = 25.
3. What is the (shortest) distance from

r = (6, 2,−4) to 3x − 4y + z = 7 [bypass
minimization].

Solution: n • (r− a), where n is the
unit normal and a is an arbitrary point of
the plane [found, in this case, by setting
x = y = 0⇒ (0, 0, 7)].

Answer: (3,−4,1)√
9+16+1

• (6, 2,−11) = − 1√
26

[the minus sign establishes on which side of
the plane we are].

4. Find the (shortest) distance between
a1 + b1 · t and a2 + b2 · t [bypassing
minimization, as always].
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Solution: To find it, we have to move
perpendicularly to both straight lines, i.e.
along b1 × b2. We also know that a2 − a1
is an arbitrary connection between the two
lines. The projection of this vector into the
direction of b1 × b2 supplies (up to the sign)
the answer: (a2 − a1) • b1×b2

|b1×b2| [visualize the
situation by projecting the two straight lines
into the blackboard so that they look parallel –
always possible].

Curves
are defined via their parametric rep-

resentation r(t) ≡ [x(t), y(t), z(t)], where
x(t), y(t) and z(t) are arbitrary (continuous)
functions of t (the parameter, ranging over
some interval of real numbers).
EXAMPLE: r(t) = [cos(t), sin(t), t] is a
helix centered on the z-axis, whose radius
(when projected into the x-y plane) equals
1, with one full loop per 2π of vertical
distance. The same r(t) can be also seen
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as a motion of a point-like particle, where t
represents time. Note that [cos(2t), sin(2t), 2t]
represents a different motion (the particle is
moving twice as fast), but the same curve (i.e.
parametrization of a curve is far from unique).

Arc’s length
(’arc’ meaning a specific segment of

the curve). The three-component (vector)
distance travelled between time t and t + dt
(dt infinitesimal) is r(t + dt) − r(t) ≈
r(t) + ṙ(t) dt + .... − r(t) = ṙ(t) dt + ....,
where the dots stand for terms proportional to
dt2 and higher [these give zero contribution
in the dt → 0 limit], and ṙ(t) represents the
componentwise differentiation with respect
to t (the particle’s velocity). This converts
to |ṙ(t)| dt + ... in terms of the actual
scalar distance (length). Adding all these
infinitesimal distances (from time a to time
b – these should correspond to the arc’s end
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points) results in
bZ

a

|ṙ(t)| dt

which is the desired formula for the total
length.
EXAMPLES:
1. Consider the helix of the pre-

vious example. The length of one of
its complete loops (say from t = 0 to

t = 2π) is thus
2πR
0

|[− sin(t), cos(t), 1]| dt =
2πR
0

p
sin(t)2 + cos(t)2 + 1 dt = 2π

√
2.

2. The intersect of x2 + y2 = 9 (a
cylinder) and 3x− 4y+7z = 2 (a plane) is an
ellipse. How long is it?

Solution: First we need to parametrize it,
thus: r(t) = [3 cos(t), 3 sin(t), 2−9 cos(t)+12 sin(t)7 ]
where t ∈ [0, 2π).
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Answer:
2πR
0

|̇ṙ| dt =
2πR
0

q
9 +

¡
9 sin t+12 cos t

7

¢2
dt

which is an integration we cannot carry out
analytically (just to remind ourselves that this
can frequently happen). Numerically (using
Maple), this equals 21.062.

A tangent (straight) line to a curve, at
a point r(t0) [t0 being a specific value of the
parameter] passes through r(t0), and has the
direction of ṙ(t0) [the velocity]. Its parametric
representation will be thus

r(t0) + ṙ(t0) · u
[where u is the parameter now, just to
differentiate].
EXAMPLE: Using the same helix, at t = 0
its tangent line is [1, u, u].

When r(t) is seen as a motion of a
particle, ṙ(t) ≡ v(t) gives the particle’s
(instantaneous, 3-D) velocity. |ṙ(t)| then
yields its (scalar) speed [the speedometer
reading]. It is convenient to rewrite v(t) as
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|ṙ(t)| · ṙ(t)|ṙ(t)| ≡
|ṙ(t)| · u(t)

[a product of its speed and unit direction].
The corresponding (3-D) acceleration is

simply a(t) ≡ r̈(t) [a double t-derivative].
It is more meaningful to decompose it
into its ’tangential’ [the one observed on
the speedometer, pushing you back into
your seat] and ’normal’ [observed even at
constant speeds, pushing you sideways –
perpendicular to the motion] components.
This is achieved by the product rule: dv(t)

dt =
d|ṙ(t)|
dt · u(t) + |ṙ(t)| · du(t)dt [tangential and
normal, respectively].

d|ṙ(t)|
dt can be simplified to d

dt

p
ẋ(t)2 + ẏ(t)2 + ż(t)2 =

1
2 · 2ẋẍ+2ẏÿ+2żz̈√

ẋ(t)2+ẏ(t)2+ż(t)
= ṙ•r̈

|ṙ(t)| =

u • r̈
The normal acceleration is then most easily
computed from

r̈− (u • r̈)u
[full minus tangential]. In this form it is
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trivial to verify that the normal acceleration is
perpendicular to u.
EXAMPLE: For our helix at t = 0, the speed
is
√
2, u = [0, 1√

2
, 1√

2
] and r̈ = [−1, 0, 0] ⇒

zero tangential acceleration and [−1, 0, 0]
normal acceleration. ¥

When interested in the geometric proper-
ties of a curve only, it is convenient to make
its parametrization unique by introducing a
special parameter s (instead of t) which
measures the actual length travelled along the
curve, i.e.

s(t) =

tZ
0

|ṙ(t)| dt

where r(t) is the old parametrization.
Unfortunately, to carry out the details

of such a ’reparametrization’ is normally too
difficult [to eliminate t, we would have to
solve the previous equation for t – but we
don’t know how to solve general equations].
Yet, the idea of this new ’uniform’ (in the
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sense of the corresponding motion) parameter
s is still quite helpful, when we realize that
the previous equation is equivalent to

ds

dt
= |ṙ(t)|

This further implies that, even though we
don’t have an explicit formula for s(t), we
know how to differentiate with respect to s, as

d

ds
≡

d
dt
ds
dt

≡
d
dt

|ṙ(t)|
Note that our old u = ṙ(t)

|ṙ(t)| [the unit velocity
direction] can thus be defined simply as
dr
ds ≡ r0 [prime will imply s-differentiation].

Using this new parameter s, we now
define a few interesting geometrical properties
(describing a curve and its behavior in space);
we will immediately ’translate’ these into
the t-’language’, as we normally parametrize
curves by t and not s:
Curvature

Let us first compute du
ds ≡ r00 which
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corresponds to the rate of change of the
unit direction per (scalar) distance travelled.
The result is a vector which is always
perpendicular to u, as we will show shortly.

Curvature κ is the magnitude of this
r00, and corresponds, geometrically, to the
reciprocal of the radius of a tangent circle to
the curve at a point [a circle with the same r,
r0 and r00 – 6 independent conditions].

