MATH 2P20

NUMERICAL ANALYSIS I
Lecture Notes

© Jan Vibik

Contents

1 PREVIEW

More complicated mathematical functions
Numerical Integration and Differentiation
Integrationo
Differentiation
Related issues
Matrix Algebra
Eigenvalues and eigenvectors
Remaining Topics L

2 USING MAPLE
Basics
Listsand Loops
Variables and Polynomials
Procedures
Matrix Algebra
Other useful commands:

3 INTERPOLATING POLYNOMIALS
Newton’s Interpolation L L.
Lagrange interpolation oo

4 CUBIC SPLINE
Step-by-step Solutiono
Tri-diagonal Systems (LU Decomposition)*
Example

5 LEAST-SQUARES FIT (MATRIX ALGEBRA*)
Normal Equations
Gaussian Elimination* oL oo
Symmetric Data Lo
Weighted Fit o
Linear Models
Pivoting™
Matrix Inverse® L L

Incorporating pivoting .

APPROXIMATING FUNCTIONS

Orthogonal (Legendgre) Polynomials

Chebyshev Polynomials . . .

Laguerre and Hermite Polynomials

Laguerre
Hermite

7 NUMERICAL INTEGRATION

Trapezoidal rule
Composite rule
Romberg integration . .

Simpson Rule
Error analysis
Composite rule

Other Rules

Singular and improper integrals L.

Gaussian Integration

Richardson Extrapolation . .
Higher-Degree Formulas . . .
Nonsymmetric spacing .
Higher derivatives

9 NONLINEAR EQUATION
Newton’s Method
Several Unknowns

NUMERICAL DIFFERENTIATION

S

10 ODE, BOUNDARY-VALUE PROBLEM

Linear Differential Equation
Nonlinear Case

11 MATRIX’ EIGENVALUES
Householder’s Method
QR Decomposition

Chapter 1 PREVIEW

The course topics will concentrate on the following three areas:

Fitting polynomials to:

Discrete data

(either computed or empirical, and collected in a table of z and y values).
This may be done for several different reasons. We may want to

1. accurately interpolate (compute y using a value of x not found in the table
itself).

2. draw a smooth picture connecting all data points,

3. fit a simple curve (linear, quadratic) to empirical (not so accurate) data. The
curve be ’as close as possible’ to the individual data points - we will have to
agree on some overall criterion.

More complicated mathematical functions

over a specific range of x values. Similarly to the previous case. we cannot do this

exactly, but have to minimize (in some well defined sense) the error of the fit.
There are several reasons for doing this:

1. Polynomials are easy to evaluate (we just add/subtract and multiply - and
ultimately, all numerical computation has to be reduced to these)

2. they are also easy to integrate and differentiate - we may thus substitute our
fitted polynomial for the actual function (which may be very hard or even
impossible to integrate).

To facilitate the procedure (of fitting polynomials to a function), several sets of
ORTHOGONAL POLYNOMIALS are introduced (e.g. Legendre, Chebyshev, Hermite,
etc.).

Numerical Integration and Differentiation

Here the objective is clear; we know that many functions are impossible to integrate
analytically, so we want to have an accurate way of doing this numerically. We
would also like to have some idea and control over the accuracy of the results.

Integration
B

The way how we can numerically evaluate [y(x)dx is to choose a set of z values
A

(so called NODES) in the [A, B] interval, for each (say z;, i = 0, 1, 2, ..., n) of
these compute the corresponding y; = y(z;). We then have to develop a formula
for combining these y; values to accurately estimate the integral (the area between
the y(z) function and the x axis).

A part of the problem is clearly the choice of the nodes. There are two distinct
ways of approaching it:

1. A sensible (but in a sense arbitrary) choice of n equidistant values (effectively
subdividing [A, B] into n equal-length subintervals, leading to two basic
'rules’ of integration, TRAPEZOIDAL and SIMPSON, to be studied in detail.

2. A choice of n points which is, in a certain sense, optimal (we can define
‘optimal’ only when we have a better understanding of the issues).

