PREREQUISITES
Polynomials (synthetic division)

(23 —32*+ 2z —4) + (x — 2) = 2> — 2 [QUOTIENT]
T3 — 222 (subtract)
—2? + 2z —4
—a? + 2z (subtract)
—4 [REMAINDER]

Rules of exponentiation:

dA . gB = AB
(aA)B — aAB
Note:
(a)? # a4
Differentiation:

Product rule
(f-9)=f-9+f4d
extended to second derivative

(f-9)"=f"g+2f - d+f-¢"

Integration:
Basic formulas:

xa+1
dr = -1
/x v a+1 a7
Bx
Bz _ ¢
edr = —
/ &}
d
. N
x

Taylor (Maclaurin) Expansion

2 3 4
J(@) = F(0) + s (0) + /" (0) + 7 /" (0) + S (0) 4

e.g.
e’ =1+x+22/2+2%/3 + 2" /4 + ...



2-D region (subsequent integration):

Matrices )
4 —6 |

-3 2 o

ORDINARY DIFFERENTIAL EQUATIONS

Addition, multiplication, transpose, inverse {

|
| —|
I
Sloocnh—t
[
atlhoot|
_ 1

Basic concepts:
Find y(x) where z is the independent and y the dependent variable, based on
an equation involving x, y(x), v'(z), ...e.g.:

or, equivalently
p_1tyy
1+ a2
The highest derivative (second) is the order of the equation.

Solution is normally a family of functions, with as many extra parameters (C1,
C3) as the order of the equation.

We will first study first-order ODFE, then higher-order ODE, but, almost exclu-
sively linear (in y and its derivatives) with constant coefficients, e.g.: y"'—2y'+3y =
e?®. When the RHS of is zero, the equation is called homogenous.

A set (system) of ODE has several dependent (unknown) functions v, y9, ys,
. of a single independent variable x. We will study only the first order, linear
set of ODE with constant coefficients (matrix algebra).

Partial differential equations have a single dependent variable and several in-
dependent variables (partial derivatives). We may not have time to discuss these.



First-Order Differential Equations

General form:
y = f(z.y)
(visualize graphically). Analytically, this ODE can be solved only in a handful of
special cases.

The family of solutions usually (but not always) covers the whole z—y plane
by curves which don’t intersect (one solution passes through each point). This
means: given y(xo) = yo (initial condition), there is a unique solution.

Let’s go over the ’special cases’ now.
"Trivial’ equation:

y = f(x)

General solution (if we can integrate f)

y(z) = / f(x)dz + C

Example: 3’ = sin(z).
Solution: y(x) = — cos(z) + C.

Separable equation

y = h(z) - g(y)
Solution: Writing 4/ as Z—g, we can ’separate’ x and y:
d
v h(z)dz
9(y)

and integrate each side individually (w/r to y and z, respectively - don’t forget to
add C). If we can then solve for y, we have an explicit solution, if not, we leave

it in the implicit form.

EXAMPLES:



d
Y o xdx
Y
2 ~
Injy| = %—FC’

Yydy = —4dxdx
2 2
Yy x ~
9=— = —4—+C
2 2 +
4
2 2
- - C
Yy + gx

family of ellipses centered on the origin, with the vertical versus horizontal
diameter in the 2:3 ratio.

y = 2y
@ = —2zdx
y ~

Inly] = —2*+C
y = Ce ™™

(1+2%)y +1+y°=0
with y(0) = 1 (initial value problem).



Solution:

dy o dx
1+y>  1+a?
arctan(y) = —arctan(z) 4 C

arctan(C') — arctan(z)

y = tan (arctan(C) — arctan(z))
C—ux

1+ Cx

_ _C=0 _
Toﬁndeesolvel—m:C'—l.

Answer: y(z) = 7=,
Check: (1 +22)& (1) 414 (L2)* =,

Scale-independent equation

r_ Y
v =9(2)
T
(RHS invariant under x — ax and y — ay).

= y(r) = - u(z)

e

Solve by introducing a new dependent variable u(z) =

=y =u+au.
Substitute into original equation:

which is separable in x and u:

Solve as such, and then go back to y(x).

EXAMPLES:



2

2vyy —y* +2° = 0
Y Y
Yy = %—Z
, U+l
U=
2udu dx
w+1
In(l14+u?) = —Injz|+C
w1 = E
x
v +2>—20x = 0
¥+ (x—0) = C?

Family of circles having a center at any point of the z-axis, and being tangent

to the y-axis

l’zy

/

/

Y
xu’
du
14 u?
arctan(u)

u

Y

Modified Scale-Independent

y =24y
T

(

The same substitution yields

xu’

which is also separable.

y? + xy + 2
2

(5) +2+1
T T
uw? + 1

dx

T
In|z|+C
tan (In |z| + C)
x - tan(In|z| + C)

y
T

) h(z)

g(u) - h(x)



EXAMPLE:

, v, 223 cos(z?)

y = =
z Y
2 2 2
o = 2% cos(z?)
u
udu = 2z cos(z?)dx
u? .
= sin(2?) + C

2
u = +4/2sin(z?)+C
y = =txv/2sin(z?)+C

Any Other Smart Substitution
(usually suggested), which makes the equation separable.

EXAMPLES:
1.
2z —4y+5)y +x—2y+3=0
— 1—
Suggestion: introduce: v = x — 2y, i.e. y:x ” and Yy = 2@
17
(20 + 5) +v4+3 = 0
5 11
—(v+§)v’+2fu+7 =0
+ 3
° L dv = 2dx
U+
( 1
11— —4 )dv = 2dx
U—i-%
1 11
U—Zln|v+z| = 204+ C
1 11
x—2y—zln|x—2y+z| = 20+C



y cosy + wsiny = 2z
seems to suggest v = siny, since v’ =y’ cosy.

The new equation is thus simply
v+ v =21

which is separable and can be solved as such:

d
U—UQ = —xdx
22
Injv—-2| = —7+1HC

Z2
v—2 = (Ce 2
v = 24+ Ce 2

Finally, y = arcsin v = arcsin (2 + C’e_%> .
Linear equation

Y +yg(x)-y=r(z)
The solution is constructed in two stages:

1. Solve the homogeneous part y' = —g(x) - y, which is separable, thus:

yh<x) =C- effg(x)dx

2. Assume c to be a function of x, substitute c(z) - e~/ 9% back into the full
equation, and solve the resulting trivial differential equation for ¢(z).

EXAMPLES:

1, ,
S T
g+ 2=




First solve

y+2 =0
T
dy dx
y oz
Inly] = —Injz|+¢
c
vy = 7

Now substitute this to the original equation:

c c c sinx
r a2 a2 T
¢ = sinx
clx) = —cosz+C
cosz C
ylo) = ———+—
T T

Note that the solution has always the form of y,(z) + Cy,(z), where y,(z) is
a particular solution to the full equation, and y,(x) solves the homogeneous
equation only.

Let us verify the former:

d( cosx) cosx sinz

dx T 2 T
y/ —y = e2x
First
Y-y =0
d
Yoo
Yy
y = ce”
Substitute:
de” 4+ ce® — ce® = ¥
C, — 633

c(z) = °+C
y(r) = e* 4 Ce”



vy +y+4=0

Homogeneous part:

dy dx
y x
Inly] = —Injz|+¢
c
y = =
x
Substitute:
d-S45 = 4
r
cle) = —dx+C
C
N
y(z) + -
y' 4y - tan(z) = sin(2x)
with y(0) = 1.
Homogeneous part:
dy  —sinxdx
y cos
Injy| = In|cosz|+¢
Yy = C-CoST
Substitute:
dcosx —csinx +csinz = 2sinzcosw
d = 2sinz
clx) = —2cosx+C
y(r) = —2cos’z + Ccosx

To find the value of C, solve:

l=-2+C=C=3

10



The final answer is thus:

y(r) = —2cos’ v + 3cosx
To verify:
d 2
T [—2(:05 x+3(;osac] +
[—2cos2x+3cosx} - 2cosxsinw
Cos T
22y 4+ 22y —x+1=0
with y(1) = 0.
Homogeneous part:
d d
dy _ v
Yy x
Inly] = —2ln|z|+C
c
V=@
Substitute:
2 2
e e
x3
d = x-1
2
x
= — — C
c 5 T+
11 n C
R R

To meet the initial-value condition:

1 1
—— S
0=5-1+C=C=g3

Final answer:
(1 —x)

y= 212

11



Verify:

d ((1—ux)? (1—x)?
2_ S — —_— J— prm—
xdx< 7 >+Qm( o r+1=0.

6.
Y — LA cos(3z)
T
First:
dy _ v
Yy T
Inly] = 2Injz|+¢
y = ca®
Substitute:
da® 4 2cr — 2cx = 2% cos(3x)
d = cos(3x)
in(3
. sm; x) Lo

22
vy = 3 sin(3x) + Cz?

To verify the particular solution:

2
d;‘; (“% sin(3:r)> - %x sin(3x) = 2 cos(3z)

Bernoulli equation

Y+ f(x) -y =r(x) -y

where «a is a specific, constant exponent.

Introducing a new dependent variable u = y'=% ie. y = uﬁ, one gets:

1
l1—a

Ty 4 f(z) - Ut = r(z) - uTs

12



Multiplying by (1 — a)u" T results in:
v+ (1—a)f(z) u=(1-a)r(z)

which is linear in v’ and wu. )
The answer is then easily converted back to y = ui-.

EXAMPLES:

1.
, x
Y +ay=—
Yy

Bernoulli, a = —1, f(z) =z, g(x) = z, implying

u 4 2xu = 2
where y = uz.
Solving as linear:

du

— = 2zdx

U

Injul = —2*+¢
uw = c-e ™
Substitute:
de ™ —2pce™ 4+ 2xce™ = 2
d = 2e*

clx) = " +C
uw(z) = 1+Ce™
y(x)

= 414+ Ce**

(one can easily check that this is a solution with either the + or the — sign).

(x

(x

22y’ = 102°y° +y
(terms reshuffled a bit).

13



Bernoulli with a =5, f(z) = —3-, and g(z) = 5a?
This implies
2
u' + =u = —202°
T

1

with y = u™1.
Solving as linear:
d d
du v
U x
Inju] = —2In|z|+¢
c
u = ﬁ

Substituted back into the full equation:

cl

i 2— + 2— = —202°
c’ = —20z*

c(z) = —42°+C

C

u(z) = —42%+ =)

y(r) = i(—4x3+%>

2xyy’ + (v — 1)y? = 2%e”
Bernoulli with a = —1, f(z) = £, and g(z) = Ze”

This translates to:

®

/ r—1 T
u + u = ze
x
with y = us.
Solving homogeneous part:
du 1
— = (=—1)d
L= (C -
Inju| = Injz|—xz+¢é
u = cxe ”

PN



Substituted:

dee ™ +ce™ —cxe ™ + (x — 1)ce™

T

xe
Cl — e2z
1 2z
clx) = 3¢ +C
u(z) = gem + Cze™

y(x) = =£4 /ge"” + Cre®

Exact equation

General idea:
Suppose we have a function of = and y, f(z,y) say.
Then of of

——dxr + ==d

oz " * dy Y

is its total differential, representing the function’s increase from (z,y) to (x +
dx,y + dy).
By making this equal to zero (a differential equation, called eract), we are
effectively saying that f(z,y) = C' (and this is its implicit solution).
EXAMPLE: Suppose
flz,y) = 2%y — 22
This means that
(2zy — 2)dr +2*dy =0
has a simple solution
2y —2x=C
2 C
y=—-+—
r x
Note that the differential equation can be also written as:

1 -2y

/_
y_2 l'2

(linear).

15



We must now try to reverse the process, i.e. given a differential equation, find
flz,y).

There are then two issues to be settled:
1. How do we know that an equation is exact?
2. Knowing it is, how do we solve it?

To answer the first question, we recall that

Pf _ o
Oxdy  Oyox

Thus, g(z,y) dx + h(z,y) dy = 0 is exact if and only if
dg  Oh

oy  Ox
As to solving the equation, we proceed in three stages:

1. Find
G(z,y) Z/g(l’,y) dx

(considering y a constant).

2. Construct
oG

H(y) = h(z,y) — N

; OH _ oh _ 902G _ 09 _ g
[must be a function of y only, as 2 = 5% — == 5= o o

= 0.

Proof: %:%—g:ganda—f:a—(;qtl{:h.

EXAMPLE:
2a sin(3y) dz + (3z% cos(3y) + 2y) dy = 0

16



Let us first verify that the equation is exact:

%21 sin(3y) = 6x cos 3y

0
Ep (32” cos(3y) + 2y) = 6z cos 3y

Solving it:
G = 2?sin(3y)
H 372 cos(3y) + 2y — 3% cos(3y) = 2y
flzy) = a”sin(3y) +y°

Answer: y* + 2% sin(3y) = C' (implicit form).

Integrating Factors
Any first-order ODE (e.g. 3 = £) can be expanded to make it look like an

exact equation:
dy
dr
yde —xdy =

e8I

But since %Z) =+ —%, this equation is not exact.

The good news is that, theoretically, there is always a function of x and y, say
F(z,y), which can multiply the equation to make it exact. This function is called

an integrating factor.
The bad news is that there is no general procedure for finding F'(z,y).

Yet, there are two special cases when it is possible:
Let us write the differential equation in its ’look-like-exact’ form of

P(z,y)dx + Q(z,y)dy = 0

where ‘3—}; + %. One can find an integrating factor from

1.

dinF 5, ~ &2

dx Q
17



iff the right hand side of this equation is a function of x only

Proof: F Pdx + FQdy = 0 is exact when
oFP) _O(FQ)

Jy ox
which is the same as 9P dF 90
F— = — F—=
Jdy  dx @+ ox

@
b
@
O

Q|
<
Q|
8

dF
assuming that F'is a function of z only. Solving for <4 results in
When the last expression contains no y, we simply integrate it (with respect
to x) to find In F.

2. or from
din F rimk
dy P

iff the right hand side is a function of y only.