The main thing now is to figure out is:
how do we compute curvature when our
curve has the usual t-parametrization? This

is not too difficult, as
du(s)

ds
=

du(t)
dt

|ṙ(t)| =
d
dt
ṙ
|ṙ|
|ṙ| =

r̈

|ṙ|2 −
ṙ

|ṙ|3 · (u • r̈) [since
d|ṙ|
dt

=

ẋẍ+ẏÿ+żz̈√
ẋ2+ẏ2+ż2

= (u • r̈)] =
r̈(ṙ • ṙ)− ṙ(ṙ • r̈)

|ṙ|4
[this is easily seen to be ṙ perpendicular, as
claimed].
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To get κ, we need the corresponding mag-
nitude:s
(̈r • r̈)(ṙ • ṙ)2 + (ṙ • ṙ)(ṙ • r̈)2 − 2(ṙ • r̈)2(ṙ • ṙ)

(ṙ • ṙ)4 =s
(ṙ • ṙ)(̈r • r̈)− (ṙ • r̈)2

(ṙ • ṙ)3
This is the final formula for computing
curvature.
EXAMPLE: For the same old helix,
(ṙ • ṙ) = 2, (̈r • r̈) = 1, and (ṙ • r̈) =
0 ⇒ κ =

q
1
22 =

1
2 [the same for all points

of the helix – that seems to make sense; the
tangent circles all have a radius of 2].
A few related definitions:

>From what we already know r00 = κ · p
where p is a unit vector we will call principal
normal, automatically orthogonal to u and
pointing towards the tangent circle’s center.
Furthermore, b = u× p must thus be yet
another unit vector, orthogonal to both u
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and p. It is called the binormal vector
(perpendicular to the tangent circle’s plane).

One can show that the rate of change of
b (per unit distance travelled), namely b0 is a
vector in the direction of p, i.e. b0 = −τ · p,
where τ defines the so called torsion (’twist’)
of the curve at the corresponding point [τ
is thus either + or − of the corresponding
magnitude, the extra minus sign is just a
convention].

Note that knowing a curve’s curvature
and torsion, we can ’reconstruct’ the curve (by
solving the corresponding set of differential
equations), but we will not go into that.

We now derive a formula for computing
τ based on the usual r(t)-parametrization.

First: b0 = u0×p+u×p0 = 0+u×¡u0κ ¢0
[since u0 ≡ κp].

Then: τ = −p • b0 = − ¡u0κ ¢ •h
u× ¡u0κ ¢0i = −u0 • (u× u00)κ2

=
u • (u0 × u00)

κ2
.

And finally: u = r0 = ṙdtds, u
0 =
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r00 = r̈(dtds)
2 + ṙd

2t
ds2 and u

00 = r000 =
•••
r
¡
dt
ds

¢3
+ 3r̈dtds · d

2t
ds2 + ṙ

d3t
ds3.

Putting it together [and realizing that,
whenever identical vectors ’meet’ in a
triple product, the result is zero], we get
τ = ṙ•(r̈×•••r )

κ2

¡
dt
ds

¢6
= [since dt

ds =
1
|ṙ|]

ṙ • (r̈×•••r )
(ṙ • ṙ)(̈r • r̈)− (ṙ • r̈)2

which is our final formula for computing
torsion.

Both the original definition and the final
formula clearly imply that a planar curve has
a zero torsion (identically).
EXAMPLE: For the helix •••r = (sin t,− cos t, 0)⇒

τ = 1
2.

FIELDS

A scalar field is a (single-valued)
function of x, y and z, e.g. f(x, y, z) = x(y+3)

z .
A vector field is a vector-valued fund-

tion of x, y and z (i.e. three functions,
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which are interpreted as three compo-
nents of a vector, thus: g(x, y, z) ≡
[g1(x, y, z), g2(x, y, z), g3(x, y, z)], e.g.
[xy, z−3x , y(x−4)z2 ].

An operator is a ’prescription’ which
takes a field and modifies it (usually, by
computing its derivatives, in which case it is
called a differential operator) to return another
field.

The most important cases of operators
are:

Gradient
which converts a scalar field f(x, y, z)

into the following vector field:

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z
) ≡∇f(x, y, z)

The∇-operator is usually called ’del’ (some-
times ’nabla’), and has three components, ∂

∂x,
∂
∂y and

∂
∂z .

It yields the direction of the fastest in-
crease in f(x, y, z) when starting at (x, y, z);
its magnitude provides the corresponding rate
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(per unit length). This can be seen by rewrit-
ing the generalized Taylor expansion of f at
r, thus:
f(r+h) = f(r)+h •∇f(r)+quadratic (in h) and higher-ord
When h is a unit vector, h •∇f(r) provides
a so called directional derivative of f , i.e.
the rate of its increase in the h-direction
(obviously the largest when h and ∇f are
parallel).

An interesting geometrical application
is this: f(x, y, z) = c usually defines a surface
(a 3-D ’contour’ of f ; a simple extension of
the f(x, y) = c idea). The gradient, evaluated
at a point of such a surface, is obviously
normal (perpendicular) to the surface at that
point.
EXAMPLE: Find the normal direction to

z2 = 4(x2 + y2) [a cone] at (1, 0, 2).
Solution: f ≡ 4(x2+y2)−z2 = 0 defines the
surface. ∇f = (8x, 8y,−2z), evaluated at
(1, 0, 2) yields (8, 0,−4), which is the answer.
One may like to convert it to a unit vector,
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and spell out its orientation (either inward or
outward).

Application to Physics: If r(t) represents
a motion of a particle and f(x, y, z) a
temperature of the 3-D media in which the
particle moves, ṙ •∇f [r(t)] is the rate of
change (per unit of time) of temperature as
the particle experiences it [nothing but a chain
rule]. To convert this into a spacial (per unit
length) rate, one would have to divide the
previous expression by |ṙ|.

Divergence
converts a vector field g(r) to the

following scalar field:
∂g1
∂x

+
∂g2
∂y

+
∂g3
∂z
≡∇ • g(r)

Its significance (to Physics) lies in the fol-
lowing interpretation: If g represents some
flow [the direction and rate of a motion of
some continuous fluid in space; the rate be-
ing established by measuring mass/sec./cm.2
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through an infinitesimal area perpendicu-
lar to its direction], then the divergence tells
us the rate of mass loss from an (infinites-
imal) volume at each point, per volume
[mass/sec./cm.3]. This can be seen by sur-
rounding the point by an (infinitesimal) cube,
and figuring out the in/out flow through each
of its sides [h2g1(x + h

2, y, z) is the outflow
from one of them, etc.].
EXAMPLE: Find∇•(x2, y2, z2). Answer:
2x + 2y + 2z.

Curl
(sometimes also called rotation), applied to a
vector field g, converts it to yet another vector

field, thus:

[
∂g3
∂y
− ∂g2

∂z
,
∂g1
∂z
− ∂g3

∂x
,
∂g2
∂x
− ∂g1

∂y
] ≡∇× g

If g represents a flow, Curl(g) can then be
visualized by holding an imaginary

paddle-wheel at each point to see how fast the
wheel rotates (its axis at the fastest rotation
yields the curl’s direction, the torque
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establishes the corresponding magnitude).

EXAMPLE: Curl(x, yz,−x2 − z2) =
(−y, 2x, 0).

One can easily prove the following trivial
identities:

Curl [Grad (f)] ≡ 0

Div [Curl (g)] = 0

There are also several nontrivial identi-
ties, for illustration we mention one only:
Div(g1 × g2) = g2 • Curl(g1)− g1 • Curl(g2)
Divergence and gradient are frequently
applied, consecutively, to a scalar field f,
to create a new scalar field Div[Grad(f)] ≡
4f =

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(where4 is the so called Laplace operator).
It measures how much the value of f (at
each point) deviates from its average over
some infinitesimal surface [visualize a cube]
centered at the point, per the surface’s area
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(the exact answer is obtained in the limit, as
the size of the cube approaches zero).