Differentiation

similarly involves estimating the value of ¢/(x), y”’(z), etc. at x = xy. This can be
done by computing y(z) at xy and a few extra values of = in the neighborhood of
xo (this time, we will almost always choose them equidistant), and plugging them
into the corresponding formula (which, of course, will be our task to develop). The
major problem facing us here will the ROUND-OFF ERROR.

Related issues

The formulas for numerical differentiation can also be used (this is in fact their
major application) to solve, numerically, various types of ORDINARY and partial
DIFFERENTIAL EQUATIONS. We will deal with some examples of the ODE variety
only (BOUNDARY-VALUE problem). In this context, we will also have to learn
solving NONLINEAR (regular) equations.

Matrix Algebra

The basic problem is to solve n linear equations for n unknowns, i.e. Ax = r,
where A is an n by n (square) matrix, x is the (column) vector of the n unknowns,
and r is similarly a vector of the right hand side values. The simplest technique
uses the so called GAUSSIAN ELIMINATION and BACKWARD SUBSTITUTION. One
can reduce the round-off error by adding an extra step (row interchange) called
PIVOTING.

In some (important) special cases (related to our treatment of differential equa-
tions) A is tridiagonal (only the elements on or adjacent to the main-diagonal are
non-zero). It then becomes more efficient to use a different approach, namely a so
called LU DECOMPOSITION of matrix A.

We will then employ some of these techniques to learn how to solve, ITERA-
TIVELY, n non-linear equations for n unknowns, by NEWTON’S METHOD (we will
start with a single equation for one unknown).

Eigenvalues and eigenvectors
of square matrices are defined by

Ax=)\x

where x (non-zero) is an eigenvector and A an eigenvalue.

To simplify the issue, we will assume that A is SYMMETRIC (a fairly important
class of matrices), which implies that both eigenvalues and eigenvectors must be
real (they could be complex in general). We will then learn how to find them, one
by one (there is n of them in general), by first utilizing HOUSHOLDER’S METHOD
to reduce A to a tridiagonal matrix, and then the applying, repeatedly, the so
called QL algorithm to extract the smallest eigenvalue. The resulting matrix is
then DEFLATED and the process repeated till all eigenvalues are found.

Remaining Topics
There is a number of important topics which we will not have time to discuss in
this brief course, namely:

1. Solving ordinary differential equations (INITIAL-VALUE problem).
2. Solving partial differential equations.

3. Optimizing a function of several variables (finding its largest or smallest
value).

Chapter 2 USING MAPLE

Basics

Typing an EXPRESSION (following Maple’s > prompt) results in evaluating it.
When the expression contains only integers (no decimal point), one gets the exact
(rational) answer, as soon as at least one number in the expression is real (with a
decimal point), the result is real (rounded off to 10 significant digits). The symbols
%, / and " facilitate multiplication, division and exponentiation, respectively. Note
that each line of your input has to end with a semicolon:

>4x5-3/(5+2)+2" (=3);

1103
56

The result of any computation can be stored under a name (which you make up,
rather arbitrarily), and used in any subsequent expression. Maple then remembers
the value, until the end of your session, or till you deliberately replace it with a
new value. Note that this (giving a name to a result) is achieved by typing the

name, followed by a colon and the equal sign (a group of two symbols, representing
a single operation), followed by the actual expression to be stored:

> a:=(3.0+4)%(2—6)+2/3—-4/5;
a:= —28.13333333

> a/74+9;
4.98095 238
> a:=14/6;
a:=x;
> a/74+9;
a:=2;

(from now on, we will omit the > prompt from our examples, showing only
what we have to type).

Maple can also handle the usual functions such as sin, cos, tan, arcsin,
arccos, arctan, exp, In, sqrt, etc. All angles are always measured in radians.

sin(3.); sqrt(8);
1411200081
22
We can also define our own functions by:

fi=z—>2"2;

10

f=r—x

f(3);
9

where f is an arbitrary name.

Lists and Loops
Maple can store, under a single name, a whole LIST of values, thus:

a:=[3/2,5,sqrt(3), 7];
a:= [%, 5,3, 7]

The individual elements of a list can be referenced by indexing (and used in
computing another expression):

al2] « 4;
20

One can add elements of a list by the following COMMAND (as Maple calls
them):

sum(’afi]’,)i’=1..4);
Z+V3
One can convert the last answer to its decimal form by:
evalf(%) ;

15.23205 081

Note that the % symbol always refers to the previous expression.
Similarly to sum, one can also compute product of elements of a list.