EXAMPLES:

1. Let us try solving our ydz — x dy = 0. Since
oP  9Q

dy ox _
Q

2
x

we have

InF=-2 @ = 2lnzx
x

(no need to bother with a constant) = F = —. Thus % dz — 1 dy = 0 must
be exact (check it). Solving it gives —% = C', or y = Cz.

Note that there is infinitely many integrating factors, if F'(x,y) is one, so is
F(z,y) - R(f(x,y)), where R is an arbitrary function.

2.
(2 cosy + 4962) dr = zsiny dy
Since op 90
9y 9. _ —2siny+siny l
Q N —xsiny o

18



we get
1
InF = /—dlenx
x
F = =z

(2x cosy + 4x3) dr — 2*sinydy =0

is therefore exact, and can be solved as such:

z?cosy + a2t =C

=)
Yy = arccos —2—1’
T

(3we¥ + 2y) dx + (2%e¥ + x) dy =0

Trying again

S—Z—%_ ze +1 1
Q v+
which means that
d
InF = —x:lnx
T
F = =z

(32%¢¥ + 2xy) dx + (2e¥ + 2*) dy = 0
is exact. Solving it yields:
w3ed + 2%y =C
Exact equations - more examples:

1)
(1—€e""")dx+ (v + 2ye ¥)dy =0

19



oP

L ey
dy c
Q)
— =1
ox
9Q _ 9P
ox oy
R a—
P
InF =y
F = ¢

(e —e®)dx + (xe? +2y)dy =0

G = wze —x
H = ze’+2y—xe’ =2y
f = az'—z+y*=C

2)
(22 + tany)dz + [z — (1 + 2*) tany]dy = 0
or _ —Sin2y+COSQy:tan2y+1
y cos?y
0
—Q = 1—2ztany
Ox
%—f—%—’; 2z tany + tan’y
—_ = - = —tany
P 2z + tany

InF = In(cosy)
(27 cosy + siny)dz + [z cosy — (1 + 2%) siny]dy =0

= 2%cosy + rsiny

G
H = zcosy— (14 2% siny + 2?siny — xcosy = —siny
f

= z%cosy+ xsiny + cosy = C

There are many other special types of equations (usually, of a more ’exotic’
type), we will look at one example only:

20



Clairaut equation:

y=azy +9()
where ¢ is an arbitrary function. The idea is to introduce p = 3/, differentiate the
original equation with respect to x, obtaining

p = p+tap +pqp)
p(z+4(p)=0
This implies that either p =y = C =
y=zC+g(C)
which represents a family of regular solutions (all straight lines), or
z=—g(p)

which, when solved for p and substituted back into y = xp + g(p) provides the so
called singular solution (an envelope of the regular family).

EXAMPLE:

(y/)Z —xy'+y =0
(terms reshuffled a bit) is solved by either

y=Cx—C?
or
r = 2p
o
P=3
R
Yy = pp—4

(singular solution).

Note that for an initial condition below or at the parabola two possible
solutions exist, above the parabola there is none.

21



A final stratagem:
When an equation appears more complicated in terms of y rather than z, e.g.

2z +y")y =y
1
_ . : _d
one can try reversing the role of x and y. All it takes is to replace y’ = 5% by YL
dy

for example (using the previous equation):

d
_I:2£+y3
dy Yy

It’s a pain to remember that x is now the dependent and y is the independent
variable, so what I like to do is x < y:

Y

y/:2_+$3
T

The last equation is linear and can be solved as such:

dy _ Hdr
Yy x
Inly| = 2In|z|+1Inec
y = c(z)-2?
Substituted into the full equation:
r?c
2zc + 2*d = 2=— +2°
x
d = x
2
x
= —-C
cT 3
4
y = % — Ca?
And only now I would go back to:
4
Y 2
==-C
T =3 y

which can be solved explicitly for y = :I:\/ C+vC?+ 2.

22



Applications
Of Geometric Kind:

1. Find a curve such that, from each of its points, the distance to the origin is
the same as the distance to the intersection of its normal (i.e. perpendicular
straight line) with the z-axis.

Solution: Suppose y(z) is the equation of the curve (yet unknown). The
equation of the normal is

where (x,y) [fixed] are the points of the curve, and (X,Y’) [variable] are
the points of the normal. This normal intersects the z-axis at Y = 0 and
X = yy' + x. The distance between this and the original (z,y) is

(vy')* + v
the distance from (z,y) to (0,0) is
Va2 +y?
These two distances are equal when
v(y) =u

or T
y =+—
y

This is a separable differential equation easy to solve:
V22 =C

The curves are either circles centered on (0,0), or hyperbolas [with y = +x
as special cases].

2. Find a curve whose normals (all) pass through the origin.

23



Solution (we can guess the answer, but let us do it properly): Into the same
equation of the curve’s normal (see above), we substitute 0 for both X and
Y, since the straight line must pass through (0, 0). This gives:

x
which is simple to solve:
—ydy = xdr
1[2 + y2 — O

(circles centered on the origin — we knew that!).

. A family of curves covering the whole z—y plane enables one to draw lines
perpendicular to these curves. The collection of all such lines is yet another
family of curves orthogonal (i.e. perpendicular) to the original family. If we
can find the differential equation ¢y’ = f(z,y) having the original family of
curves as its solution, we can find the corresponding orthogonal family by

solving ¢y’ = —ﬁ. The next set of examples relates to this.

x’y

1. The original family is described by
2?4 (y—C)? =C?

with C arbitrary (i.e. collection of circles tangent to the z-axis at the
origin). To find the corresponding differential equation, we differentiate
the original equation with respect to z:

20 +2(y—C)y' =0

_z

solve for y' = romnt and then eliminate C' by solving the original equa-
tion for C, thus:

22+ —20y =0

2 4 .2
oo Tr+y
2y
further implying
J = T B 2y
Toa24y? T2 g2
=Y Y

24



To find the orthogonal family, we solve

y/:y -
2y

[scale-independent equation solved earlier]. The answer was:
(x=C)P +y*=C?

i.e. collection of circles tangent to the y-axis at the origin.

. Let the original family be circles centered on the origin (it should be
clear what the orthogonal family is, but again, let’s solve it anyhow):

22 4yt = O
describes the original family,
22+ 2yy’ =0

is the corresponding differential equation, equivalent to

y=—--
Y

The orthogonal family is the solution to

y = 2
x
dy  dz
y  x
y = Cux

(straight lines passing through the origin).
. Let the original family be described by

Y =x+C

(the y? = x parabola slid horizontally). The corresponding differential
equation is
2y =1

25



the ’orthogonal’” equation:

y =2
Answer:
Inly| = —2z+C
y = Ce
(try to visualize the curves).
4. Finally, let us start with
y=Ca?
(all parabolas tangent to the z-axis at the origin). Differentiating:
y =2Cx
implying (since C' = %)
y =22
x
The ’orthogonal’ equation is
x
ro_
Y 2%
2
5 T
= C

(collection of ellipses centered on the origin, with the x-diameter being
V2 times bigger than the y-diameter).

4. The position of four ships on the ocean is such that the ships form vertices
of a square of length L. At the same instant each ship fires a missile that
directs its motion towards the missile on its right. Assuming that the four
missiles fly horizontally and with the same constant speed, find the path of
each.

In Physics:

If a hole is made at a bottom of a container, water will flow out at the rate
of av/h, where a depends on the size of the opening (we will keep that constant)
and h is the height of the (remaining) water, which varies in time. Time ¢ is the
independent variable. Find h(t) as a function of ¢ for:

26



1. A cylindrical container of radius r and height hg.

Solution: First we have to establish the volume V of the remaining water as
a function of height. In this case we get simply

V (h) = 7r?h

Differentiating with respect to t we get:

This in turn must be equal to —av/h, since the rate at which the water is
flowing out must be equal to the rate at which its volume is decreasing. Thus

r2h = —avh

where h = %. This is a simple (separable) differential equation, which we
solve by

o _ e .
N
h1/? t
T = ——5+C
) mr
at
vh = _27T7“2+ fig

or equivalently

_ 2mr? (\/— \/—)

Subsidiary: What percentage of time is spent emptying the last 20% of the
container?

Solution:

21 12
t100 = TV ho

is the time to fully empty the container.

21 (\/— )
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is the time it takes to empty the first 80% of the container. The answer:

t100 — tgo \/T
Do 7 P02 4g70
t100 S i’

A conical container with the top radius (at hg) equal to 7.
Solution:

V(h) = %wh (%)2

(Note that one fifth of the full volume corresponds to (
of the full height!). Thus

)% ho, ie. 58.48%

1
5

o2rr? e
h2h = —avh
3 avh

is again a separable equation:
_ 3ahg
2 r?
15ah% 5/2
47 r? £y
47T7"2 5/2

ne/ — 1)
15ah3 < 0

dt

h3/2 dh,

h5/2 - _

This implies
4 7’2 vV ho
tio = ———=——
15a

and
. _47”,2\/}70 [1_(1)5/6]

80 15a 5

implying
1
_ (5

=t (1)
100
3. A hemisphere of radius R.
Solution:

V(h) = %w 23R — h)

28



Making the right hand side equal to %71’ R3/5 and solving for h gives the
height of the 20% (remaining) volume to equal 0.391600R. Now

2m L e
(2nhR —7h?)h = —avh

which can be easily solved, thus:

(%Rhiﬁ/? _ 2_Wh5/2> — 14_7TR5/2 = _—qa-t

5 15
Thus,
147
¢ _ _R5/2
100 = 75
and
oo = iz _ (AT s/ s .3016%2 — ZE RS2 x 0.3916°/2
15a 3a oa

which implies

t100 — ¢ 10 3
W — % 0.3916%2 — 2 x 0.3916%2 = 30.9%
100 7 7

Second Order Differential Equations

Much more difficult to solve than first-order ODEs - we will concentrate mainly
on the simplest case of linear equations with constant coefficients.

The general solution always has two arbitrary constants, say C and Cs, which
means that we need two conditions to pull out a unique solution.

These are usually of two distinct types:

1. initial conditions:

y(zo) =
y'(zo) = b

[zo is often 0], specifying the value and slope of the function at a point,
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2. boundary conditions:

y(%) = b

specifying a value each at two distinct points.

In this introductory section we look at two special non-linear cases, both
reducible to first order.

i) missing y
(i.e. does not appear explicitly - only z, ¢ and y” do), then ¥ = 2z can be
considered the unknown function of the equation. In terms of z(z), the equation
is of the first order.

Once we solve for z(z), just integrate the result to get y(x).

1.

y// — /

7 = z

d

& dx

z

Injz] = z+InC

z = (Cie”

y = Cie® +Cy

Let’s impose the following initial conditions: y(0) = 0 and ¥'(0) = 1.

By substituting into the general solution we get:

01+02 = 0
c; =1
implying C5 = —1 and
y=-e"—1
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xy/l + yl — O

2 +2z = 0
& _ i
z x
In|z| = In|z|+1InC)
&

X
y = Clln|x|+02

Let us make this into a boundary-value problem: y(1) = 1 and y(3) = 0
implying

Cy
Clln3+C'2 =0
ie. C ——Land
R P |
_q_Inja|
In3
:Cyll_’_zy/ . O
7 +2z = 0
dz _ o4z
z o
Cy
S
C
y = —1—{—02
T

Sometimes the two extra conditions can be of a more bizarre type: y(2) = 1,
implying
1 G

- C
5= 5 92

and requiring that the solution intersects the y = x straight line at the right
angle.
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Translated into our notation: y'(zg) = —1 where z; is a solution to y(z) = z,
le.

C
__21 1
o
where o
—1 + 02 = 29
Lo
Solution: C5 =0, C7 =1 and zo = 1. The final answer:
1
y(z) = .

The second type (of a second-order equation reducible to first order) has
ii) missing x
(not appearing explicitly) such as
y - y// + (y/)Q =0
We again introduce z = 1 as a new dependent variable, but this time we see it
as a function of y, which becomes the independent variable of the new equation!

Since " = £ = 3—; . % [chain rule], we replace y” in the original equation by

dz

dy'z‘

We solve the resulting first-order equation for z (as a function of y), then
replace z by ¥’ and solve again.

1.
Y- y// + (y/)Z = 0
d
yd—;z—l—zQ =0
= _ 4y
: oy
Injz|] = —Inly|+InCy
Cy
z = —
4
r_ CI
y — —
Y
ydy = Cidx

y2 = CliL"l’Cg

Yy = :i:\/ CLT"’CQ



(note that z = 0 solution is included).

d—yz +e%z? = 0
dz 9
= = ¢ Ydy
1 1
- = —e% —
z
1
ya =
01 + %82@/
1
(Cy + §e2y)dy = dx
1
Ciy + 1629 = v+ Cy
This time, we need to add: y = C.
" 1 /\2
y' (1 5)(?4) = 0
dz 1
—z+(1+-)2> =0
dy ( y)
d 1
Z oo 1+ )dy
< )
Injz|]| = —Inly|—y+InC
_ G .,
z = —e

ye!dy = Chdx
(y—1e’ = Ciz+Cy

(covers the y = C case).

LINEAR EQUATION
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The most general form is

y'+ fa)y + g(x)y = r(z)

where f, g and r are specific functions of z. When r = 0 the equation is called
homogeneous.

There is no general technique for solving this equation, but some results
relating to it are worth quoting;:

1. The general solution must look like this: y = Ciy; + Caya +y,, where y; and
y2 are linearly independent 'basic’ solutions (if we only knew how to find
them!) of the corresponding homogeneous equation, and vy, is a particular
solution to the full equation. None of these are unique (e.g. y; + y» and
Y1 — Yo is yet another basic set, etc.).

2. When one basic solution (say y;) of the homogeneous version of the equation
is known, the other can be found by variation of parameters (VP): Assume
that its solution has the form of ¢(x)y;(x), substitute this ¢rial solution into
the equation and get a first-order differential equation for ¢ = z.