LINE INTEGRALS
are of two types:

Scalar (Type I) Integrals
where we are given a (scalar) function

f(x, y, z) and a curve r(t), and need to
integrate f over an arc of the curve (which
now assumes the rôle of the x-axis). All it
takes is to add the areas of the individual
’rectangles’ of base |ṙ| dt and ’height’ [which,
unfortunately, has to be pictured in an extra
4th dimension] f [r(t)], ending up with

bZ
a

f [r(t)] · |ṙ(t)| dt

which is just an ordinary (scalar) integral of a
single variable t. Note that the result is inde-
pendent of the actual curve parametrization.

This kind of integration can used for
(spacial) averaging of the f -values (over a
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segment of a curve). All we have to do is to
divide the above integral by the arc’s length
bR
a

|ṙ(t)| dt:

fsp =

bR
a

f [r(t)] · |ṙ(t)| dt
bR
a

|ṙ(t)| dt
To average in time (taking r(t) to be a

motion of a particle) one would do

ftm =

bR
a

f [r(t)] dt

b− a
instead.

The symbolic notation for this integral isZ
C

f(r) ds

s being the special unique parameter which
corresponds to the ’distance travelled’, and
C stands for a specific segment of a curve.
To evaluate this integral, we normally use a
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convenient (arbitrary) parametrization of the
curve (the result must be the same), and carry
out the integration in terms of t.
Two other possible applications are:

1. Center of mass of a wire-like object of
uniform mass density:

R
C
x dsR
C
ds

,

R
C
y dsR
C
ds

,

R
C
z dsR
C
ds


[the denominator is the total length L].

2.Moment of inertia of any such an object:
M

L

Z
C

d2 · ds

where d(x, y, z) is distance from the axis
of rotation. [Angular acceleration is torque
divided by moment of inertia].

EXAMPLES:

• Evaluate R
C

(x2 + y2 + z2)2 ds where

C ≡ (cos t, sin t, 3t) with t ∈ (0, 2π) [one
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loop of a helix].
Solution:

2πZ
0

(cos2 t+sin2 t+9t2)2
p
(− sin t)2 + (cos t)2 + 9 dt

=
√
10

2πZ
0

(1 + 18t2 + 81t4) dt

=
√
10

·
t + 6t3 +

81

5
t5
¸2π
0

= 5.0639× 105

• Find the center of mass of a half circle (the
circumference only) of radius a.
Solution: r(t) = [a cos t, a sin t, 0] ⇒R
C
y ds = a2

πR
0

sin t dt = 2a2.

Answer: The center of mass is at
[0, 2a

2

πa , 0] = [0, 0.63662a, 0].

• Find the moment of inertia of a circle
(circumference) of massM and radius a
with respect to an axis passing through its
center and two of its points.
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Solution: Using r(t) = [a cos t, a sin t, 0]
and y as the axis, we get

R
C
(x2 + z2) ds =

a3
2πR
0

cos2 t dt = πa3.

Answer: M
2πa · πa3 = Ma2

2 .

Vector (Type II) Integrals
Here, we are given a vector function

g(x, y, z) [i.e. effectively three functions
g1, g2 and g3] which represents a force on a
point particle at (x, y, z), and a curve r(t)
which represents the particle’s ’motion’. We
know (from Physics) that, when the particle
is moved by an infinitesimal amount dr, the
energy it extracts from the field equals g • dr
[when negative, the magnitude is the amount
of work needed to make it move]. This is
independent of the actual speed at which the
move is made.

The total energy thus extracted (or, with
a minus sign, the work needed) when a particle
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moves over a segment C is, symbolically,Z
C

g(r) • dr

or Z
C

g1dx + g2dy + g3dz

(alternate notation) and can be computed by
parametrizing the curve (any way we like – the
result is independent of the parametrization,
i.e. the actual motion of the particle) and
finding

bZ
a

g[r(t)] • ṙ(t) dt
EXAMPLE: Evaluate

R
C

(5z, xy, x2z) • dr
where C ≡ (t, t, t2), t ∈ (0, 1).
Solution:

1R
0

(5t2, t2, t4) • (1, 1, 2t) dt =
1R
0

(6t2 + 2t5) dt = 7
3 = 2.3333.

Note that, in general, the integral is path
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dependent, i.e. connecting the same two
points by a different curve results in two
different answers.
EXAMPLE: Compute the same

R
C

(5z, xy, x2z)•
dr, where now C ≡ (t, t, t), t ∈ (0, 1).
Solution:

1R
0

(5t, t2, t3) • (1, 1, 1) dt =
1R
0

(5t +

t2 + t3) dt = 37
12 = 3.0833.

Is there a special type of vector fields
to make all such vector integrals Path
Independent?

The answer is yes, this happens for any g
which can be written as

∇f(x, y, z)

[a gradient of a scalar field f , which is called
the corresponding potential; g is then called a
conservative vector field].

Proof:
R
C

(∇f) • dr =
bR
a

(∇f [r(t)]) •
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ṙ(t) dt = [← chain rule]
bR
a

df [r(t)]

dt
dt =

f [r(b)]− f [r(a)].

But how can we establish whether a given
g is conservative? Easily, the sufficient and
necessary condition is

Curl(g) ≡ 0
Proof: g = ∇f clearly implies that
Curl(g) ≡ 0.
Now the reverse: Given such a g,we construct
(as discussed in the subsequent example)
f =

R
g1dx +

R
g2dy −

R ³R
∂g1
∂y dx

´
dy +R

g3dz−
R ³R

∂g1
∂z dx

´
dz− R ³R ∂g2

∂z dy
´
dz+R hR ³R

∂2g1
∂y∂zdx

´
dy
i
dz.

This implies: ∂f∂x = g1+
R

∂g1
∂y dy−

R
∂g1
∂y dy +R

∂g1
∂z dz −

R
∂g1
∂z dz −

R ³R
∂2g1
∂y∂zdy

´
dz +R hR

∂2g1
∂y∂zdy

i
dz ≡ g1.

Similarly, we can show ∂f
∂y = g2 and ∂f

∂z = g3.
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Note that when g is conservative, all we
need to specify is the starting and final point of
the arc (how you connect them is irrelevant, as
long as you avoid an occasional singularity).
We can then use the following notation:

bZ
a

g(r)•dr

which gives you a strong hint that g is
conservative (the notation would not make
sense otherwise).

EXAMPLE: Evaluate
(1,π4 ,2)R
(0,0,0)

2xyz2dx +

[x2z2+z cos(yz)]dy+ [2x2yz+y cos(yz)]dz.

Solution: This is what we used to call
’exact differential form’, extended to three
independent variables. We solve it by
integrating g1 with respect to x [calling
the result f1], adding g2 − ∂f1

∂y integrated
with respect to y [call the overall answer
f2], then adding the z integral of g3 − ∂f2

∂z ,
to get the final f. In our case, this yields
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x2y z2 for f1, x2yz2 + sin(yz) for f2 ≡ f ,
as nothing is added in the last step. Thus
f(x, y, z) = x2yz2 + sin(yz) [check].
Answer: f(1, π4 , 2) − f(0, 0, 0) = 1 + π =
4.1416.

Optional: We mention in passing that,
similarly, Div(g) = 0⇔ there is a vector field
h say such that g ≡ Curl(h) [g is then called
purely rotational]. Any vector field g can be
written as Grad(f)+Curl(h), i.e. decomposed
into its conservative and purely rotational part.

DOUBLE INTEGRALS
can be evaluated by two consecutive

(univariate) integrations, the first with respect
to x, over its conditional range given y, the
second with respect to y, over its marginal
range (or the other way round, the two answers
must agree).

EXAMPLES:
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• To integrate over the
 x > 0

y > 0
x + y < 1

triangle, we first do
1−yR
0

... dx followed by

1R
0

... dy (or
1−xR
0

... dy followed by
1R
0

... dx).