To subtract say 3 from each element of the list a, redefining a correspondingly,
can be achieved by:

for i from 1 to 4 do a[i] := a[i| — 3 end do:

Note that terminating a statement by : instead of the usual ; will prevent
Maple from printing the four results computed in the process (we may not need
to see them individually). Also note that, upon completion of this statement, i
will have the value of 5 (any information 7 had contained previously will have been
destroyed)!

We can easily verify that the individual elements of our a list have been updated
accordingly:

af2];
2
We may also create a list using the following approach:
b:=[seq(2"i,i=1.6)];
b:=[2, 4,8, 16, 32, 64];

11

Variables and Polynomials
If a symbol, such as for example x, has not been assigned a specific value, Maple
considers it a variable. We may then define a to be a POLYNOMIAL in x, thus:

a:=3—-2xx+4xx"2;
a:=3—2z+ 42>
A polynomial can be differentiated
diff(a, z);
—248x
integrated from, say, 0 to 3

int(a,z=0..3);

36
or plotted, for a certain range of = values
plot(a,z =0..3);

We can also evaluate it, substituting a specific number for = (there are actually
two ways of doing this):

subs(z = 3,a); eval(a, x = 3);
33

33

We can also multiply two polynomials (in our example, we will multiply a by
itself), but to convert to a regular polynomial form, we nee to expand the answer:

axa; expand(%);
(3 —2x +42?)?

9— 12z +282% — 162° + 16 2*

12

Procedures

If some specific computation (consisting, potentially, of several steps) is to be done,
more than once (e.g. we would like to be able to raise each element of a list of
values to a given power), we need first to design the corresponding PROCEDURE
(effectively a simple computer program), for example:

RAISETO :=proc(L, N);local K, n,i; K := L;n:=nops(L);
for i from 1 ton do K[i] := K[i] " N end do; K end proc:

where RAISETO is an arbitrary name of the procedure, L and N are arbitrary
names of its ARGUMENTS (also called parameters), the first for the list and the
second for the exponent, K, n and ¢ are auxiliary names to be used in the actual
computation (since they are local, they will not interfere with any such names
used outside the procedure). First we copy L into K (Maple does not like it if we
try to modify L directly) and find its length n (by the nops command). Then,
we raise each element K to the power of N, and return (the last expression of the
procedure) the modified list. We can organize the procedure into several lines by
using Shift-Enter (to move to the next line).

We can then use the procedure as follows:

SVFL(]2,5, 7, 1], 2); SVFL([3, 8, 4], —1);
[4, 25, 49, 1]
[]

ool
N

)

wl=

Matrix Algebra

We can define a matrix by:
a := matrix(2, 2, [1, 2, 3, 4]):

where 2, 2 specifies its dimensions (number of rows and columns, respectively),
followed by the list of its elements (row-wise).
We multiply two matrices (here, we multiply a by itself) by

evalm(a &+ a):

Note that we have to replace the usual * by &=. Similarly, we can add and
subtract (using + and —), and raise a to any positive integer power (using ").

We can also multiply a by a vector (of matching length), which can be entered
as a list:

evalm(a & [2, 5]):
Note that reversing the order of a and |2, 5] yields a different answer.

To compute the transpose and inverse of a, we must first ask Maple to make
these commands available by:

13
with(linalg) :
We can then perform the required operation by
transpose(a):

etc.
Similarly, to solve a set of linear equation with a being the matrix of coefficients
and [2, 3] the right hand side vector, we do:

linsolve(a, [2, 3]):

Other useful commands:
a := randmatrix (5, 5):

creates a matrix of specified dimensions with random elements,
augment(a, [6, 2, 7, 1, 0]):

attaches the list, making it an extra (last) column of a,
submatrix(a, 2..4, 1..2):

reduces a to a 3 by 2 submatrix, keeping only rows 2, 3 and 4, and columns 1
and 2,

swaprow (a, 2, 5):
interchanges rows 2 and 5 of a,
addrow(a, 2, 4, 2/3):

adds row 2 multiplied by % to row 4 of a.
To recall the proper syntax of a command, one can always type:

? addrow
to get its whole-page description, usually with examples.