EXAMPLES:
1.
y' —dxy' + (42* —2)y =0
given that
y1 = exp(z?)
is a solution. To verify that, y; = 2z exp(2?) and y; = 2 exp(2?)+42? exp(z?).
Substituting
y = c-exp(a?)
back into the equation - remember: y' = 'y +cy) and y" = "yy +2¢ Yy +cyl;

also remember that the c-proportional terms must cancel out - yields

" exp(z?) + 4xc exp(2®) — dac exp(z?) = 0
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This we thus always be the case of 'missing y, now called ¢, equation’:

7 =0
z = 01
c = Cix+ 0y

Substituting back to y results in

y=Cix exp(xQ) + Oy exp(x2)

We can thus identify z exp(z2) as our ys.

2
y'+=y +y=0
xr

given that
sin x
h =
T
is a solution. To verify: y; = €% — 552 and ¢y = —*2% — 2
sinx
y=c-
T
substituted, yields:
sin x cosxr sinz 2 sinz
/! / /
— +2J( - — )+ —c
T T T T x
d'sinz+2dcosx = 0
Z'sinx +2zcosz = 0
dz 5 cosx dx
z sin x
In|z] = —2In|sinz|+1InC)
—C
z = -
sin® x
COS T
c = C1 N + Cg
sin
COS ¥ sinx
y = () + s
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When both basic solutions of the homogeneous version are known, a particular
solution to the full non-homogeneous equations can be also found by an ex-
tended VP idea.

This time we have two unknown ’parameters’, denoted u and v, instead of the
old single c.

We now derive general formulas for u and v:

We need to find y, only, which we take to have the trial form of

u(x) -y +0(x) - s

with u(x) and v(x) yet to be found (the variable 'parameters’). Substituting this
into the full equation [note that terms proportional to u(x), and those proportional
to v(x), cancel out], we get:

u'yr + 2u'yy +0"ys + 20"y5 + f(2) (Wyn +0'y2) = ()

This is a single differential equation for two unknown functions (u and v), which
means we are free to impose yet another arbitrary constraint on v and v. This is
chosen to simplify the previous equation, thus:

u'yy + vy =0
which further implies (after one differentiation) that
u'yr +u'yy + 0"y + 0"y =0
The original (V of P) equation therefore simplifies to
u'yy +v'yy = ()
The two equations can be solved (algebraically, using Cramer’s rule) for

0 w2
T Y
‘yl Y2
Y1 Y
Yar
Y2Uh — Y195
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and

1 O
Yy
‘ Y1 Y2
v Y
mr
Y1Ys — Yol

where the denominator it called the Wronskian of the two basic solutions (these
are linearly independent iff their Wronskian is nonzero; one can use this as a check
— useful later when dealing with more than two basic solutions). From the last
two expressions, one can easily find v and v by an extra integration (the right
hand sides are known functions of z).

EXAMPLE:

y' —dry + (42 —2)y = 42* -3
We have already solved the homogeneous version getting
y, = exp(z?)

and
Y2 = wexp(?)

Using the previous two formulas we get
u = (3 —4at)zexp(—2?)
5
u(xr) = (5 + 42? + 22) exp(—2?) + C}
and

v = (4a* — 3) exp(—2?)
v(r) = —(3+20Hzexp(—a?) + Cy

Simplifying uy; + vy, yields

<§ + %) + Oy exp(2?) + Cox exp(x?)
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which identifies % + 2% as a particular solution of the full equation (this can be
verified easily).

Given three specific functions y;, y» and y,, it is possible to construct the
corresponding differential equation which has Ciy; + Coys + y, as its general

solution (that’s how I set up exam questions).
EXAMPLE:
Knowing that

1
Yy = 01152 +Cglnl’—|— —
x
we first substitute 22 and Inz for y in
v+ f@)y +g(x)y =0
[the homogeneous version] to get:

2+2r-f+at-g = 0
1 1

and solve, algebraically, for

HE A

~ 2Inz -1
;o= r(2lnx —1)
B 4
g = 22(2lnx —1)

The left hand side of the equation is therefore

= —2lnzx -1 - 4
Y r(2lnz —1) Y (2lnz —1)

Y

[one could multiply the whole equation by z%(2Inz — 1) to simplify the answer].

To ensure that % is a particular solution, we substitute it into the left hand
side of the last equation(for y), yielding r(z) [= %

answer is thus:

in our case]. The final
2 " / 3
z°(2lnz —1)y" —22nz+ 1)y +4y = —(2Inz + 1)
T
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With constant coefficients

From now on we will assume that the two ’coefficients’ f(z) and g(x) are z-
independent constants, and call them a and b. The equation we want to solve is
then

Y +ay +by =r(x)
with a and b being two specific numbers. We will start with the

Homogeneous Case [r(z) = 0]

All we have to do is to find two linearly independent basic solutions y; and s,
and then combine them in the ¢;3; + coy2 manner (as we already know from the
general case).

To achieve this, we try a solution of the following form:

Ytrial = 6)\:1:
where \ is a number whose value is yet to be determined. Substituting this into
y" + ay’ + by = 0 and dividing by e** results in

N+a+b=0

which is the so called characteristic polynomial for \.

When this (quadratic) equation has two real roots the problem is solved (we
have gotten our two basic solutions). What do we do when the two roots are
complex, or when only a single root exists? Let us look at these possibilities, one
by one.

1. Two (distinct) real roots.
EXAMPLE:

y'+y -2y = 0
M4A—-2 =0

1 1
Mo = —=44/>+2
1,2 9 il

1 3
= —5 :l: 5 = 1 and — 2
This implies 1, = ¢* and 1, = e~2*, which means that the general solution
is

y = Cre” + Coe >
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2. Two complex conjugate roots \;; =p=+tigq.

This implies that
7 = eP[cos(qr) + isin(qx)]
go = eP[cos(qr) — isin(qr)]
since e = cos A + isin A.

But at this point we are interested in real solutions only. But we can take
the following linear combination of the above functions:

Yy = %Tw = eP* cos(qx)
_ NV e
o= DB (g

and have a new, equivalent, basis set. The new functions are both real, thus
the general solution can be written as

y = e’*[C cos(qz) + Cysin(qz)]

One can easily verify that both y; and y» do (individually) meet the original
equation.

EXAMPLE:
y' =2y +10y = 0
)\1,2 - 1:|:\/1—1O
= 1+35
Thus

y = €°[C cos(3x) + Cysin(3z)]
is the general solution.

3. One (double) real root.
This can happen only when the original equation has the form of:

CL2

y'+ay' + Ty =0
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(i.e. b= ‘%f) Solving for A, one gets:
a
)\172 - —5 :|: 0

(double root). This gives us only one basic solution, namely

a
ylze 2%

We can find the other by the V-of-P technique. Let us substitute the fol-
lowing trial solution
o(x) - e 3°

into the equation getting (after we divide by e~2%):
d"—ad +ad = 0
d =0
clx) = Cix+Chy
The trial solution thus becomes: Cyze 2% + Che~ 2%, which clearly identifies

_a
Yo = we~ 2"

as the second basic solution.

Remember: For duplicate roots, the second solution can be obtained by
multiplying the first basic solution by .

EXAMPLE:

y'+8y +16y = 0
Mg = —4

The general solution is thus
y=e ¥ (Cy + Cox)
Let’s try finishing this as an initial-value problem [lest we forget]:

y(0) = 1
y(0) = -3



This implies

=1
and
—4C1+Cy = =3
cy, =1
The final answer:
y=(1+x)e ™

For a second-order equation, these three possibilities cover the whole story.

Non-homogeneous Case

When any such equation has a nonzero right hand side r(z), there are two
possible ways of building a particular solution y,:

> Using the variation-of-parameters formulas derived earlier for the general

case.
EXAMPLES:
1.
" -
Yy +y = tanz
NM+1 =0
)\1’2 = =+

implying that sin x and cos z are the two basic solutions of the homogeneous
version. The old formulas give:

tanr —sinx )
u = - =sinx
sinx cosx

cosx —sinx

‘ 0 Ccos T

u(z) = —cosx+ C)
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and

sinx 0
, cosxr tanx
v = -
sinrz cosz
cosxr —sinzx
sin? 1
= - = CcosST —
cos T CcoS T
. 1+sinx
v(z) = sineg—In| —— ) +C
cos T
The final solution is thus
y = {—coszsinx+sinxcosx}

1+ s
—coszln <ﬂ> + Cisinz + Cycosx
CoS &

The terms inside the curly brackets cancelling out, which happens frequently
in these cases.

e2x
yll_4yl+4y:_
T

Since A1 2 = 2 £ 0 [double root], the basic solutions are e and xe®*.

0 xre?®
Y = 62% (1+ 2x)e* _

e2x ZL’€2I

2" (1+ 2x)e**
ulx) = —z+C
and

e 0

62:5
;o 2623j - . 1
vo= 2 2 - E

2% (14 2z)e*
v(z) = Inzx+Cy
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Answer:

y = C1e% + Chxe® — ze® + Inx - xe®

= ¥(01+Chz +xlnx)

> Special cases of r(x)
e 7(x) is a polynomial in x:

Use a polynomial of the same degree but with undetermined coefficients as a
trial solution for y,,.

EXAMPLE:

y'+2 =3y = w
)\172 = 1 and -3

1 = € and y, =e
yp =Ax + B
where A and B are found by substituting this y, into the full equation and
getting:
2A—3Ar—3B = =«
1
A = —=
3
B = 2
9
Answer: 5
x
= e + Coe™™ == — =
Y 1€+ Caoe 379

Exceptional case: When A = 0, this will not work unless the trial solution y,, is
further multiplied by x (when A = 0 is a multiple root, x has to be raised to the
multiplicity of \).
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EXAMPLE:

y//_2y/ — ZL’2+1
)\172 = 0 and 2
= 1 and yp =e*®
yp = Az’ + Ba? 4+ Cx
where A, B and C are found by substituting:
6Ar + 2B —2(3A42° +2Bx+C) = 2*+1

A= —
B = -—

cC = -

Answer: 5 ) 5
T T T
=)+ Che® - — _ —

Y 1+ Cse G 1 1

e 'Exponential’ case:

r(x) = ke™”
The trial solution is
yp = Ae™”
[with only A to be found; this is the undetermined coefficient of this case].
EXAMPLE:
y// + 2y/ + 3y — 36—295
Mo = —1£+2i
Yy, = Ae™ %"

substituted gives:

A4 —4+3)e® = 3>
A =1

y = e *[C sin(v2z) + Cy cos(V2z)] + e
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Exceptional case: When o« = A [any of the roots], the trial solution must be
first multiplied by = (to the power of the multiplicity of this \).

EXAMPLE:
y// +y/ o 2y — 367295
)\172 = 1 and —2
[same as «]!
Yy, = Aze "
substituted:

A(dr —4)+ A(1 — 22) —2Ax = 3

A = -1
[this follows from the absolute term, the x-proportional terms cancel out, as
they must].
Answer:

y=Cre" + (Cy — z)e "
e ‘complex’ case:
r(z) = kseP* sin(qx)

or
k.eP* cos(qx)

or a combination (sum) of both:
The trial solution is
[Asin(qz) + B cos(qx)]e’™

EXAMPLE:

/

—2y = 2e “sin(4x)
)\172 = 1 and —2

y//+y

as before.
yp = [Asin(4x) + B cos(4z)le ™
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substituted into the equation:

—18[Asin(4x) + B cos(4z)]

— 4[A cos(4x) — Bsin(4x)] = 2sin(4x)
—18A+4B =2

—4A—-18B=0

solving, in matrix notation
Al [-18 4 17'[2] [-2
B| | -4 -18 0| 8—25

2 9
y = Cre” + Coe " + (% cos(4x) — 5 sin(4x)> e

implying

Exceptional case: When A = p + i ¢ [both the real and purely imaginary parts
must agree|, the trial solution acquires the standard factor of .

"Special-case’ summary:

We would like to mention that all these special case can be covered by one
and the same rule: When
r(z) = P,(x)e’”

where P,(z) is an n-degree polynomial in z, the trial solution is
Qn(z)e’”

where @,,(x) is also an n-degree polynomial, but with 'undetermined’ (i.e. yet to
be found) coefficients.

And the same exception: When [ coincides with a root of the characteristic
polynomial (of multiplicity £) the trial solution must be further multiplied by z*.

If we allowed complex solutions, these rules would have covered it all. Since
we don’t, we have to spell it out differently for 3 =p+iq:

When

r(z) = [Ps(x) sin(qz) + P.(z) cos(qx)]eP”
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where P; . are two polynomials of degree not higher than n [i.e. n is the higher of
the two; also: one P may be identically equal to zero|, the trial solution is:

[Qs(x) sin(gr) + Qc(x) cos(g)]e”

with both Q)s. being polynomials of degree n [no compromise here — they both
have to be there, with the full degree, even if one P is missing].

Exception: If p + 7 ¢ coincides with one of the As, the trial solution must be
further multiplied by z raised to the A\’s multiplicity [note that the conjugate root
p — i q will have the same multiplicity; use the multiplicity of one of these — don’t
double it].

Finally, if the right hand side is a linear combination (sum) of such terms, we
use the superposition principle to construct the overall y,. This means we find y,
individually for each of the distinct terms of r(x), then add them together to build
the final solution.

EXAMPLE:
! / —T
Yy +2y -3y = x+e

)\172 == 1, —3
We break the right hand side into

=
and

To = e "
construct

yip =Azr + B

substituted into the equation with only z on the right hand side:
2A—-3Ax—-3B = =z

1
4= 73
and then
Yop = Ce™™"



substituted into the equation with r5 only:

Cc-20-3C =1

Answer:

Cauchy equation

looks like this:

(z — 20)%y" + a(z — 20)y + by = ()
where a, b and x( are specific constants.
T is usually equal to 0, e.g.