• To integrate over 0 < y < 1
x, where

1 < x < 3, we can do either
3R
1

1
xR
0

... dy dx

or
1R
1
3

1
yR
1

... dx dy +

1
3R
0

3R
1

... dx dy [only a

graph of the region can reveal why it is so].

• RR
x2+y2<1

y2 dx dy =
1R
−1

 √1−y2R
−
√
1−y2

y2 dx

 dy =

1R
−1
2y2
p
1− y2dy =h

1
4 arcsin y +

1
4y
p
1− y2 − 12y(1− y2)

3
2

i1
y=−1

=
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π
4 .

The last of these double integrals can be
simplified by introducing

Polar Coordinates
(effectively a change of variables) by:

x = r cosϕ

y = r sinϕ

One has to remember that dx dy of the
double integration must be replaced by dr dϕ,
further multiplied by the Jacobian of the
transformation, namely the absolute value of¯̄̄̄

¯ ∂x
∂r

∂y
dr

∂x
∂ϕ

∂y
∂ϕ

¯̄̄̄
¯

In our case (of polar coordinates) this equals

to
¯̄̄̄
cosϕ −r sinϕ
sinϕ r cosϕ

¯̄̄̄
= r.

EXAMPLE:
RR

x2+y2<1

y2 dx dy =
2πR
0

1R
0

r2 sin2ϕ·

r dr dϕ =
1R
0

r3dr ×
2πR
0

sin2ϕdϕ =
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1
4 ×

£
ϕ
2 − sin 2ϕ

4

¤2π
0
= π

4
Similarly to polar coordinates, one can

introduce any other set of new variables to
simplify the integration (the actual form of the
transformation would be normally suggested
to you).

EXAMPLE:
RR
R

y2 dx dy where R is a

square with corners at (0, 1), (1, 0), (0,−1)
and (−1, 0).

Introducing u, v by x = u + v and
y = u−v, we will cover the same square with
−1
2 < u < 1

2 and
−1
2 < v < 1

2. Furthermore,
the Jacobian of this transformation equals to
2.

Solution:
1
2R
−12

1
2R
−12
(u − v)2 du dv =

2

1
2R
−12

h
u3

3 − 2u
2

2 v + uv
i1
2

u=−12
dv = 2

1
2R
−12
( 112 +

v2) dv = 2( 112 +
1
12) =

1
3.

An important special case is integrating
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a constant, say c, which can often be done
geometrically. i.e.ZZ

R
c dx dy = c ·Area(R)

Applications
of two-dimensional integrals to geometry

and physics:
An area of a 2-D region R is computed

by ZZ
R

dx dy

Center of mass of a 2-D object (lamina)
is computed byRR

xρ(x, y) dx dyRR
ρ(x, y) dx dy

[x component] andRR
yρ(x, y) dx dyRR
ρ(x, y) dx dy

[y component], where ρ(x, y) is the corre-
sponding mass density. When the object is of
uniform density (ρ ≡ const.), the formulas
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simplify to RR
x dx dyRR
dx dy

and RR
y dx dyRR
dx dy

Moment of inertia with respect to some
axis (this is needed when computing angular
acceleration as torque/moment-of-inertia):ZZ

d(x, y)2 · ρ(x, y) dx dy
where d(x, y) is the (perpendicular) distance
of (x, y) from the axis [when the axis is x,
d ≡ y and vice versa; when the axis is z,
d =

p
x2 + y2].

3-D volumeZZ
h(x, y) dx dy

where h(x, y) is the object’s ’thickness’
(height) at (x, y).
EXAMPLES:

1. Find the center of mass of a half disk of
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radius R and uniform mass density.
Solution: We position the object in
the upper half plane with its center at
the origin, and use polar coordinates to

evaluate:

πR
0

RR
0

r sinϕ · r dr dϕ
πR
0

RR
0

r dr dϕ

=
R3

3 ·(cos 0−cosπ)
R2

2 ·π
=

4R
3π = 0.42441R [its y component]. From
symmetry, its x component must be equal
to zero.

2. Find the volume of a cone with circular
base of radius R and heightH.
We do this in polar coordinates where the
formula for h(r, ϕ) simplifies toH · R−rR .

Answer: H
R

2πR
0

RR
0

(R − r) · r dr dϕ =

2πH
R · [Rr2

2 − r3

3 ]
R
r=0 =

πR2H
3 (check).

3. Find the volume of a sphere of radius R.
Solution: Introducing polar coordinates
in x, y, the z-thickness is h(x, y) =
2
√
R2 − r2 [Pythagoras]. Integrating this

over the sphere’s x, y projection (a circle
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of radius R) yields 2
2πR
0

RR
0

√
R2 − r2 ·

r dr dϕ = 4π
h
−13(R2 − r2)

3
2

iR
r=0

=
4
3πR

3 (check).
4. Find the volume of the (solid) cylinder
x2+ z2 < 1 cut along y = 0 and z = y [i.e.
0 < y < z].
Solution: Its x, z projection is a half-
circle x2 + z2 < 1 with z > 0, its
thickness along y is h(x, z) = z. Replacing
x and z by polar coordinates, we can

readily integrate
πR
0

RR
0

r sinϕ · r dr dϕ =
1
3 · [− cosϕ]πϕ=0 = 2

3. There are two
alternate ways of computing the volume,
integrating the z-thickness over the (x, y)
projection, or the x-thickness over dy dz
[try both of them].

5. Find the volume of the 3-D region defined
by x2 + y2 < 1 and y2 + z2 < 1 [the
common part of two cylinders crossing

41



each other at the right angle].
Solution: The (x, y) projection of the
region is describe by x2 + y2 < 1 (now a
circle, not a cylinder), the corresponding
z-thickness is h(x, y) = 2

p
1− y2.

Answer: 2
2πR
0

1R
0

p
1− r2 sin2ϕ ·

r dr dϕ =
2πR
0

− 2
3 sin2 ϕ

h
(1− r2 sin2ϕ)

3
2

i1
r=0

dϕ =

2πR
0

2(1−| cosϕ|3)
3 sin2 ϕ

dϕ =

3
2πR
−π
2

2(1−| cosϕ|3)
3 sin2 ϕ

dϕ =

π
2R
−π
2

2(1−cos3 ϕ)
3 sin2 ϕ

dϕ +

3
2πR
π
2

2(1+cos3 ϕ)

3 sin2 ϕ
dϕ = 16

3 .

[The integration is quite tricky, later on we
learn how to deal with it more efficiently].
An alternate way is to use the (x, z)
projection (a unit square, divided by
its two diagonals into four sections
of identical volume), and then inte-
grate over one of these sections (say
the right-most) the corresponding y-
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thickness h(x, z) = 2
√
1− x2, thus:

2
1R
0

√
1− x2

xR
−x

dz dx = 2
1R
0

√
1− x2 ·

2x dx = −43
h
(1− x2)

3
2

i1
x=0

= 4
3. The

total volume is four times bigger (check).
The integration was now a lot easier.
In these type of questions, it is important

to first identify each side of the 3-D object
(and the corresponding equation), and each
of its edges (described by two equations). To
project a specific edge into, say, the (x, y)
plane, one must eliminate z from one of the
two equations and substitute into the other
(getting a single x-y equation).

Surfaces in 3-D
There are two ways of defining a 2-D

surface:
1. By an equation: f(x, y, z) = c [c being a
constant].