Plots
Plotting a specific function (or several functions) is easy (as we have already seen):

plot({sin(z),x —2°3/6},x = 0..Pi/2):

One can also plot a scattergram of individual points (it is first necessary to ask
Maple to make to corresponding routine available, as follows:

with(plots) :

pointplot([0, 2], [1, —3],[3,0], [4, 1], [7, —2]]);

14

Note that the argument was a list of pairs of z-y values (each pair itself enclosed
in brackets).

We can combine any two such plots (usually a scattergram of points together
with a fitted polynomial) by:

picl := pointplot([seq([i/5, sin(i/5)],i = 1..7)]):
pic2 = plot(sin(z),z = 0..1.5) :
display (picl, pic2) :
To plot a function defined in a piecewise manner, we first define it by, say
f := piecewise(z < 0, —2"2, x < 4,2"2, 4% x):

(note that 4+ will be used ’'otherwise’, i.e. for all x values bigger than 4), and
then use the regular

plot(f,x = —5..10);

15

Chapter 3 INTERPOLATING
POLYNOMIALS

In this chapter, we will construct polynomials to fit (which, in this chapter, means
to pass exactly through each point) a discrete set of data, such as, for example

z: |01 1 13|14 7
y:|21-3[0|1]-2

or that generated by evaluating a specific function, say y = sinx, at x = 0, 0.1,
0.2, ... 1.0.

There are two standard techniques for achieving this (they both result in the
same polynomial), which we discuss in the next two sections.

Newton's Interpolation
The first thing to realize when fitting a polynomial (exactly) to discrete data is
that the polynomial must have as many parameters (i.e. coefficients) we are free
to vary as there are conditions (i.e. points) in our data set.

Thus, for example, to run a polynomial through all points of the above table,
it needs to have 5 coefficients (i.e. degree 4), such that

2 3 4
Co + 1% + Cxy + C3%; + 4T = Y

where ¢ = 1, 2,... 5. The resulting 5 equations for 5 unknowns are linear, having
a unique solution (unless there are two or more identical values in the x row).
Later on we learn how to solve such systems of linear equations, but the general
technique is quite lengthy and tedious.

Fortunately, due to the rather special from of these equations, there is an easier
and faster way of getting the answers. It works as follows:

We fit the first point only by a zero-degree polynomial (a constant),
we extend this to a linear fit through the first two points,
quadratic fit through the first three points,

..., until we reach the end of the data.

Fach step of the procedure can be arranged to involve only one unknown pa-
rameter, which we can easily solve for.

Example: To fit the data of the original table, we start with the constant 2 (the
first of the y values). Then, we add to it ¢(x — 0), where ¢ is a constant
to yield, for the complete expression, —3 (the second y value), i.e. 2+
¢ = —3 = ¢ = —5. Our solution so far is thus 2 — 5x. Now, we add to it
c(x —0)(x — 1) so that the total expression has, at x = 3, the value of 0, i.e.
2-5x34+cx3x2=0 = c=2 This results in 2 — 5z + Bx(z — 1). Add

7

c(x — 0)(x — 1)(x — 3) and make the result equal to 1 at =4 = c = —5.

16

Finally, add ¢(z — 0)(z — 1)(z — 3)(z — 4) and make the total equal to —2 at

r=7=> 21—5?2. Thus, the final answer is

2 —b5r+ 1—§$(ZL‘ -1) - 1—72x(x —1)(x—3)+ %x(z —1)(x —3)(z —4)

Expanding (quite time consuming if done 'by hand’) simplifies this to

28 252 252 252

One can easily verify that this polynomial passes, exactly, through all five
points.