22y 4 2wy — 3y = 2°
There are two ways of solving it:
Converting
it to the previous case of a constant-coefficient equation (convenient when r(x)
is a polynomial in either x or Inz — try to figure our why). This conversion is
achieved by introducing a new independent variable

t =In(z — x)

We have already derived the following set of formulas for performing such a con-
version:

, dy dt Y
yzg.%zx—lﬂo
and
. Py (dt\? dy Pt
vo= ﬁ'(%) dt  daz?
g 9

(x —x0)?  (z— x0)?
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The original Cauchy equation thus becomes
j4(a—1)g+by = r(zo + ¢

which we solve by the old technique.
EXAMPLES:

42
22y —dxy + 6y = —

ij—5y+6y = 42 %

= )\172 = 2,3 and
—4t

yp = Ae
substituted:

16A+20A 464 = 42
A =1

Answer:
y = C1e% 4 Che® e
1
= Ci2®+ Cor® + -
x

since x = e'.
Another example:

=nzx+1

Y 3y
r a2
(must be multiplied by z? first)
i — 2 — 3y = te* 4+
)\1,2:1:|:\/1+3:3 and —1,

y, = (At+ B)e*
g, = (2At+2B+ A)e*
i, = (4At+4B +4A)e*
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implying
4A—4A—-3A =1
4B+4A—-4B—-2A—-3B = 1

which means that A = —% and B = —g.
Answer:

5 t
Yy = 01€3t + CQG_t — <§ + g) €2t

C. 5 1
= 011’34—?2—(5—}-%)1’2

And yet another one:

2%y — 22y’ + 2y = 42 + sin(Iln z)

ij — 31 + 2y = 4e' + sin(t)
= A2=3+,/§-2=1,2
Y = Ate!

U = (At+ A)e
Jp = (At +24)¢

implying
2A—-3A = 4
A = —4

and

Yp, = DBsint+ Ccost

Up, = DBcost—Csint

Up, = —DBsint—Ccost
implying

-B+3C+2B = 1
-C-3B+2C = 0
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or

eI

| S|
I
.
Slegle @ = O =

1. Answer

1 3
y = Cie' + Coe® — dte' + 10 sin(t) + 0 cos(t)

1 3
= Ciz+Cy2® —4dxlnx + 0 sin(lnzx) + 10 cos(ln x)

Warning: To use the undetermined-coefficients technique (via the ¢ transfor-
mation) the equation must have (or must be brought to) the form of:

2% + azxy + by = ()

to use the V-of-P technique (which we are going to do now), the equation must

have the form of ;

Y’ + gy' + Y= r(z)
Direct technique:
more convenient when 7(x) is either zero, or does NOT have the special form
mentioned above.
We substitute a trial solution (z — )™, with m yet to be determined, into the
homogeneous Cauchy equation, and divide by (x — 2¢)™. This results in:

m?+(a—1)m+ b=0

a characteristic polynomial for m.

With two distinct real roots, we get our two basic solutions right away; with a
duplicate root, we need an extra factor of In(x — xg) to construct the second basic
solution; with two complex roots, we must go back to the ’conversion’ technique.

EXAMPLES:
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2y + 3y +y = 0
m2+2m+1 = 0

myp = —1
¢, C
y = —+ 2z
r

312z —5)%" — (22 —5)y +2y =0
First we have to rewrite it in the standard form of:
5.9 4 B 1 5 1

PR — ——/ — p—
(z 2)y 6(1’ 2)y+6y 0

7 1
2
_ _ - =0
m 6m—|—6
1
mio = 6
o =~ 5 jod 51/6
y = Ci(x 2) Cy(x 2)

= C1(22 — 5) + Cy(2x — 5)"/5.

22" — 4y + 4y =0
with y(1) =4 and /(1) = 13. First
m?—5m+4 = 0

mias = 1,4
y = ClI—i‘CQlA
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Then C; + Cy = 4 and C; 4+ 4C5 = 13 yield C3 = 3 and C; = 1.

Answer:
y =z + 3z*

22y" — dzy' 4+ 6y = 2t sinx
To solve the homogeneous version:
m*—5m+6 = 0
mio = 2, 3
implying
Y1 =
Y2 =

To use V-of-P formulas the equation must be first rewritten in the ’standard’

form of
4

" ! 2 .
Y xy +x2y—x sin x

which yields

0 a3
) r?sinx 322 .
u = 3 = —zrsinw
o
2x  3a?
u(zr) = wcosx —sinz + C)
and
x? 0
, 2¢ x%sinz )
Vo= 3 =sinx
¥ x
2r  3a?
v(z) = —cos(z)+ Cy
Solution:

y = (Cy — sinx)a? + Cox®
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Third and Higher-Order Linear ODEs

First we extend the general linear-equation results to higher orders. Explic-
itly, we mention the third order only, but the extension to higher orders is quite
obvious:

y" + f(@)y" + g(x)y + h(x)y = r(x)

has the following general solution:

y = Ciyr + Coya + Cys + yp

where y1, yo and y3 are three basic (linearly independent) solutions of the homoge-
neous version. There is no general analytical technique for finding them. Should
these be known (obtained by whatever other means), we can construct a particular
solution (to the full equation) y, by variation of parameters (this time we skip the
details), getting:

0 y2 ys

0 %5 v
;o vy

Y Y2 Y3

sV

Y1 Y2 Y3
with a similar formula for v" and for w’ (we need three of them, one for each basic
solution). The pattern of these formulas should be obvious.

The corresponding constant-coefficient equation can be solved easily by con-
structing its characteristic polynomial and finding its roots, in a manner which is
a trivial extension of the second-degree case. The main difficulty here is finding
roots of higher-degree polynomials.

Special cases

of higher-degree polynomials which we know how to solve:

1.

r = a

by finding all (n distinct) complex values of {/a, i.e.

2k 2k
%<005L+isini>
n n
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when a > 0 and
. ( 2k . 27rk)
—+v/—a | cos — +181n —
n n

when a < 0, both with £ =0,1,2,.....n — 1.
Examples:

(i) v16 =2, —2,2i and —2i (ii) /=8 = —2 and 1 £ /3.

. When 0 is one of the roots, it’s trivial to find it, with its multiplicity.

Example: 2* + 223 — 422 = 0 has obviously 0 as a double root. Dividing
the equation by z? makes it into a quadratic equation which can be easily
solved.

. When coefficients of an equation add up to 0, 1 must be one of the roots.
The left hand side is divisible by (z — 1) [synthetic division], which reduces
its order.

Example:

23— 202 +32-2=0
thus leads to (z® —222+32—2) +(x—1) = 2? —x+2 [quadratic polynomial].
. When coefficients of the odd powers of = and coefficients of the even

powers of z add up to the same two answers, then —1 is one of the roots
and (z + 1) can be factored out.

Example:
2 4+202+3:+2=0

leads to (23 +22% + 3z +2) =+ (v +1) = 22+ 2 + 2 and a quadratic equation.

. One can cut the degree of an equation in half when the equation has even

powers of x only by introducing z = 2.

Example:
z* =322 —4=0

thus reduces to
22-32—-4=0

which has two roots z; 2 = —1, 4. The roots of the original equation thus
are: ri234 = i, —i, 2, —2.
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6. All powers divisible by 3 (4, 5, etc.). Use the same trick.

Example:
25 —32°—4=0

Introduce z = 23, solve for 212 = —1, 4 [same as before]. Thus x93 =

VT = -1 3 i and wage = VA, VA (-3 0).

7. When a multiple root is suspected (the question may indicate: ’there is
a triple root’), the following will help: each differentiation of a polynomial
reduces the multiplicity of its every root by one. This means, for example,
that a triple root becomes a single root of the polynomial’s second derivative.

Example:
2t — 523 4622+ 42 —8=0

given there is a triple root. Differentiating twice:
122% — 30z + 12 = 0

= T1o = %, 2. These must be substituted back into the original equation.
Since 2 meets the original equation (% does not), it must be its triple root,
which can be factored out, thus: (z* —523+62% +4x—8) + (v —2)3 =z +1.
The last root is thus, trivially, equal to —1.

8. One an take a slightly more sophisticated approach when it comes to multiple
roots. As was already mentioned: each differentiation of the polynomial
reduces the multiplicity of every root by one, but may (and usually does)
introduce a lot of extra 'phoney’ roots. These can be eliminated by taking
the greatest common divisor (GCD) of the polynomial and its derivative, by
using Euclid's algorithm, which works as follows:

To find the GCD of two polynomials p and ¢, we divide one into the other
to find the remainder (residue) of this operation (we are allowed to multiply
the result by a constant to make it a monic polynomial): r; =Res(p + q),
then ro =Res(q+1r1), r3 =Res(r1 +72), ... until the remainder becomes zero.
The GCD is the previous (last nonzero) 7.

Example:
p(z) = 28— 282"+ 3372%— 227425+ 93962* — 243122°+ 3843227 — 3392024 12800
s(z) = GOD(p,p') = 2° — 172* + 1122° — 35622 + 5ddx — 320

57



u(z) = GOD(s,s") = 2> — 62+ 8

The last (quadratic) polynomial can be solved (and thus factorized) easily:
u = (z — 2)(x —4). Thus 2 and 4 (each) must be a double root of s and
a triple root of p. Taking s =+ (z — 2)*(z — 4)> = z — 5 reveals that 5 is a
single root of s and therefore a double root of p. Thus, we have found all
eight roots of p: 2,2, 2,4, 4, 4, 5 and 5.

Constant-coefficient equations
Similarly to solving second-order equations of this kind, we
e find the roots of the characteristic polynomial,
e based on these, construct the basic solutions of the homogeneous equation,

e find y, by either V-P or (more commonly) undetermined-coefficient tech-
nique (when r is one of the special types).

Since the Cauchy equation is effectively a linear equation in disguise, we know
how to solve it (beyond the second order) as well.

EXAMPLES:
1.
yiv+4y//+4y _ 0
M+aN+4 = 0
Z( = )\2)1,2:—2
Mpsa = +V2i
y = Cysin(v2zx) + Cycos(v2z) + Csxsin(v2z) + Cyz cos(V2z).

2.
y///+y//+y/+y — O
)\1 = -1
M+l =0
)\2,3 - :l:’L

y = Cre®+ Cysinx + Cscos(z).
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Yo =3yt 3y =y = 0
Az = 0

A = 1

M—2A+1 = 0

Ay = 1

y = Ci+ Cox+ C3e” 4+ Cyze® + Csz’e”.

yiv_5y//+4y =0
)\2)172 = ]., 4
Mosa = 2, +1
y = C1e° 4 Che™ + C5e* + Che™

I
—~
I

y" —y = 10cos(2x)
A2z = 0, +1
yp = Asin(2z) + Bcos(2x)
—10cos(2z) + 10sin(2z) = 10 cos(2x)
A = —-1,B=0
y = Cp+ Ce” + Csze™™ —sin(2x).

"

y" — 2y// — 1,2 -1
)\1’2 - 0, )\3 == 2
yy = Az'+ Bax®+ Ca?
—24Ax* + 24Ax — 12Bx + 6B —4C = 2% — 1

1 1 1
A = —— B——~ (==
24’ 1270 8
IA IS [132
O 4G+ e — 2 T
Yy 1+ Coxr + C3ge Y 12+8
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Sets of Linear, First-Order,
Constant-Coefticient ODEs

First we need to complete our review of

Matrix Algebra

Matrix inverse & determinant
There are two ways of finding these

> The ’classroom’ algorithm

which requires oc n! number of operations and becomes not just impractical,
but virtually impossible to use (even for supercomputers) when n is large (>20).
Yet, for small matrices (n < 4) it’s fine, and we actually prefer it. It works like

this:

e In a 2x2 case, it’s trivial:

the determinant.

2

4

Example: S

5

where the denominator is

d | =b
alo ]! —c| a
c|d  ad—bc
5 [ =4
= 42+%— 22 being the determinant.
22 | 22

e The 3x3 case is done in four steps.

-1

2141-1
Example: | 0| 3| 2
21114

1. Construct a 3x3 matrix of all 2 x 2 subdeterminants (striking out one row
and one column — organize the answers accordingly):

10| -41-6
17110 | -6
111 4|6
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2. Transpose the answer:

3. Change the sign of every other

+

+

scheme: | —

+

+

+

10 | 17| 11
4110 4
6|-6|6

thus:

element (using the following checkerboard

10 | -17 | 11
4110 | 4
6| 6 | 6

4. Divide by the determinant, which can be obtained easily be multiplying
(’scalar’ product) the first row of the original matrix by the first column
of the last matrix (or vice versa — one can also use the second or third

row /column — column /row):

o 7=17T 1L
42 42 42
4 10 —4
42 42 42
61 6 6
42 42 42

e Essentially the same algorithm can be used for 4 x 4 matrices and beyond,
but it becomes increasingly impractical and soon enough virtually impossible

to carry out.

> The ’practical’ algorithm

requires oc n® operations and can be easily converted into a computer code:

1. The original (n x n) matrix is extended to an n X 2n matrix by appending
it with the n X n unit matrix.

2. By using one of the following three 'elementary’ operations we make the
original matrix into the unit matriz, while the appended part results in the
desired inverse:

1. A (full) row can be divided by any nonzero number [this is used to
make the main-diagonal elements equal to 1, one by one].

2. A multiple of a row can be added to (or subtracted from) any other row
[this is used to make the non-diagonal elements of each column equal

to 0 .
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3. Two rows can be interchanged whenever necessary [when a main-diagonal
element is zero, interchange the row with any subsequent row which has
a nonzero element in that position - if none exists the matrix is singu-
lar].

The product of the numbers we found on the main diagonal (and had to
divide by), further multiplied by —1 if there has been an odd number of
interchanges, is the matrix’ determinant.

. A1x1 EXAMPLE

3loJ1]4]1]ojoJo] =3
L[-1]2[1]0o[1]0]0] —3n
3l1]-1]1]ofJol1]o] —n
-2 1J1JoJoJo1] +3n
10?%1%1000

of-1]2]2[-2]1]o]o]=(-1)
of1]-2]3]-1]of1]0] +r
ojo]-i]X[2]0]0]1

10%5%%000 +73
0].-??054-100—57"?
0]0 A 1[1]0]=(-3)
00-§?§ 01—7“3
tloJo[ 2] -1J1[1]0] +3r4
0]1]0[17] 7 [-6]-5]0| —Fry
ojoj1]10] 4 |-3]-3]0] —2ry
ojofol 7 2 ]1]-1]1] =7
AT LT

01005-E-E-E

 E Ran e Sl K

0]0JOf1 ) % [-7z1-7]3%

The last matrix is the inverse of the original matrix, as can be easily verified [no
interchanges were needed]. The determinant is 3 x (—1) X (—3) x 7=T.
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Solving n equations for m unknowns
For an n x n non-singular problems with n ’small’ we can use the matrix
inverse: Cx = b = x =C~'b, but this is not very practical beyond 2 x 2.