2. Parametrically: r(u, v) ≡ [x(u, v), y(u, v), z(u, v)]
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(three arbitrary functions of two parameters
u and v; restricting these to a 2-D region
selects a section of the surface). ¥
EXAMPLES:

• Parametrize a sphere of radius a.
Answer: r(u, v) = [a sin v cosu, a sin v sinu, a cos v]
where 0 ≤ u < 2π and 0 ≤ v ≤ π [later
on we introduce the so called spherical
coordinates in almost the same manner –
they are usually called r, θ and ϕ rather
than a, v and u]. The curves we get by
fixing v and varying u (or vice versa) are
called ’coordinate’ curves [latitude circles
and longitude half-circles in this case].

• Identify r(u, v) = [u cos v, u sin v, u].

Answer: a 45o cone centered on z.
• Parametrize the cylinder x2 + y2 = a2.

Solution: r(u, v) = [a cosu, a sinu, v].

• Identify [u cos v, u sin v, u2].
Answer: A paraboloid centered on +z.
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Surface integrals
Let us consider a specific parametriza-

tion of a surface. It is obvious that ∂r
∂u

[componentwise operation, keeping v fixed]
is a tangent direction to the corresponding co-
ordinate curve and consequently tangent to
the surface itself. Similarly, so is ∂r

∂v (note that
these two don’t have to be orthogonal). Con-
structing the corresponding tangent plane is
then quite trivial.

Consequently,
∂r

∂u
× ∂r

∂v
yields a direction normal (perpendicular) to
the surface, and its magnitude

¯̄
∂r
∂u × ∂r

∂v

¯̄
,

multiplied by du dv, provides the area of the
corresponding (infinitesimal) parallelogram,
obtained by increasing u by du and v by dv
[∂r∂udu and

∂r
∂vdv being its two sides]. This can

be seen from:¯̄̄̄
∂r

∂u
du× ∂r

∂v
dv

¯̄̄̄
=

¯̄̄̄
∂r

∂u
× ∂r

∂u

¯̄̄̄
du dv ≡ dA
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Since |a× b|2 = |a|2 |b|2 sin2 γ =
|a|2 |b|2 (1 − cos2 γ) = |a|2 |b|2 − (a • b)2,
we can simplify it to

dA =

s¯̄̄̄
∂r

∂u

¯̄̄̄2 ¯̄̄̄
∂r

∂v

¯̄̄̄2
−
µ
∂r

∂u
• ∂r
∂v

¶2
du dv

which is more convenient computationally
(bypassing the cross product).

To find an area of a whole surface (or its
section), we need to ’add’ the contributions
from all these parallelograms, thus:
Area =ZZ

S
dA =

ZZ
R

s¯̄̄̄
∂r

∂u

¯̄̄̄2 ¯̄̄̄
∂r

∂v

¯̄̄̄2
−
µ
∂r

∂u
• ∂r
∂v

¶2
du dv

where R is the (u, v) region needed to cover
the (section of the) surface S. Needless to say,
the answer must be the same, regardless of
parametrization.
EXAMPLES:

1. Find the tangent plane to the ellipsoid
3x2 + 2y2 + z2 = 20 at (1, 2, 3).
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Solution: First one can easily check that
the point is on the ellipsoid (just in case).
We can parametrize the upper half of the
ellipsoid (which is sufficient in this case) by
r(u, v) = (u, v,

√
20− 3u2 − 2v2). Then

∂r
∂u = (1, 0,− 3u√

20−3u2−2v2) = (1, 0,−1)
and ∂r

∂v = (0, 1,− 2v√
20−3u2−2v2) =

(0, 1,−43). The corresponding cross prod-
uct (1, 0,−1)×(0, 1,−43) = (1, 43, 1) yields
the tangent plane’s normal; we also know
that the plane has to pass through (1, 2, 3).
Answer: 3x + 4y + 3z = 20.

2. Find the area of a surface of a sphere of
radius a.
Solution: Using the

r(u, v) = (a sin v cosu, a sin v sinu, a cos v)

parametrization, we get:
∂r

∂u
= (−a sin v sinu, a sin v cosu, 0)

and

47



∂r

∂v
= (a cos v cosu, a cos v sinu, −a sin v)
⇒ dA ≡ a2 |sin v| du dv.
Answer: a2

2πR
0

πR
0

sin v dv du = 4πa2.

3. Find the surface area of a torus (donut) of
dough-radius equal to b and hole-radius
equal to a− b.
Solution: We make z its axis, and
[0, a + b cos v, b sin v] its cross section with
the (y, z) plane. The full parametrization is
then: r(u, v) = [(a + b cos v) cosu, (a +
b cos v) sinu, b sin v], where both u and
v vary from 0 to 2π. This yields ∂r

∂u =
[−(a+ b cos v) sinu, (a+ b cos v) cosu, 0],
∂r
∂v =
[−b sin v cosu, b sin v sinu, −b cos v]⇒
dA ≡ b(a+ b cos v).

Answer: b
2πR
0

2πR
0

(a + cos v) dv du =

4π2ab.
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Computing areas is just a special case of
a

Surface Integral of Type I
(’scalar’ type). In general, we can integrate
any scalar function f(x, y, z) over a surface
S [symbolic notation RR

S
f(x, y, z) dA] by

parametrizing the surface and computingZZ
R

f [r(u, v)]·
s¯̄̄̄

∂r

∂u

¯̄̄̄2 ¯̄̄̄
∂r

∂v

¯̄̄̄2
−
µ
∂r

∂u
• ∂r
∂v

¶2
du dv

[the answer is independent of parametriza-
tion].

When divided by the corresponding
surface area, this represents the average of
f(x, y, z) over S.
Other applications to Physics are:

1.Moment of inertia of a shell-like structure
(lamina) of surface density ρ(x, y, z):ZZ

S
d2 · ρ · dA
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where d(x, y, z) is the distance from the
rotation axis. For a lamina of uniform
density, ρ = M

A (total mass over total area).
2. Center of mass
RR
S

x · ρ · dARR
S

ρ · dA ,

RR
S

y · ρ · dARR
S

ρ · dA ,

RR
S

z · ρ · dARR
S

ρ · dA


(ρ cancels out when constant, i.e. uniform
mass density). Note that

RR
S

ρ · dA is the
total mass.
EXAMPLE: Find the moment of inertia

of a spherical shell of radius a and total mass
M (uniformly distributed) with respect to an
axis going through its center.
Solution: ’Borrowing’ the parametrization
(and dA) from the previous Example 2,
and using z as the axis, we get ρ

RR
S
(x2 +

y2) dA = ρ
πR
0

2πR
0

a2 sin2 v · a2 sin v du dv =
2πρa4[cos

3 v
3 − cos v]πv=0 = 2π M

4πa2a
4 · 43 =
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2
3Ma2.

Surface integrals of Type II
(’vector’ type): When integrating a vector
field g(x, y, z) [representing some stationary
flow] over an orientable (having two sides)
surface S, we are usually interested in
computing the total flow (flux) through this
surface, in a chosen direction.

The flow through an ’infinitesimal’ area
[our parallelogram] of the surface is given by
the dot product

g • n dA
where n is a unit direction normal [perpendic-
ular] to the area, since the flow is obviously
proportional to the area’s size dA, to the mag-
nitude of g (the flow’s speed), and to the
cosine of the n-g angle.
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’Adding’ these, one getsZZ
S
g • n dA ≡

ZZ
S
g•dA

≡
ZZ
S
(g1 dy dz + g2 dz dx + g3 dx dy)

introducing two more alternate, symbolic
notations (I usually use the middle one).