> The fully general technique

applicable to singular as well as n by m problems works like this:

1. Extend C by an extra column b.

2. Using ’elementary operations’ make the original C-part into the unit matriz.
If you succeed, the b-part of the matrix is the (unique) solution.

This cannot work when the number of equations and the number of un-
knowns don’t match. Furthermore, we may run into difficulty for the fol-
lowing two reasons:

1. We may come to a column which has 0 on the main diagonal and all
elements below it. This column will be then skipped (we will try to get
1 in the same position of the next column).

2. Discarding the columns we skipped, we may end up with fewer columns
than rows [resulting in some extra rows with only zeros in their C-part],
or the other way round [resulting in some (nonzero) extra columns,
which we treat in the same manner as those columns which were skipped].
The final number of 1’s [on the main diagonal| is the rank of C.

We will call the result of this part the matrix echelon form of the equations.

3. To interpret the answer we do this:

1. If there are any ’extra’ (zero C-part) rows, check the corresponding b
elements. If they are all equal to zero, we delete the extra (redundant)
rows and go to the next step; if we find even a single non-zero element
among them, the original system of equations is inconsistent, and there
is no solution.

2. Each of the ’skipped’ columns represents an unknown whose value can
be chosen arbitrarily. Each row then provides an expression for one of
the remaining unknowns (in terms of the ’freely chosen’ ones). Note
that when there are no ’skipped’ columns, the solution is just a point
in m (number of unknowns) dimensions, one ’skipped’ column results
in a straight line, two ’skipped’ columns in a plane, etc.
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Since the first two steps of this procedure are quite straightforward, we give

EXAMPLES of the interpretation part only:

1.
113101202
0(0[1(3]0]1
0(0({0j0|1)4
0(0{0]0]0]|0

means that x5 and x4 are the ’free’ parameters (often, they would be renamed
1’1:2—3ZL'2—2£E4
c1 and ¢, or A and B). The solution can thus be written as T3 =1— 314
Iy = 4
or, in a vector-like manner:

T 2 -3 -2

Hip) 0 1 0

XT3 = 1 + 0 c1 + -3 Co
Ty 0 0 1

Ts 4 0 0

Note that this represents a (unique) plane in a five-dimensional space; the
'point’ itself and the two directions (coefficients of ¢; and ¢3) can be specified
in infinitely many different (but equivalent) ways.

113(0]010| =215
9 0({0|1(0]0O| 3 |2
“10j0j0j1j0] 1 |[O
o(ofojo|1| 4 |3
[ 2y ] [ 5 ] [ 3] [ 2 ]
i) 0 1 0
T3 . 2 0 -3
T4 - 0 + 0 c1+ 1 Co
T 3 0 —4
_376_ _0_ | 0 ] L 1 ]

Eigenvalues & Eigenvectors
of a square matrix.
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If, for a square (n x n) matrix A, we can find a non-zero [column] vector x
and a (scalar) number A such that

Ax =)\x

then ) is the matrix’ eigenvalue and x is its right eigenvector (similarly y7A =
Ay? would define its left eigenvector yT, this time a row vector). This means that
we seek a non-zero solutions of

(A-X)x=0
which further implies that A — Al must be singular: det(A — AI) = 0.

The left hand side of the last equation is an n'"-degree polynomial in A\ which
has (counting multiplicity) n [possibly complex| roots. These roots are the eigen-
values of A; one can easily see that for each distinct root one can find at least
one right (and at least one left) eigenvector, by solving the above equation for x
(A being known now).

It is easy to verify that

det(A\I — A) = A" — A" 1 Tr(A)

+A""2 . {sum of all 2 x 2 major subdeterminants}
— A" . {sum of all 3 x 3 major subdeterminants}
+.... £ det(A)

where Tr(A) is the sum of all main-diagonal elements. This is called the charac-
teristic polynomial of A, and its roots are the only eigenvalues of A.

EXAMPLES:

1.

1] -2

has A — 0 - X\ — 7 as its characteristic polynomial, which means that the
eigenvalues are A\ o = +4/7.

31 -11]2
2.00] 4 |2
21-113

A —10A% 4 (12 + 14 + 5)\ — 22. The coefficients add up to 0. This implies

that Ay = 1 and [based on A2 — 9\ +22 = 0] A3 = 2+ ;.
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2 14| -2|3
3 31611 (4
—214|1 0 |2
8 |1|-24

M 120+ (0-4+4—4+20—16)\% — (=64 —15—28 —22)A+ (—106) = 0
[note there are (;1) =6 and (g) = 4 major subdeterminants of the 2x2 and
3 X 3 size, respectively] = A; = —3.2545, Ay = 0.88056, A3 = 3.3576 and
Ay = 11.0163 [these were obtained from our general formula for fourth-degree
polynomials].

The corresponding (right) eigenvectors can be now found by solving the
corresponding homogenous set of equations with a singular matrix of coefficients
[therefore, there must be at least one nonzero solution — which, furthermore, can
be multiplied by an arbitrary constant]. The number of linearly independent (LI)
solutions cannot be bigger than the multiplicity of the corresponding eigenvalue;
establishing their correct number is an important part of the answer.

EXAMPLES:
21 3

1. Using A =
to

T3 [one of our previous examples] (A — A\;I) x = 0 amounts

27 3 0
1 —2-V710

with the second equation being a multiple of the first [check it!]. We thus
have to solve only x; — (2 4+ v/7)xy = 0, which has the following general

solution: il —|2 +1\/7 c, where c is arbitrary [geometrically, the solution
2
represents a straight line in the z;-z2 plane, passing through the origin].
Any such vector, when pre-multiplied by A, increases in length by a factor
of /7, without changing direction (check it too). Similarly, replacing A\; by
2 -7
1

Ay = —/7, we would be getting c as the corresponding eigenvector.

There are many e uivalent ways of expressing it ¢ is one of them
X .

2. A double eigenvalue may possess either one or two linearly independent
eigenvectors:
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1. The unit 2 x 2 matrix has A = 1 as its duplicate eigenvalue, and

(1) are two LI eigenvectors [the general solution to 8 8 8

implies that any vector is an eigenvector of the unit matrix..

1 1]2 . . .
2. The matrix 011 has the same duplicate eigenvalue of 41 [in general,
the main diagonal elements of an upper-triangular matrix are its eigen-
020

0(0|0

]. This

values|, but solving i.e. 2z5 = 0 has only one LI solution,

1
namely ik

Finding eigenvectors and eigenvalues of a matrix represents the main step in
solving sets of ODEs; we will present our further examples in that context. So
let us now return to these:

Set (system) of differential equations
of first order, linear, and with constant coefficients typically looks like this:

i = 3yi+4ye
Yy = 3y1— Yo

[the example is of the homogeneous type, as each term is either y; or y! propor-
tional]. The same set can be conveniently expressed in matrix notation as

y' = Ay

where A = g 41 1 and y = l zl 1 [both y; and yo are function of z |.
- 2
The Main Technique
for constructing a solution to any such set of n DEs is very similar to what we have

seen in the case of one (linear, constant-coefficient, homogeneous) DE, namely: We
Y1

. . . . . Y2
first try to find n linearly independent basic solutions (all having the [~ form),

Yn
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then build the general solution as a linear combination (with arbitrary coefficients)
of these.

It happens that the basic solutions can be constructed with the help of
matrix algebra. To find them, we use the following trial solution:

YTZQ'GM

where q is a constant (n-dimensional) vector. Substituting into y’ = Ay and
cancelling the (scalar) e’ gives: A\q = Aq, which means )\ can be any one of the
eigenvalues of A and q be the corresponding eigenvector. If we find n of these
(which is the case with simple eigenvalues) the job is done; we have effectively
constructed a general solution to our set of DEs.

EXAMPLES:

1. Solve y' = Ay, where A = g _41 . The characteristic equation is: \? —
2A=-15=0=Np=1=% V16 = —3 and 5. The corresponding eigenvectors
(we will call them g™ and q®) are the solutions to g ;l 8 = 3¢V +
2q§1) =0=q" = _23 c1, and _32 —46 [from now on we will assume
a zero right hand side]= ¢\¥ — 2¢{¥ =0 = q® = ? Ca.

The final, general solution is thus

2

2
y=c =3 —3x + ¢y 5z

1

®

Y1 = 2c1e73% + 2c9€7"

_ where ¢; and co
Yo = —3c1e73% + e

Or, if you prefer, more explicitly:
can be chosen arbitrarily.

Often, they are specified via initial conditions, e.g. y;(0) = 2 and y2(0) = —3
2c1 + 2c9 =2 Y1 = 2e737

e — 3y = —3 =c=landc=0= Yy = —3e~3
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2. Let us now tackle a three-dimensional problem, with A =

11-1] 1
111 -1}
21-110

The characteristic equation is A> =2\ = A +2 =0 = A\, = —1 and the
roots of \> =3\ +2=0= A2;3 = 1 and 2. The respective eigenvectors are:

0 |-1]=q?® =

21 -1 1 110 % -1 Of—-11 1
12 [-1]=[0[1][2]=adY =] 3 |a, [1
21 -1 1 000 5 21 -1|-1
1 —1|-1] 1 10 -1 1
Ileg, and| 1 [ =1 =1 =]0[1] 0 [|[= q® =0 |c5. One can
1 2 | —1] -2 0[O0 O 1
easily verify the correctness of each eigenvector by a simple multiplication,
1]1-1] 1 1 2 1
eg.|1| 1 |=1|x|0f=|0]|=2-]0}
21—=11 0 1 2 1
The general solution is thus
-1 1 1
y=ci| 3 |e® 4| 1]e” +c3] 0 |
5) 1 1

The case of Double (Multiple) Eigenvalue
For each such eigenvalue we must first find all possible solutions of the

qez\x

type (i.e. find all LI eigenvectors), then (if we get fewer eigenvectors than the
multiplicity of \) we have to find all possible solutions having the form of

(qz +s)eM

where q and s are two constant vectors to be found by substituting this (trial)

solution into the basic equation y' = Ay. As a result we get

q=(A—-X)qx+(A— N)s

This further implies that s must be a solution to

(A—-X)?*s=0
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And, if still not done, we have to proceed to

which implies

where, clearly, u is a solution to

etc.

EXAMPLES:
1.

has A* — 9\ + 108 as its characteristic polynomial [hint: there is a double
root] = 3A* — 18\ = 0 has two roots, 0 [does not check] and 6 [checks].
Furthermore, (A\* — 9A* + 108) = (A — 6)2 = A + 3 = the three eigenvalues

CU2
(qg + 57+ u)e
(A—X)q = 0
q = (A—-XDs
= (A—A)u
(A —A)P*u=0
o1 2] 2
A=|2|2|4
21412

are —3 and 6 [duplicate].

Using A = —3 we get:

which, when multiplied by e=3%, gives the first basic solution.

81 2|2 1{0] 3 —1
2[5 | A4|=0]1]-1]|=a| 2
2[—4] 5 0[o] 0 2

Using A = 6 yields:

-1 2 2 1] -2 -2
2 |—4|-4|=]0] 0| O
2 | —4| -4 0,010

which, when multiplied by €%, supplies the remaining two basic solutions.
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11-3]1
A=2]-1]-2
21-3]0
has A* — 3\ — 2 as its characteristic polynomial, with roots: A\; = —1 [one

of our rules] = (A* =3A—=2) = (A+1) = N2 = A—2= Ay = —1 and \3 = 2.
So again, there is one duplicate root.

For A = 2 we get:

—1]-3|1 110] -1 1

2 [=3]=2]=[0[1] 0 |=ci|O|e*

2 | =3 | -2 0({0| O 1
For A = —1 we get:

21-3] 1 110] —1 1

21 0 | 2|=|0|1|-1|=c|1|e"

21-3] 1 00| O 1

[a single solution only]. The challenge is to construct the other (last) solu-
tion. Squaring the previous matrix yields

01-919 0[1] -1
O 0 |O0|=]0]0| O
01-919 0(0] O

whose general solution is a linear combination of

1 0
0land| 1
0 1

(either of these could be taken as s - we will take the first one): Since

21 -3 1 1 2
200 | =2|-0|=|2
21 -3 1 0 2

the third basic solution is:

2 1 2x+1
C3 2lz+|0 e t=cy| 2¢ |e”
2 0 2x
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A—

421-91 9
-12 139 | -9
281211 9

= A\* —90A? 42700\ — 27000 [hint: triple root] = 6\ — 180 = 0 has a single
root of 30 [= triple root of the original polynomial]. Finding eigenvectors:

= C

12]-9] 9 1[-2]¢2
—12] 9] -9[=[0][ 0 |0
—28] 21] 21 0[ 0 ]0O

3

4 |and ¢y

0

-3

0

4

are the corresponding eigenvectors [only two| which, when multiplied by €39
yield the first two basic solutions.

Squaring the previous matrix yields the zero matrix (any vector is a solution
- we just have to be careful not to take a linear combination of the previous

two). We thus take

0
s=|0
1
which implies
12 | -9 9 0 9
a=[—12] 9] —9][0|=[=9
=28 21| —21 1 =21
9 0
The third basic solution is thuscs || =9 | +[ 0 || €30*
—21 1
—103 | =53 41
A= 160 85 | —100
156 | 131 | —147

:C3

9x

—9x

—2lz+1

30z

= X3+ 165X2+9075\+166375 [hint: triple root] = 6A+330 =0 = X\ = —55

[checks| =
—48 | =53 41 110 i
160 | 140 | =100 |=|0| 1| —1
156 | 131 | =92 00 O
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is the only eigenvector (this, multiplied by e~

solution). Squaring the matrix, we get

, provides the first basic

220 | 495 | —440 1]5]-2
—880 | —1980 | 1760 ||[=|0| 0| O
—880 | —1980 | 1760 010 O
A possible solution for s is thus
2
0
1
which implies that
—48 | —53 41 2 —55

q=| 160 | 140 | —100 |[-| O |=| 220
156 | 131 | —92 1 220

The second basic solution is thus

—9o5x + 2
co(qr +8)e " = cp| 220z |e %
220z + 1

Finally, cubing (A + 55I) results in a zero matrix, so we can choose any u,
as long as it’s not a linear combination of the previous two vectors, e.g.

0
1
0

This implies that

—48 | =53 41 0 —-53
s=| 160 | 140 | —100 |- 140
156 | 131 | —92 0 131

—_
Il

and
—48 | —53 41 —-53 495
q=| 160 | 140 | —100 ||-| 140 |=| —1980
156 | 131 | —92 131 —1980
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The last basic solution thus equals

2
z —55z
C3 <q—2 + sz + u) e

Complex Eigenvalues/Vectors

:C3

2

2 — 53z

—990x% + 140x + 1 |75

—9902? + 131z

we first write the corresponding solution in a complex form, using the regular
procedure. We then replace each conjugate pair of basic solutions by the real and

imaginary part (of either solution).

EXAMPLE:

/

y:

2

3

=AM —6A+1l= \y=3+2i=

—1—+2i

—1

1—+2i

3 1—+2i

=

-3

is the eigenvector corresponding to Ay = 3 + /21 [its complex conjugate
corresponds to Ay = 3 — 1/2i]. This means that the two basic solutions (in

their complex form) are

1—V2i | 3ivaie _

1 - V2 [cos(ﬁx) + isin(v/2z)| e*

and its complex conjugate [i — —i|. Equivalently, we can use the real and
imaginary part of either of these [up to a sign, the same answer]| to get:

cos(v/21) + v/2sin(v/27)

y —a —3cos(v/2x)

63:v

—v/2 cos(v/2x) + sin(v/2x)

+co

—3sin(v/2z)

63:8

. This is the fully general, real solution to the original set of DEs.
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Non-homogeneous case

of
y' — Ay =r(z)
where r is a given vector function of x (effectively n functions, one for each equa-
tion). We already know how to solve the corresponding homogeneous version.

There are two techniques to find a particular solution y® to the complete
equation; the general solution is then constructed in the usual

ayW + y® + 4 ey™ +y?

manner.
The first of these techniques (for constructing y,) is:
Variation of Parameters

As a trial solution, we use
yT = Ye

where Y is an n by n matrix of functions, with the n basic solutions of the
homogeneous equation comprising its individual columns, thus:

Y=[yU [yP [ [y
C1
. . . 2 .
and c being a single column of the ¢; coefficients: ¢ =[— |, each now considered
Cn

a function of x [Yc is just a matrix representation of ¢;y™ + coy® + ... + c,y™,
with the ¢; coefficients now being ’variable’].

Substituting in the full (non-homogeneous) equation, and realizing that Y' =
AY, we obtain: Y- c+Y-¢'—A-Y-c=r= ¢ =Y ! r. Integrating the right
hand side (component by component) yields c. The particular solution is thus

y? =Y / Y r(z) do

EXAMPLE:

y +
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=N -5\ +4=0= A12 = 1 and 4 with the respective eigenvectors [easy

1 2
to construct]: and
-1 1
T 2 dx 1 _—=x 2 - . ) o
Thus Y = _eex 664” =Y != f’:_% T é’ix . This matrix, multiplied
i 3 3
by r(z), yields 3é = |- The componentwise integration of the last vector is
Lele : 3057
trivial: Sée“’ , (pre)multiplied by Y finally results in: y® = |- The
3
1 2 bx
general solution is thus y = ¢ — e’ + ¢ T et 4 3:530
Let us make this into an initial-value problem: 3;(0) = 1 and y»(0) = —1 <
1
y(0) = Y(0)e + ¥ (0) ==
IT_2 1 3 2 2 8
Solving for ¢ = 13(—1_1 =—H =y =3¢ 1
; 3] 3 3 3 3
e

Undetermined coefficients:
Works only for two special cases of r(x)
> When the non-homogeneous part of the equation has the form of

(akxk +ap 2 L ax+ ao) e’

we use the following ’trial’ solution (which is guaranteed to work) to construct

y(®):

(bma:m +b, 2™+ .+ b+ bo) e

where m equals k plus the number of levels of § as an eigenvalue of A (if 5 is not

an eigenvalue, m = k.

When 3 does not coincide with any eigenvalue of A, the equations to solve to
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obtain by, bx_1, ..., by are

(A — 6H) bk = —ai
(A—=pD)bgy = kbp—az,
(A=pD)by o = (k—1)by1 —a,

(A—ﬁﬂ)bo = bl —
Since A — Sl is a regular matrix (having an inverse), solving these is quite routine
(as long as we start from the top).

When [ coincides with a simple (as opposed to multiple) eigenvalue of A, we
have to solve

(A—BD)byy = 0

(A — BT) by (k+1)br — ay
(A=pBD)br_y = kby—az

(A—Bﬂ)bo = b;—ao

Thus, by; must be the corresponding eigenvector, multiplied by such a constant
as to make the second equation solvable [remember that now (A — SI) is singular].
Similarly, when solving the second equation for by, a c-multiple of the same eigen-
vector must be added to the solution, with ¢ chosen so that the third equation is
solvable, etc. Each b; is thus unique, even though finding it is rather tricky.

We will not try extending this procedure to the case of 5 being a double (or
multiple) eigenvalue of A.

> On the other hand, the extension to the case of
r(z) = P(z)e? cos(qr) + Q(x)eP” sin(qx)

where P(z) and Q(x) are polynomials in z (with vector coefficients), and p + i g
is not an eigenvalue of A is quite simple: The trial solution has the same form as
r(z), except that the two polynomials will have undetermined coefficients, and will
be of the same degree (equal to the degree of P(x) or Q(z), whichever is larger).
This trial solution is then substituted into the full equation, and the coefficients of
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each power of = are matched, separately for the cos(qz)-proportional and sin(gz)-

proportional terms.

In addition, one can also use the superposition principle [i.e. dividing r(z) into
two or more parts, getting a particular solution for each part separately, and then

adding them all up].

EXAMPLES:

1.

y:

—4

—4

1

1

2

y +

0

623: 4

0

-2

e

—XT

= AN4+2-4=0= A2 =—-1=+ V5. We already know how to construct
the solution to the homogeneous part of the equation, we show only how to
deal with y®) = y1) 4+ y({2) [for each of the two r(x) terms]:

y(P1) = be?* substituted back into the equation gives

=b=

Il O

-6

4

b=

-1

1

0

0

Similarly y(2) = be™® [a different b], substituted, gives

= b=

FUSY R0

The full particular solution is thus

3| -4 0

1] 3 b= 2

_8

y(p) — (1) e 4 e

1 5
11213 1 0
51-11-2|y+|0e"+|4
51313 0 0




= A\ — A2 — 24\ — 7 = 0. If we are interested in the particular solution
only, we need to check that neither § = 1 nor § = 0 are the roots of the
characteristic polynomial [true].

Thus y®) = be® where b solves

21213 -1
51-21-2b=|0
51312 0
_2
5
_25
31
Similarly y2) = b where
1123 0
51-1(-2|b=|-4
51313 0
_12
75
52
7
Answer:
_2 _12
(p) o 75
yP =g |+ F
i) 52
31 7
3
1123 z—1
y=|5-1|-2]|y+ 2
51313 -2z

[characteristic polynomial same as previous example]. y = byz + by with

1023 -1
51-1]-2by=|0
51313 2
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implying

5
51
b1: 7
58
7
and
11213 -2 -1
51-1]-2lbo=| 2 |- 2
5313 [0
implying
155
1510
L
363
7
Thus
S, 4 15
y® = [y —Tm
38 863
—7JI+T
, [4T-3 N 1] .,
Y= 11 2/

= AN 430 +2=0=> A2 = —1, —2. Now our 3 = —1 ’coincides’ with a
simple eigenvalue.

y®) = (byz + by) e~ where

-31-3
5o =0
implying
1
bl—Cl 1
and
-31-3 1 1
5 T2 P =]~
B30-3 1 -1
212 |-11-2
INEE
010 118
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This fixes the value of ¢; at —8 =

-8
b =3
and
3 1
b(): O —f—Co 1

Being the last b, we can set ¢g = 0 (not to duplicate the homogeneous part
of the solution).

Answer:
—8r+3| _
(p) — z
Y 8x €
1 (1)1 x
y=[1]4|-1]y+|0
5|-81-3 4

= A =2\ — 150 =0 = B =0 is a simple eigenvalue.
We construct y?) = byz? 4+ byx + by where

1111
114]-1by=0
-5 -8 -3
implying
-5
b2:C2 2
3
11171 1

—_
e~
I
—_
=2
—
I
[\]
=3
[\
|
)

5 [ 4471 4
L10L s hoy 1
O R Ml
ojojo 1 [2




implying ¢ =

implying

and

implying ¢; = —

[no need for co).

Answer:

Final Remark:

_2
157

3

25

and
NENE-
11-21-1
3 45
0010 0
28
?53 -5
b1 15 + 1 2
0 3
1111
1[4]-1]bg=b;—
S5 -81-3
73
11 1(1{-5 %
114 ]-11 2 _1%
5| -8]-3] 3 |-4
011151 3 |-
0100 |-15] -3
and
5 219
110 52 @4
0|1]-%| -5
0010 0
219
G
by = -2
0
2 11 1219
N LR TR 4
yp = —E$2—2%x_m
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Note that an equation of the type
By = Ay +r

can be converted to the regular type by (pre)multiplying it by B~1.

EXAMPLE:

Power-Series Solution of

y' + f(z)y' +g(x)y =0

i.e. seeking a solution in the form of
Y =cy+acx+ 02x2 + 03x3 + ...

The main idea

is to substitute this expression into the differential equation, and make the
coefficient of each power of x cancel.

This results in (infinitely many, but regular) equations for the unknown coef-
ficients co, c1, co, ....

These can usually be solved in a recurrent [some call it recursive] manner (i.e.
by deriving a simple formula which computes ¢, based on c¢q, c1, ..., ¢i_1,where ¢y
and ¢; can normally be chosen arbitrarily).

EXAMPLES:

1.
y'+y=0
implying
Z i(i — 1)z + Z cirt =
=2 i=0

The main thing is to express the left hand side as a single infinite summation,
oo

by replacing the index i of the first term by i* 4+ 2, thus: > (i* + 2)(i* +
=0

1)ci- 102" [note that the lower limit had to be adjusted accordingly]. But i*
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is just a dummy index which can be called j, k or anything else including 1.
This way we get (combining both terms):

Z [(i +2)(i + 1)cia + ¢l 2’ =0

which implies that the expression in square brackets must be identically
equal to zero. This yields the following recurrent formula

where ¢ = 0, 1, 2, ...., from which we can easily construct the compete
sequence of the c-coefficients, as follows: Starting with ¢y arbitrary, we get

J— _CO
2 T 9%
G O
“ T Ix3 u
Cg — — :_—CO
6 X5 6!
k
Cok = (<2;§, Co

Similarly, choosing an arbitrary value for ¢; we get

ST
Cy — g
The complete solution is thus
z2 2t af x> 2> a2’

where the infinite expansions can be easily identified as those of cosx and

sin z, respectively. We have thus obtained the expected y = ¢y cosx+c; sinx
[check].
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We will not always be lucky enough to identify each solution as a combi-
nation of simple functions, but we should be able to recognize at least the
following;:

(1—azx)™ = 14azx+d®s®+ a2 + ...
2,2 3,3
e I T
a’r?  ada?
(1l —az) = —ar— 22 28
n(l — ax) ax 5 3
with a being any number [often a = 1].
Also, realize that
) e
TR T
[a power of  missing] must be #2£,
. 3z2 9zt 27a°
B
is the expansion of cos(v/3x),
. A S 8
+ x° + o + 3 + 1 +
must be exp(z?), and
o 2?28
BT
is Si‘:/‘f.
(1 -2y —2xy +2y=0
implying

> (i =)' — Zz(z — 1)zt

=2 =2



By reindexing (to get the same z* in each term) we get

D (" +2) (@ + Degor’ =Y i(i — Ve’
*=0 =2

o0 (0. ]
-2 E et + 2 g crt =
i—1 i=0

Realizing that, as a dummy index, i* can be called i (this is the last time we
introduced ¢*, form now on we will call it i directly), our equation becomes:

> i+ 2) (i + D)cia — i(i — 1)e; — 2ic; + 2] 2 =0
=0

(we have adjusted the lower limit of the second and third term down to 0
without affecting the answer — careful with this though, things are not always
that simple).

The square brackets must be identically equal to zero which implies:

24+i—2 i—1
Ciyo= 77—, GG =T—"7"7¢6
P +2)6+1) i+1
where ¢ = 0, 1, 2, .... Starting with an arbitrary ¢y we get
C = —(C
1 1
Cqy = 562 = —500
3 1
g = —C4= —=C
6 1 1C0
1
Ceg — —660
Starting with ¢; we get
C3 — 0
Cy = OC7 =0
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The solution is thus

One of the basic solutions is thus simply equal to x, once we know that we
can use the V of P technique to get an analytic expression for the other
solution (try it), but with a bit of juggling we can easily figure out that the

second basic solution is
1— z In 1+z
2 1—=z

y' =3y +2y=0

implying
Z i(i — )™ =3 Zicw“l +2 Z cr' =0
=2 =1 =0
> (i +2)(i + Deive — 3(i + D)eigr +20] 2" =0
i=0

=

3(i + 1)cip — 204
(i+2)(i+1)

By choosing ¢y = 1 and ¢; = 0 we can generate the first basic solution:

Ciyo2 =

7 1
co(l —a? —a% — —a* — =2® — .
similarly with cp = 0 and ¢; = 1 the second basic solution is:
3, 74 5, 31 4
alr+ 2"+ 2" + s + =1 + ...
B R R ST, )

There is no obvious pattern to either sequence of coefficients. Yet we know
that, in this case, the two basic solutions should be simply e* and e,
The trouble is that our power-series technique presents these in a hopelessly
entangled form of 2e® —e** [our first basic solution] and €** —e® [the second],
and we have no way of properly separating them.
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Sometimes the initial conditions may help, e.g. y(0) = 1 and ¢'(0) = 1
[these are effectively the values of ¢y and ¢y, respectively], leading to

3—2 1
C o _ = =
2 2 2
3—2 1
C3 = = -
3x2 6
3 _
4x3 24

form which the pattern of the e”-expansion clearly emerges. We can then
congecture that c¢; = % and prove it by substituting into the previous recur-
rence formula.