We can convert this to a regular double-
integral (in u and v), by parametrizing the
surface [different parametrizations must give
the same correct answer] and replacing n dA
by ∂r

∂u × ∂r
∂v [having both the correct area and

direction], getting:ZZ
R

g[r(u, v)] •
·
∂r

∂u
× ∂r

∂v

¸
du dv

whereR is the (u, v) region corresponding to
S. Note that ∂r∂u× ∂r

∂v does not necessarily have
the correct (originally prescribed) orientation;
when that happens, we fix it by reversing the
sign of the result.
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EXAMPLES (to simplify our notation, we
use ∂r

∂u ≡ ru and ∂r
∂v ≡ rv):

1. Evaluate
RR
S
(x, y, z − 3) • dA where

S is the upper (i.e. z > 0) half of the
x2+ y2+ z2 = 9 sphere, oriented upwards.
Solution: Here we can bypass spherical
coordinates (why?) and use instead
r(u, v) =

£
u, v,
√
9− u2 − v2

¤
with

u2 + v2 < 9 [defining the two-dimensional
region R over which we integrate].
Furthermore, ru = [1, 0,− u√

9−u2−v2 ]
and rv = [0, 1,− v√

9−u2−v2 ] ⇒ ru ×
rv = [ u√

9−u2−v2,
v√

9−u2−v2, 1] [correct
orientation!]⇒ g • (ru×rv) = u2+v2√

9−u2−v2+√
9− u2 − v2 − 3 = 9√

9−u2−v2 − 3. The
actual integration will be done in polar

coordinates:
2πR
0

3R
0

³
9√
9−r2 − 3

´
r dr dϕ =

2π
h
−9√9− r2 − 3r22

i3
r=0
= 27π.

53



2. Evaluate
RR
S
(yz, xz, xy) • dA where S is

the full x2 + y2 + z2 = 1 sphere oriented
outwards. Using the usual parametrization:
r(u, v) = (cosu sin v, sinu sin v, cos v)
⇒ ru = (− sinu sin v, cosu sin v, 0), rv =
(cosu cos v, sinu cos v,− sin v) and ru ×
rv = (− cosu sin2 v,− sinu sin2 v,− sin v cos v)
[wrong orientation, reverse its sign!], we
get g • (−ru×rv) = 3 cosu sinu sin3 v cos v.

Answer: 3
2πR
0

sinu cosu du×
πR
0

sin3 v cos v dv =

0

Shortly we learn a shortcut for evaluating
Type II integrals over a closed surface which
will make the last example trivial. But first we
need to discuss

’Volume’ (triple) integral
is a 3-D generalization of a 2-D integralsZZZ

V
f(x, y, z) dV

and is evaluated by converting it to three
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consecutive univariate integrations:
UzZ

Lz

Uy(z)Z
Ly(z)

Ux(y,z)Z
Lx(y,z)

f(x, y, z) dx dy dz

When the region of integration is a sphere,
we can simplify the integration by introducing
spherical coordinates r, θ and ϕ, by

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

This means that dx dy dz (≡ dV ) needs to
be replaced by dr dθ dϕ multiplied by the
corresponding Jacobian, namely:¯̄̄̄
¯̄ sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ
cos θ −r sin θ 0

¯̄̄̄
¯̄ =

r2 cos2 θ sin θ + r2 sin3 θ =
r2 sin θ

Similarly to double integration of a
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constant,ZZZ
V

c dV = c · Volume(V)

whenever we remember a formula for the
corresponding volume.

Possible Applications
of triple integrals include computing volume
of a 3-D body

V =

ZZZ
V

dV

averaging a scalar function f(x, y, z) over a
3-D region RRR

V
f(x, y, z) dV

V
computing the center of mass of a 3-D object
of mass density ρ(x, y, z) [it cancels out when

constant]:

"RRR
V

x ρ(x,y,z) dVRRR
V

ρ(x,y,z) dV
,

RRR
V

y ρ(x,y,z) dVRRR
V

ρ(x,y,z) dV
,

RRR
V

z ρ(x,y,z) dVRRR
V

ρ(x,y,z) dV

#
and computing the corresponding moment of
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inertia ZZZ
V

d2 ρ dV

where d(x, y, z) is distance from the rotational
axis, and ρ ≡ M

V when the mass density is
uniform.

EXAMPLE: Find the moment of inertia
of a uniform sphere of radius a with an axis
going through its center.

Solution: M
4
3πa

3

RRR
V
(x2 + y2)dV =

M
4
3πa

3

2πR
0

πR
0

aR
0

r2 sin2 θ · r2 sin θ dr dθ dϕ =

M
4
3πa

3 · a55 ·
h
cos3 θ
3 − cos θ

iπ
θ=0
· 2π = 2

5Ma2.

There is an interesting and useful re-
lationship between a Type II integral over
a closed (outward oriented) surface Sc, and
a volume integral over the 3-D region V
enclosed by this Sc, called
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Gauss TheoremZZ
Sc

g • dA ≡
ZZZ
V

Div(g) dV

provided that Div(g) has no singularities
throughout V.

Proof: If it’s true for an ’infinitesimal’
cube, it is true for 3-D region of any size.

For an infinitesimal cube (of size h3) we
get, for the x− h

2 and x +
h
2 sides:

g(x− h
2, y, z) ' g(x, y, z)− h

2

∂g(x, y, z)

∂x

g(x + h
2, y, z) ' g(x, y, z) + h

2

∂g(x, y, z)

∂x
They are to be ’dot’ multiplied by (−h2, 0, 0)
and (h2, 0, 0) respectively, and added, getting
h3∂g1(x,y,z)∂x . The other 4 sides wouldsimilarly
contribute h3∂g2(x,y,z)∂y and h3∂g3(x,y,z)∂z . All
together, this results in h3Div(g), which is
what we have on the right hand side.
EXAMPLES:

1. The integral of Example 2 from the
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previous section thus becomes quite trivial,
as Div([yz, xz, xy]) ≡ 0.

2. Evaluate
RR
S
(x3, x2y, x2z) • n dA, where

S is the surface of
½
x2 + y2 < a2

0 < z < b
(a

cylinder of radius a and height b), oriented
outwards.
Solution: Using the Gauss theorem, we
get

RRR
x2+y2<a2

0<z<b

5x2 dV = 5b
RR

x2+y2<a2
x2 dx dy =

5b
2πR
0

aR
0

r2 cos2ϕ · r dr dϕ [going polar]
= 5b2 · a44 · π = 5

4a
4bπ.

Let us verify this by recomputing the
original surface integral directly (note that
now we have to deal with three distinct sur-
faces: the top disk, the bottom disk, and
the actual cylindrical walls): The top can be
parametrized by r(u, v) = [u, v, b], contribut-
ing

RR
u2+v2<a2

[u3, u2v, u2b] • (0, 0, 1) du dv =
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b
2πR
0

aR
0

r2 cos2ϕ · r dr dϕ [polar] = ba
4

4 π. The

bottom is parametrized by r(u, v) = [u, v, 0],
contributing minus (because of the wrong ori-
entation)

RR
u2+v2<a2

[u3, u2v, 0] • (0, 0, 1) du dv ≡
0. Finally, the sides are parametrized by
r(u, v) = [a cosu, a sinu, v], contributingRR
0<u<2π
0<v<b

[a3 cos3 u, a3 cos2 u sinu, a2v cos2 u] •

[a cosu, a sinu, 0] du dv = a4
bR
0

2πR
0

cos2 u du dv =

a4bπ. Adding the three contributions gives
5
4a
4bπ [check].
Similarly, there is an interesting rela-

tionship between the Type II line integral
over a closed curve Cd and a Type II surface
integral over any surface S having Cd as its
boundary, called
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Stokes’ TheoremZZ
S
Curl(g) • n dA ≡

I
Cd

g • dr

where the orientation of Cd and that of n dA
follow the right-handed pattern. [When Cd and
S lie in the (x, y) plane, this is known as the
Green’s Theorem].
Proof: Similarly, we can divide the surface
into many infinitesimal ’near’ squares of size
h2 We need to prove that the above relation-
ship holds for each of them. Furthermore,
we can always use coordinate system which
makes the square lie (sides alligned with axes)
to x-y plane.
On the left hand side, we would thus get

h2
µ
∂g2
∂x
− ∂g1

∂y

¶
On the RHS, considering the x− h

2 and x+
h
2
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sides,we get the same

g(x− h
2, y, z) ' g(x, y, z)− h

2

∂g(x, y, z)

∂x

g(x + h
2, y, z) ' g(x, y, z) + h

2

∂g(x, y, z)

∂x
as before. They are to be dot multiplied by
(0,−h, 0) and (0, h, 0) respectively. Together,
this yields h2∂g2∂x . Similarly, the other 2 sides
contribute the remaining −h2∂g1∂y .