Similarly, the initial values of y(0) = ¢y = 1 and 3/(0) = ¢; = 2 will lead to

@, G,

1+ 22+ 5 3l

[the expansion of €2”]. Prove that ¢; = 2 is also a solution of our recurrence
equation!

MOI‘e exampleS (introducing new, special functions):

Legendre Equation
(1—a2%)y" —2xy + Xy =0

(Note that we already solved this equation with A = 2, see Example 2 of the
'main idea’ section).
The expression to be identically equal to zero is

(Z + 2)(2 + 1)CZ‘+2 — Z(’L — 1)61 — 2ZCZ + )\Ci
e A4
TG+ 1)

Suppose we allow only polynomial solutions. This will happen only if the numer-
ator of the ¢;,o = ... formula is zero for some integer value of ¢, i.e. iff

A=n+1)n
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(for n even, we would have to choose ¢y = 1 and ¢; = 0, for n odd reverse).
We then get the following polynomial solutions — P, (z) being the standard
notation:

P()(l’) =1
P(z) = z
Py(z) = 1-— 322
Py(x) = x— gx?’

Pyx) = 1—102% + 3—35m4

These are the so called Legendre polynomials (important in Physics and other
fields).
The corresponding second basic solution (one can find it via V of P - it is no
longer a polynomial) is called Legendre function of second kind.
Chebyshev equation
(1—aby" —2y + Ay=0

It easy to see that the Legendre recurrence formula needs to be modified to
read

A — i
Civa = — 7~ Ci
2 (i+2)(t+1)
To make the expansion finite (polynomial) we have to choose

A =n?

This leads to the following Chebyshev polynomials:

T[) =1

Tl = T

T, = 1-22°
4

T3 = T — 51‘3
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Method of Frobenius

The power-series technique described so far is applicable only when both f(x)
and g(z) of the main equation can be expanded at x = 0. This condition is
violated when either f or g (or both) involve a division by z or its power [e.g.
V' + 3y + (1= gz)y =0].

To make the power-series technique work in some of these cases, we must
extend it in a manner described shortly (the extension is called the method of
Frobenius).

The only restriction is that the singularity of f is (at most) of the first degree
in x, and that of ¢ is no worse than of the second degree. We can thus rewrite the
main equation as

b(x)

T2

a(z
y/l + ( )y/ _|_ y — O
where a(z) and b(z) are regular [i.e. ’expandable’: a(z) = ag + a1 + ax® +

azx® + ..., and b(x) = boag + bz + box® + bzx® + ....].
The trial solution now has the form of

[e.9]

Y = E Gt =cor" + e e 4
=0

where r is a number (no necessarily an integer) yet to be found.

When substituted into the above differential equation (which is normally sim-
plified by multiplying it by %), the overall coefficient of the lowest (") power of
T 18

[r(r — 1) 4+ aor + bo| co

This must (as all the other coefficients) be equal to zero, yielding the so called

indicial equation for r
%+ (ag — 1)r +by =0

Even after ignoring the possibility of complex roots (assume this never hap-
pens to us), we have to categorize the solution of the indicial (simple quadratic)
equation into three separate cases:

1. Two distinct real roots which don’t differ by an integer

2. A double root
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3. Two roots which differ by an integer, i.e. ro — 71 is a nonzero integer (zero
is covered by Case 2).

We have to develop our technique separately for each of the three cases:

Distinct Real Roots

The trial solution is substituted into the differential equation with r having the
value of one of the roots of the indicial equation. Making the coefficients of each
power of x cancel out, one gets the usual recurrence formula for the sequence of
the c-coefficients [actually, two such sequences, one with the first root r; and the
other, say ¢f, with ro]. Each of the two recurrence formula allows a free choice of

the first ¢ (called ¢ and ¢, respectively); the rest of each sequence must uniquely
follow.

EXAMPLE:

5
2 N
2y 4 (22 —|—36)

[later on we will see that this is a special case of the so called Bessel equation].

y=20

Since a(z) = 0 and b(z) = 22 + 2 the indicial equation reads

5
2

= 112 =g and 3 [Case 1].

Substituting our trial solution into the differential equation yields

o0
E ci(r+i)(r+i— 12" + E x4 g et T2 =
— 36

. Introducing a new dummy index * =17 + 2 we get

o0 5 = .
i , i — 1 I P o) i r+i =0
;c[(r—kz)(r%—z )+36]:B —l—Zc 0T

*=2

Before we can combine the two sums together, we have to deal with the
exceptional ¢ = 0 and 1 terms. The first (i = 0) term gave us our indicial
equation and was made to disappear by taking r to be one of the equation’s

91



two roots. The second one has the coefficient of ¢;[(r + 1)r 4+ 2] which can
be eliminated only by ¢; = 0. The rest of the left hand side is

oo

> {ci[(r +i)(r+i—1)+ %] n CH} i

1=0

—Ci—2
(r+di)(r+i—1)+2
So far we have avoided substituting a specific root for r [to be able to deal

with both cases at the same time], now, to build our two basic solutions, we
have to set

C;, =

_1 :
. = §, getting
o= —Ci—2
i 2
Z(Z—g)
=
Cy = 1
2><§
Co
Cq4 =
1 _ 10
4><2><3><3
Cg —
6><4><2><§><1?0><§

[the odd-indexed coefficients must be all equal to zero].

Even though the expansion has an obvious pattern, the function cannot be
identified as a ’known’ function. Based on this expansion, one can introduce
a new function [eventually a whole bunch of them], called Bessel functions,
as we do in full detail later on.

For those of you who know the I'-function, the solution can be expressed in
a more compact form of

(_1 k(%>2k+1/6

D3 FT(k + 2)

92



" -2
C. =
(3 - 2
Z(Z'f‘g)
=
*
* _CO
2 7 5.8
3
sk
= %
4 = 8 _ 14
4><2><3><3
%
. —%
06 —_—

8 U 14 _ 20
6><4><2><3><3><3

Double root
The first basic solution is constructed in the usual manner of

= cox” 4+ 1" " 4 L
The second basic solution has the form [guaranteed to work]| of:
Yo = yilnz + g’ + a4+ a4 L

where y; is the first basic solution (with ¢y set equal to 1, i.e. removing the
multiplicative constant). The corresponding recurrence formula (for the ¢}’s) will
offer us a ’free choice’ of ¢, which we normally set equal to 0 (a nonzero choice
would only add ¢ y; to our second basic solution). After that, the rest of the ¢}’s
uniquely follows (they may turn out to be all 0 in some cases).

EXAMPLES:
(1)
(14 2)2%y" — (1 +22)2y’ + (1 +22)y =0
[a(x) = —12% and b(x) = 1£22]. The indicial equation is

1+z 1+z

?—2r+1=0
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= 11 = 120 [double]. Substituting }° c;xt ™ for y yields

1=0
o o o
Z ci(i+ )izt + Z ci(i+ 1)iz"*? — Z ci(i+ 1)z
=0 i=0 i=0
oo o0 o0
-2 Z ci(i + 1)z + et 2 Z crit? =0
i=0 i=0 i=0

Combining terms with like powers of z:

o0 o0
> i+ Y (i — )2t =0
=0 i=0

Adjusting the index of the second sum:
Z Cii2$i+1 + Z Cifl(l‘ - ].)(Z - 2)1‘i+1 =0
i=0 i=1

The ’exceptional’ © = 0 term must equal to zero automatically, our indicial equa-
tion takes care of that [check], the rest implies

(-D6-2)

G = — - i—1
;2

forv =1, 2, 3, ...., yielding ¢; = 0, co = 0,.... The first basic solution is thus cyx
[i.e. y1 =, verify!]. Once we have identified the first basic solution as a simple
function [when lucky] we have two options:

(a) Use V of P:

y(e) = c(z) @
=
(1+z)zd"+ =0
- d 1 1
z
g — 3\
z (1+x x) v
=
Inz=In(1+2)—lnzx+¢é
=
W1t
d=c

X
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=
c(z) =ci(lnz + )+ ¢

This makes it clear that the second basic solution is
xlnz + 22

(b) Insist on using Frobenius: Substitute
y D =zInz + Z cio'tt
=0

into the original equation. The sum will give you the same contribution as be-
fore, the xInz term (having no unknowns) yields an extra, non-homogeneous
term of the corresponding recurrence equation. There is a bit of an automatic
simplification when substituting y; In z (our xInz) into the equation, as the In z-
proportional terms must cancel. What we need is thus y — 0, 3 — % and

Yy — 2y—x/1 — 4 .This substitution results in the same old [except for ¢ — ¢*]

i 4 Y e (i - 1)(i - 2)a !
i=0 i=1
on the left hand side of the equation, and
2 1 2
—14+2z)2* - -+ (1+22)z =2
x

[don’t forget to reverse the sign] on the right hand side. This yields the same
set of recurrence formulas as before, except at i = 1 [due to the nonzero right-
hand-side term]. Again we get a ’free choice’ of ¢ [indicial equation takes care of
that], which we utilize by setting ¢ equal to zero (or anything which simplifies
the answer), since a nonzero ¢f would only add a redundant cfy; to our second
basic solution. The z2-part of the equation (i = 1) then reads:

cir? +0 = 2?
= ¢; = 1. The rest of the sequence follows from

G = — 2 Ci—1s

95



1=2,3,4... = c5 =c; = ... =0 as before. The second basic solution is thus
yiInz +cja? = rlnaw + 2°

[check].
(2)

zlx—1)y" +Bx—1)y'+y=0

[a(z) = 3= b(z) = 2] = r? = 0 [double root of 0]. Substituting y™) = ;)cix”o

z—1
yields
Z@(z — e — Z@(z — ezt + 32@0@2
i=0 =0 i=0
o0 o0
- chix’;l + Zcle =
i=0 i=0
<:> o0 o0
P+ 20+ e’ = Y et =0
i=0 1=0
or . .
Y (i+10%cx’ = > (i+1) ez’ =0
=0 i=—1
The lowest, i = —1 coefficient is zero automatically, thus ¢y is arbitrary. The
remaining coefficients are
(i + 1)%[ci — cipi]
set to zero = ¢ = ¢ for i = 0,1, 2,.... = g = ¢ = C =3 = ... =
l1+x+22+23+... = % is the first basic solution. Again, we can get the second

basic solution by either the V of P or Frobenius technique. We demonstrate only
the latter:

Inz > ,
(T) _ * . 14+0
v 1—x +;C’m

getting the same left hand side and the following right hand side:

2 1
we=1) [:cu o P xﬂ
+(3x—1)-x(+_x) ~ 0
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[not typical, but it may happen]. This means that not only ¢, but all the other
c*-coefficients can be set equal to zero. The second basic solution is thus i{—fg
[which can be verified easily by direct substitution].

r1 — ro Equals a Positive Integer

(we choose 1 > 13).

The first basic solution can be constructed, based on ™) = 3~ ¢;#*™ | in the

i=0

usual manner (don’t forget that r; should be the bigger root). The second basic
solution will then have the form of

[ee]
Kyilnz + Z crp'tr

1=0

where K becomes one of the unknowns (on par with the ¢}’s), but it may turn
out to have a zero value. Note that we will first have a free choice of ¢f (must
be non-zero) and then, when we reach it, we will also be offered a free choice of
¢y _,, (to simplify the solution, we usually set it equal to zero — a nonzero choice
would only add an extra multiple of ;).

EXAMPLES:
(1

(22 — D2y’ — (22 + Doy + (22 + 1)y =0

[a(z) = — 52 and b(r) = £ =

r?—1=0

= 712 =1 and —1. Using yD) = Y ¢;2"! we get:
i=0

> (i + Dica™ = (i 4 Dica™ = > (i + ez
i=0 i=0 =0
— ZCi(ivL 1)zt + ZCMH?’ + Zcixi—l—l —0
=0 i=0 =0
<:> o o
Z i2ex'3 — Z i(i 4+ 2)cz'tt =0
i=0 =0
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D o™ = Ny (i 42) (i + e’ =0
i=0 i=—2
The lowest i = —2 term is zero automatically [= ¢y can have any value|, the next
i = —1 term [still ’exceptional’] disappears only when ¢; = 0. The rest of the
c-sequence follows from
iQCi
& TSV
2 (i+2)(1+4)
with 7 =0, 1, 2,... = ¢ = ¢c3 = ¢4 = .... = 0. The first basic solution is thus

cox [y1 = z, discarding the constant]. To construct the second basic solution, we
substitute

Kxlnx + Zc;kxi_l

=0
for y, getting:
S (=1 = 2™ = Y (i = 1)(i — 2)eia’
=0 =0
o o
— Z(z — ez ™ — Z c(i— 1)t
=0 1=0
+ Z cir ™t + Z cr' Tt =
=0 =0
D (=2 =Y (i = 2)e’ ! =
=0 =0
D (i =20 = Y (i + 2)icipr
=0 i=—2

on the left hand side, and

K
—(2* = 1)2*  — + (2*+ 1)z K = 2K«
T

on the right hand side (the contribution of Kz Inz). The i = —2 term allows ¢

to be arbitrary, i = —1 requires ¢; = 0, and ¢ = 0 [due to the right hand side, the
z'-terms must be also considered ’exceptional’] requires

dcy = 2K
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= K = 2¢, and leaves c¢; free for us to choose (we take ¢; = 0). After that,

(i—2)7,

2= r2)C

where i =1,2,3, ... = =ci=cf = ... = 0. The second basic solution is thus

[verify!].

(2)

1
x2y” +xy' + (I2 o Z)y — O

= r2 _ % =0=119= % and —%. Substituting

Y™ — Z cia /2

we get

o

A N NPT R < WA TP
Z(z + 5)(2 — §)czm + Z(z + 5)ch

=0 1=0

. Zcimz%/z - 3 Zcixl-‘rl/Q — 0
1=0 1=0

Z(@ + l)icixi+l/2 + ZCﬂHS/? -0

=0 1=0
00

14+ 3)(2+ 2)¢ 2$i+5/2 + cixi+5/2 =0
+

1=—2 1=0

which yields: a free choice of ¢y, ¢c; =0 and

C;
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where 1 =0, 1, ..... =

Cy = —5
Cy = 5
Cg — —ﬁ
and c3 = ¢5 = ... = 0. The first basic solution thus equals
2 4 6
/201 _ r_r
cor (1 ) + R + ...
sin x

N

=7=]. Substituting

Kyﬂnx—ch* i-1/2

=0

for y similarly reduces the equation to

o0

Z(l . 1 ZC*CL'Z 1/2 + Zc*xz+3/2

i=0
on the left hand side and

Y1 2 Y1
(B Sy B o

5I5/2 9I9/2

. r_ _1/2
2oy = K(—x7/° + a0 =

on the right hand side or, equivalently,

o0

Z(z+1)(z+2) z+2xz+3/2+ ZC* i+3/2 _

i=—2 i=0
5 5/2 9 9/2
K(—z'? + ”2—' — 1;' +..)
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This implies that ¢ can have any value (i = —2), ¢} can also have any value (we
make it 0), K must equal zero (i = —1), and

&
C;

R V)

fori=0,1,2, ... =

% C0
“ = Ty
C*
¢, = 2
4!
C*
g = —=2
6!
= 2 4
— ¢ _ coszT
—r M- )=
b2 s TR T N

In each of the previous examples the second basic solution could have been
constructed by V of P — try it.

Also note that so far we have avoided solving a truly non-homogeneous re-
currence formula — K never appeared in more than one of its (infinitely many)
equations.

A few Special functions of Mathematical Physics

This section demonstrates various applications of the Frobenius technique.
Laguerre Equation

1—2 n
y'+—y' +-y=0
T X

or, equivalently:
(xe™™y") + nye ™ =0
which identifies it as an eigenvalue problem, with the solutions being orthogonal

in the [ e *L,, (x) - Ly, (x) dx sense.
0
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Since a(z) =1 — x and b(z) = = we get r* = 0 [duplicate roots]. Substituting

w .
> ¢z’ for y in the original equation (multiplied by z) results in
i=0

chzzg—l—Zn—zcz )

=0

<:> o0

Z(H—l Ci1x'” —|—Zn—zcz -9

i=—1
= .

n—1
Citl = =77 5Ci
N GIE

forv =0, 1, 2, .... Only polynomial solutions are square integrable in the above

sense (relevant to Physics), so n must be an integer, to make ¢, and all subse-
quent c;-values equal to 0 and thus solve the eigenvalue problem.

The first basic solution is thus L, (z) [the standard notation for Laguerre poly-
nomials|:

n nn—1) 5, nn—-1)(n-2) 4 1,

The second basic solution does not solve the eigenvalue problem (it is not square
integrable), so we will not bother to construct it [not that it should be difficult —
try it if you like].

Bessel equation

22 4wy + (22 —n?)y =0

where n has any (non-negative) value.

The indicial equation is r? — n? = 0 yielding r; 5 = n, —n.

To build the first basic solution we use



i i(i 4 2n)cr ™™ + i Ciox T =0
i—2

i=0
= ¢ arbitrary, ¢; =c3 =c¢5 = ... =0 and
Ci—2
=~
i(2n +1)
fori=2,4,6, .. =
Co
o = —————
2 2(2n + 2)
Co
C =
! 4x2x(2n+2) x (2n+4)
T TEx4x2x(2n+2) x (2n+4) x (20 +6)
(=De
C =
2" 22k (n + 1)(n 4 2).....(n + k) k!
in general, where £ = 0, 1, 2, .... When n is an integer, the last expression can be
written as
(=DFnley (—1)*¢,

Cop, = =
T2k (n 4 k) T 22 kL (n + k)]

The first basic solution is thus

i (_1)k(%)2k+n

| |

P El(n + k)!
It is called the Bessel function of the first kind of ’order’ n [note that the ’order’
has nothing to do with the order of the corresponding equation, which is always
2], the standard notation being J,(z); its values (if not on your calculator) can
be found in tables.

When n is a non-integer, one has to extend the definition of the factorial
function to non-integer arguments. This extension is called a I'-function, and is
'shifted” with respect to the factorial function, thus: n! = I'(n + 1). For positive
a (=n+ 1) values, it is achieved by the following integral

o0
/xo‘_le_“’dx
0
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[note that for integer « this yields (a— 1)!], for negative « values the extension is
done with the help of
[(a)

a—1

MNa—-1)=

[its values can often be found on your calculator].

Using this extension, the previous J,(x) solution (of the Bessel equation) be-
comes correct for any n [upon the (n+ k)! — I'(n + k + 1) replacement).

When n is not an integer, the same formula with n — —n provides the second
basic solution [easy to verify].

Of the non-integer cases, the most important are those with a half-integer
value of n. One can easily verify [you will need I'(1) = /7] that the corresponding
Bessel functions are elementary, e.g.

Ji(x) = \/isinx
2 T

J_1(x) = Uicosx
2 T

Ja(x) = 2 (smm — cosx)

2 T T

Unfortunately, the most common is the case of n being an integer.
Constructing the second basic solution is then a lot more difficult. It has, as
we know, the form of

Ky, lnx + Zcf:vi’"
=0
Substituting this into the Bessel equation yields

o [ee)
E i(i —2n)cix"™" + E cr ot
i=2

=0
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on the left hand side and

/
_K|:x2.(2&_ﬂ)+x.ﬂ =

r a2 T
F(2k + n)(Z)2k+n
—2K 2 =
Z k;' (n+k)!

o0 k n 2k )(g)%—n

_QKZ —n)lk!

on the right hand side of the recurrence formula.

One can solve it by taking ¢ to be arbitrary, cj = ¢ =c¢f = .... =0, and
‘ <o
2 T 2@n-2
. h
4 4x2x(2n—2)x (2n —4)
g = 0

6 x4x2x(2n—2)x(2n—4) x (2n — 6)
c %

2k 92%k(n —1)(n—2)....(n — k)k!
cyn—k—1)!

22k(n — 1)!k!

up to and including k =n — 1 [i = 2n — 2]. When we reach i = 2n the right hand
side starts contributing! The overall coefficient of z™ is

. 1
Cn-2 = 2R
i k
—C,
K=—_°0
2n=1(n —1)!

allowing a free choice of c3,,.
To solve the remaining part of the recurrence formula (truly non-homogeneous)
is more difficult, so we only quote (and verify) the answer:

% = Ok — )Wl (n — 1)
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for k > n, where h, = 1+ %—l— %—l— +%
The second basic solution is usually written (a slightly different normalizing
constant is used, and a bit of J,(z) is added) as:

Yo(x) = %Jn(x) [lng + 7]

+ % i (—=1)* =" (hy_y + hy) <x>2k—n

£ (k —n)k! 2
1 — (n—Fk—1)! (g)”ﬂ—n
T k! 2
k=0

where 7 is the Euler constant ~ 0.557 [the reason for the extra term is that the
last formula is derived based on yet another, possibly more elegant approach than

ours, namely:

lim J, cos(vm) — J_,

v—n sin(v)

Y, (z) is called the Bessel function of second kind of order n.
Modified Bessel equation:

22y +ay — (@2 +nPy=0

[differs from Bessel equation by a single sign]. The two basic solutions can be

developed in almost an identical manner to the ’unmodified’ Bessel case [the

results differ only be an occasional sign]. We will not duplicate our effort, and

only mention the new notation: the two basic solutions are now I,,(z) and K, (x)

[modified Bessel functions of first and second kind]. Only I, and I; need to be

tabulated as I,,41(x) = I,,—1(x) — 27”171 and I}, = % (same with I, — K,,).
Transformed Bessel equation:

2%y + (1 — 2a)ay’ + (B*?2* — n’c® +a)y =0

where a, b, ¢ and n are arbitrary constants [the equation could have been written

as
2y + Azy' 4+ (B*Y — D)y =0

but the above parametrization is more convenient).
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To find the solution we substitute y(z) = 2% u(x) [introducing new dependent
variable u] getting:
a(a — 1)u+ 2azv’ + 2*u” + (1 — 2a)(au + xu')
+ (V¥ Er* —n?c + a®)u =
220" + zu' + (VP — n*Pu = 0

Then we introduce z = bx® as a new independent variable [recall that

d
u — d_z - ber?
and P g
u’ — d_zl; (e d_z ~be(c —1)r 2
] =
d*u du
2 [ 27 c—1\2 - -1 c—2
x (dz2 (bex®)* + 7 be(c — 1)z ) +
d
x- (d—: : bcx01> + (V**2* — n*cP)u =
[after cancelling ¢?]
d*u du
2 2 .2
z -@—F Z'E—f— (z —n)u: 0

which is the Bessel equation, having

[or CyJ_,(z) when n is not an integer| as its general solution.
The solution to the original equation is thus

Crx J,(bx€) + CozY, (bz€)

EXAMPLES:
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xy”—y’—l—xyzo

[same as 2%y" — 2y + 2%y = 0] = a =1 [from 1 — 2a = —1], ¢ = 1 [from
v’c?x*y = 22y, b =1 [from b*c? = 1] and n = 1 [from a® — n*c®> = 0] =
y(z) = CizJi(x) + CoxYi(x)
2.
vy — 3wy +4(x* —3)y =0
= a = 2 [from 1 — 2a = =3], ¢ = 2 [from V’?z*y = 42y, b = 1 [from
b?’c? = 4] and n = 2 [from a*® — n?c* = —12] =
y = C12° Jo(2%) + Coa*Ya(a?)
> 81 35
x2y” + (ng _ Z>y =0
= a =3 [from 1 —2a = 0], ¢ = £ [from z%], b = 3 [from b*¢* = 8] and
n =2 [from a? — n?c* = -] =
Yy = Olﬁjg(?)l’?)ﬂ) + CQ\/E}/Q(?)IB/2)
4. 35
3y — 5y + (z + Z)y =0
=a=3[1-2a=-5,c=1[zy],b=2 [ =1 and n =1 [a® — n?c* =
YN

y = Ciz’ L1 (2y/x) + Coa®Yi(2V/7)
Hypergeometric equation
r(l—2)y" +c—(a+b+1)z]y —aby=0
=r’+r(c—1)=0=r=0and 1 —c
Substituting y*) = io%cixi yields:

D+ 1)+ eia’ = Y (i +a)(i + e’
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_
G = 1'Co
_ala+1)b(b+1)
2T T2 ler1) @
ala+1)(a+2)b(b+ 1)(b+2)
C3 = Co

1-2:3-¢c(c+1)(c+2)

which shows that the first basic solution is

ab . a(a+1)b(b+1)xz
l-c 1-2-¢(c+1)
ala+1)(a+2)b(b+1)(b+2) 4
1-2-3-¢c(c+1)(c+2)

1+

The usual notation for this series is F'(a, b; c; x), and it is called the hypergeo-
metric function. Note that a and b are interchangeable.. Also note that when either
of them is a negative integer (or zero), F'(a,b; ¢; x) is just a simple polynomial (of
the corresponding degree) — please learn to identify it as such!

Similarly, when ¢ is noninteger [to avoid Case 3], we can show [skipping the
details now] that the second basic solution is

7 Fla+1—cb+1—¢2—c)

[this may be correct even in some Case 3 situations, but don’t forget to verify it].

EXAMPLE:

z(l—2)y + (3 —-5z)y —4y =0
=ab=4,a+b+1=5=0—-4b+4=0=a=2,b=2,andc=3 =

C1F(2,2;3;2) + Cox 2F(0,0,; —1;2)

[the second part is subject to verification]. Since F'(0,0; —1;x) = 1, the second
basic solution is 272, which does meet the equation [substitute].
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Transformed Hypergeometric equation:
(x—x)(x2 —2)y" +[D—(a+b+ 1))y —aby =0

where z; and x5 (in addition to a, b, and D) are specific numbers.
r — I

One can easily verify that changing the independent variable to z =
To — X1
transforms the equation to

d?y D—(a+b+1)x; dy
—aby =0

which we know how to solve [hypergeometric].

EXAMPLES:

1.
4(2* =32 +2)y" =2/ +y =0

1 1
—1)(2 — " — 2y =0
(@ =12 -2)y" + 5y — 7y
:>x1:1,x2:2,ab:ianda+b+1:O:>b2+b+i:0:>a:—
%f(a+b+l)xl
ro—xl

1
2

and b = —%, and finally ¢ = = % The solution is thus

_ 111 12 S
y—OlF( 2, 2,2,I 1>—|— CQ(.I 1) F(O,O,Q,l’ 1)

[since z = 2 — 1]. Note that
3
F(0,0;ﬁ;x— 1)=1
[some hypergeometric functions are elementary or even trivial, e.g. F(1,1;2;z)

_ In(l—x) etc]
— ..

u(1+a)y +ay —y=0
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1 1
(@+1)(0-2)y" —gay+ 7y =0

= 11 = —1 [note the sign!] 2, =0,ab=—3 anda+b+1 =
-3y

andb=—-1=c=—"3—=1=

1 _1
3> 0=3

1 1 15
Y= ClF(§7 —1; 32 +1) + Co(z + 1)?PF(1, —33°7% +1)

[the first F'(...) equals to —z; coincidentally, even the second F(...) can be
converted to a rather lengthy expression involving ordinary functions].
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