EXAMPLE: Evaluate
H
Cd
(y, xz3,−zy3) • dr,

where Cd is defined by
½
x2 + y2 = 4
z = −3 ,

counterclockwise when viewed from the top.
Solution: Using Stokes’ Theorem we replace
this integral by

RR
S
[−3zy2−3xz2, 0, z3−1]•

n dA,where S is the corresponding (flat) disk.
Parametrizing S by r(u, v)≡ [u, v,−3] ⇒
n dA = [0, 0, 1] du dv, this converts toRR
u2+v2<4

(−28) du dv = −28 · 4π = −112π
[note that we did not need to know the first
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two components of Curl(g) in this case, i.e. it
pays to do the n dA first].

We will verify the answer by per-
forming the original line integral, di-
rectly: r(t) = [2 cos t, 2 sin t,−3] is the
parametrization of Cd, which converts the
integral to

2πR
0

[2 sin t,−54 cos t, 24 sin3 t] •

[−2 sin t, 2 cos t, 0] dt =
2πR
0

(−4 sin2 t −
108 cos2 t) dt = −112π [almost equally
easily].

Unless Curl(g) ≡ 0, the computational
simplification achieved by applying the
Stokes’ theorem is very limited (a far cry from
the Gauss theorem). One exception is when
Cd is a ’broken’ planar curve (consisting of
several segments), as we can trade one surface
integral for several line integrals.

Review exercises:
1. Find the area of the following (truncated)
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paraboloid:
½
z = x2 + y2

z < b
.

Solution: Parametrize: r =[u, v, u2 +
v2]⇒ ru = [1, 0, 2u] and rv = [0, 1, 2v]⇒
dA =

p
(1 + 4u2)(1 + 4v2)− 16u2v2du dv =p

1 + 4(u2 + v2)du dv.We need
RR

u2+v2<b

dA =

[going polar]
2πR
0

√
bR
0

√
1 + 4r2·rdr dϕ = 2π·h

1
12(1 + 4r

2)
3
2

i√b
r=0
= π

6

h
(1 + 4b)

3
2 − 1

i
.

2. Evaluate
RR
S
[y, 2, xz] • n dA, where S

is defined by

 y = x2

0 < x < 2
0 < z < 3

, and n is

pointing in the direction of −y.
Solution: r(u, v) = [u, u2, v] ⇒
ru×rv = [1, 2u, 0]× [0, 0, 1] = [2u,−1, 0]
(correct orientation). The integral thus con-

verts to
3R
0

2R
0

[u2, 2, uv] • [2u,−1, 0] du dv =
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3R
0

2R
0

(2u3 − 2) du dv = 3
h
u4

2 − 2u
i2
u=0

=

12.

3. Find
RR
S
[x2, 0, 3y2] • n dA, where S is

the

 x > 0
y > 0
z > 0

portion of the x + y + z = 1

plane, and n is pointing upwards.
Solution: r = [u, v, 1 − u − v] ⇒
ru× rv = [1, 0,−1]× [0, 1,−1] = [1, 1, 1]

(correct orientation)⇒
1R
0

1−vR
0

[u2, 0, 3v2] •

[1, 1, 1] du dv =
1R
0

1−vR
0

(u2 + 3v2) du dv =

1R
0

h
u3

3 + 3uv
2
i1−v
u=0

dv =
1R
0

h
(1−v)3
3 + 3(1− v)v2

i
du =h

−(1−v)412 + 3v
3

3 − 3v
4

4

i1
v=0

= 1
3.

4. Parametrize a circle of radius ρ = 5,
centered on a = [1,−2, 4], and normal to
n =[2, 0,−3].
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Solution: In general, a circle is
parametrized by: r(t) = a + ρm1 cos t +
ρm2 sin t, where m1 and m2 are unit
vectors perpendicular to n and to each
other. They can be found by taking the
cross product of n and an arbitrary vector,
then taking the cross product of the result-
ing vector and n, and normalizing both,
thus: [2, 0,−3] × [1, 0, 0] = [0,−3, 0]
and [0,−3, 0] × [2, 0,−3] = [9, 0, 6] ⇒
m1 = [0,−3, 0] ÷ 3 = [0,−1, 0] and
m2 = [9, 0, 6]÷

√
92 + 62 =

h
3√
13
, 0, 2√

13

i
.

Answer: r(t) = [1 + 15√
13
sin t, −2 −

5 cos t, 4 + 10√
13
sin t] where 0 ≤ t <

2π. Subsidiary: To parametrize the
corresponding disk: r(u, v) = [1 +
3v√
13
sinu, −2 − v cosu, 4 + 2v√

13
sinu]

where 0 ≤ u < 2π and 0 ≤ v < 5.

5. Find the moment of inertia (with re-
spect to the z axis) of a shell-like torus
(parametrized earlier) of uniform mass
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density and total massM.
Solution: Recall that r(u, v) = [(a +

b cos v) cosu, (a+b cos v) sinu, b sin v]⇒
dA = b(a + b cos v) du dv [done
earlier] and d2 = (a + b cos v)2 ⇒
ρ
2πR
0

2πR
0

(a + b cos v)2b(a + b cos v) du dv =

ρb2π
2πR
0

(a3 + 3a2b cos v + 3ab2 cos2 v +

b3 cos3 v) dv = M
4π2abb2π[2πa

3 + 3ab2π] =
M (a2 + 3

2b
2).

6. Repeat with a solid torus.
Solution: We replace r by [(a +

r cos v) cosu, (a + r cos v) sinu, r sin v],
where the new variables u, v and
r (0 ≤ r < b) can be also seen
as orthogonal coordinates. For any
orthogonal coordinates it is easy to
find the Jacobian, geometrically, by
dx dy dz → r dv · (a + r cos v) du · dr =
r (a + r cos v) du dv dr ⇒ ρ

bR
0

2πR
0

2πR
0

(a +
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r cos v)2r (a + r cos v) du dv dr =

ρ2π2
bR
0

r (2a3 + 3ar2) dr = ρ2π2(a3b2 +

3
4ab

4).

Similarly, the total volume is
bR
0

2πR
0

2πR
0

r (a+

r cos v) du dv dr = (2π)2ab
2

2 .

Answer: M
2π2ab22π

2(a3b2 + 3
4ab

4) =
M (a2 + 3

4b
2).

An alternate approach would introduce
polar coordinates in the (x, y)-plane,
use 2

p
b2 − (r − a)2 for the z-thickness

and r2 for d2, leading to ρ
2πR
0

a+bR
a−b

r2 ·
2
p
b2 − (r − a)2 · r dr dϕ = ... [verify

that this leads to the same answer].

7. Consider the following solid


x > 0
y > 0
z > 0

x + y + z < 1

of

uniform density. Find:
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(a) Center of mass.
Solution: To find its x-component we

need to divide
1R
0

1−zR
0

1−y−zR
0

x dx dy dz =

1R
0

1−zR
0

(1−y−z)2
2 dy dz =

1R
0

(1−z)3
6 dz = 1

24

by the volume
1R
0

1−zR
0

1−y−zR
0

dx dy dz =

1R
0

1−zR
0

(1− y − z)dy dz =
1R
0

(1−z)2
2 dz = 1

6.

Answer: [14,
1
4,

1
4], as the y and z-

components must have the same value as
the x-component [obvious from symme-
try].
(b) Moment of inertial with respect to
[t, t, t] (the axis).
Solution: To find d2 we project [x, y, z]
into [ 1√

3
, 1√

3
, 1√

3
] (unit direction of the axis),

getting [x, y, z] • [ 1√
3
, 1√

3
, 1√

3
] = x+y+z√

3
. By

Pythagoras, d2 = x2+y2+z2−
h
x+y+z√

3

i2
.
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Answer:
M
V

1R
0

1−zR
0

1−y−zR
0

h
x2 + y2 + z2 − (x+y+z)2

3

i
dx dy dz =

4M
1R
0

1−zR
0

1−y−zR
0

£
x2 + y2 + z2 − xy − xz − yz

¤
dx dy dz

12M
1R
0

1−zR
0

1−y−zR
0

£
x2 − xz

¤
dx dy dz

[due to symmetry] =

12M
1R
0

1−zR
0

h
(1−y−z)3

3 − (1−y−z)2
2 z

i
dy dz =

M
1R
0

[(1− z)4 − 2(1− z)3 z] dz =

M
h
−(1−z)55 + 2(1−z)

4

4 z + 2(1−z)
5

20

i1
0
= M

10.

8. A container is made of a spherical shell of
radius 1 and height h. Find:
(a) The shell’s surface area.
Solution: r(u, v) = [u, v,−√1− u2 − v2]⇒
ru = [1, 0,

u√
1−u2−v2 ] and rv = [0, 1,

v√
1−u2−v2 ]⇒

dA =
q¡
1 + u2

1−u2−v2
¢ ¡
1 + v2

1−u2−v2
¢− u2v2

(1−u2−v2)2 du dv ≡
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q
1

1−u2−v2 du dv.

Answer:
RR

u2+v2<h(2−h)
du dv√
1−u2−v2 =

2πR
0

√
h(2−h)R
0

r dr√
1−r2 dϕ = 2π[−√1− r2]

√
h(2−h)

r=0 =

2π[1−p1− h(2− h)] = 2πh.
(b) The container’s volume:
Solution: Since the z-thickness (depth)
equals

p
1− x2 − y2− (1−h), all we need

is
RR

x2+y2<h(2−h)

hp
1− x2 − y2 − (1− h)

i
dx dy =

2πR
0

√
h(2−h)R
0

[
√
1− r2 − 1 + h] · r dr dϕ =

2π
h
−13(1− r2)

3
2 − (1− h)r

2

2

i√h(2−h)

r=0
=

2π[−13(1 − h)3 − (1 − h)h(2−h)2 + 1
3] =

πh2
¡
1− h

3

¢
.

9. Evaluate
H
C
[(x + y) dx + (2x − z) dy +

(y + z) dz], where C is the closed curve
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consisting of three straight-line segments
connecting [2, 0, 0] to [0, 3, 0], that to
[0, 0, 6], and back to [2, 0, 0].
Solution: Applying the Stokes’ Theorem,
which enables us to trade three line
integrals (the three segments would require
individual parametrization) for one surface
integral, we first compute Curl(g) =
[2, 0, 1], then r(u, v) = [u, v, 6− 3u− 2v]
(note that x2 +

y
3 +

z
6 = 1 is the equation

of the corresponding plane)⇒ ru × rv =
[1, 0,−3]× [0, 1,−2] = [3, 2, 1] which has
the correct orientation.
Answer:

RR
u>0
v>0

3u+2v<6

[2, 0, 1]• [3, 2, 1] du dv =

7×Area = 7× 2×3
2 = 21

[Verify by computing the line integral
(broken onto three parts) directly].

10. Evaluate
H
C
[yz dx+ xz dy + xy dz], where

C is the intersection of x2 + 9y2 = 9 and
z = 1+y2 oriented counterclockwise when
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viewed from above (in terms of z).
Solution: Applying the same Stokes’
Theorem, we get Curl(g) ≡ [0, 0, 0].
Answer: 0.
We will verify this by evaluating the line
integral directly: r(t) = [3 cos t, sin t, 1 +
sin2 t] parametrizes the curve (0 <

t < 2π) ⇒
2πR
0

[(1 + sin2 t) sin t, 3(1 +

sin2 t) cos t, 3 sin t cos t]• [−3 sin t, cos t, 2 sin t cos t] dt =
2πR
0

[−3 sin2 t(1 + sin2 t) + 3(1 + sin2 t)(1−
sin2 t) + 6 sin2 t(1 − sin2 t)] dt =
2πR
0

(3 + 3 sin2 t − 12 sin4 t) dt = 2π ×¡
3 + 3× 1

2 − 12× 3
8

¢
= 0 [check].

Note that
2πR
0

sin2n t dt =
2πR
0

cos2n t dt =

2π × 1
2 × 3

4 × 5
6 × 7

8 × ....× 2n−1
2n .

11. In Physics we learned that the gravitational
force of a ’solid’ (i.e. 3-D) body exerted
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on a point-like particle atR ≡ [X,Y, Z] is
given by

µ

ZZZ
V

ρ(r)
r−R
|r−R |3 dV

where µ is a constant, ρ is the body’s mass
density, and V is its ’volume’ (i.e. 3-D
extent). [Here we are integrating a vector
field in the componentwise (scalar) sense,
i.e. these are effectively three volume
integrals, not one].
Prove that, when the body is spherical
(of radius a) and ρ is a function of r only
(placing the coordinate origin at the body’s
center), this force equals

µM · −R|R |3
whereM is the body’s total mass.
Solution: First we notice that r−R

|r−R |3 ≡
∇R

1
|r−R |, where∇R ≡ [ ∂∂X, ∂

∂Y ,
∂
∂Z ]. This
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implies that µ
RRR
V

ρ(r) r−R|r−R |3 dV ≡

µ∇R

ZZZ
V

ρ(r)
1

|r−R | dV

leading to a lot easier integration (also, now
we need one, not three integrals).
Evaluating

RRR
V

ρ(r) 1
|r−R | dV (the so

called gravitational potential) in spherical

coordinates yields
aR
0

ρ(r)
πR
0

2πR
0

r2 sin θ·dϕ dθ dr√
r2+R2−2Rr cos θ

[note that |r−R| = p
x2 + y2 + (z −R)2,

where we have conveniently chosen
the direction of R (instead of the
usual z) to correspond to θ = 0].

This further equals 2π
R

aR
0

ρ(r) · r ·£√
r2 +R2 − 2Rr cos θ¤π

θ=0
dr = 2π

R

aR
0

ρ(r)·

r·[(R + r)− (R− r)] dr = 4π
R

aR
0

ρ(r) r2 dr =

M
R .
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This proves our assertion, as ∇R
1
R =∇R

1√
X2+Y 2+Z2

=·
−X

(X2+Y 2+Z2)
3
2
, −Y
(X2+Y 2+Z2)

3
2
, −Z
(X2+Y 2+Z2)

3
2

¸
=

−R
R3 .
Now try to prove the original statement
directly (bypassing the potential), you
should not find it too difficult.
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