Computing the ¢ values is made easier by utilizing the following scheme:

0

2(5)
_ 3 113
1 3 3-0 | 6
1 13
0—(=3) _ 3 o
3—1 2 4—-0 12
3 0 13 _ 1) _[10
4—1 6 70 252
1-0 _ 3-8 _ _ 1
4-3 11 n 7—1 18
S E= i
w1 = 1
7T 2

Lagrange interpolation

This is a somehow different approach to the same problem (yielding, in the end,
the same solution). The main idea is: Having a set of n pairs of x-y values, it is
relatively easy to construct an n — 1 degree polynomial whose value is 1 at © = x4
and 0 at x = x9, x = x3, ... * = x,, as follows

(x — z9)(x — x3)....(x —)
(l’l — xg)(l’l — .1'3)....($1 — .I‘n)

Py(x) =
where the denominator is simply the value of the numerator at = x;. Similarly,
one can construct

(x —z1)(x — 23)....(x —)
(9 — 1) (22 — 3)....(T2 — Tp)

PQ(ZII) =

whose values are 0, 1, 0, 0 at v = 1, 9, 3, T, respectively, etc.
Having these, we can then combine them into a single polynomial (still of degree
n—1) by
1 Pi(2) + 12 P () + oo 4 Y Po()

which, at x = x1, 9, clearly has the value of 1, s, and thus passes through
all points of our data set.

17

Example: Using the same data as before, we can now write the answer almost

immediately
2(96—1)(—3)e—4) -7 ol@-3)-4@-T7)
(=1)(=3)(=4)(=7) 1(=2)(=3)(-6)
v —N(@-3)(x—-7) ,z(z—1)(z—3)(—4)
4x3x1x(-3) Tx6x4x3

which expands to the same.

Based on this fit, we can now INTERPOLATE (i.e. evaluate the polynomial)
using any value of x within the bounds of the tabulated z’s (taking an x outside
the table is called EXTRAPOLATING). For example, at z = 6 the polynomial yields
Yy = 6—13 = 0.015873. Since interpolation was the original reason for constructing
these polynomials, they are called INTERPOLATING POLYNOMIALS. We will need
them mainly for developing formulas for numerical differentiation and integration.

To conclude the section, we present another example, in which the y values
are computed based on the sin z function, using = = 60, 70, 80 and 90 (in degrees),

1.€.
60 | 0.8660
70 | 0.9397
80 | 0.9848
90 | 1.0000

The corresponding Lagrange interpolating polynomial is

(v — 70)(x — 80)(x — 90) (« — 60)(2 — 80)(2 — 90)
0.866 e +0.9397 S N
0.9348(& = 60)(@ = T0)(z = 90) (2 —60)(x — 70)(z —80) _

—2000 6000
—0.10400 + 2.2797 x 1022 — 9.7500 x 1022 — 2.1667 x 10~ ">

Plotting the difference between this polynomial and the sin 2° function reveals that
the largest error of such and approximation throughout the 60 to 90 degree range
is be about 0.00005. This would be quite sufficient when only a four digit accuracy
is desired. Note that trying to extrapolate (go outside the 60-90 range) would yield
increasingly inaccurate results.

This example should give us a rough idea as to how calculators (and computers)
evaluate various functions - they replace it by evaluating close-fitting polynomials
(with the advantage of having to add, subtract and multiply only a handful of
times).

18

19

Chapter 4 CUBIC SPLINE

Suppose we would like to join n points by a smooth curve passing through them
all, to make a nice visual presentation of our data. Why not use an interpolating
polynomial? Because these, to reach all data points, tend to have many 'unnatural’
peaks and dips. For example, fitting

x|l 4 9| 12 |16 22
y || 157 |41 | 145 [92 | 7

we get the results of Figure 1, clearly ’overshooting’ the original data.

The proper solution should be a sufficiently smooth, continuous function of z,
say f(x) (let us define ’smooth’ as having both f’ and f” also continuous), with
the minimal amount of curvature. Since curvature can be measured by (f”)?, we
try to minimize its total amount, integrated over the full data span, namely

The solution, let us call if S(z), is a collection of cubic polynomials (one of each
subinterval or SEGMENT), tied to each other in a smooth and continuous manner,
with the following two extra conditions, imposed at the beginning and at the end
of the = range:

f'(@:) = ["(zn) =0 (4.1)

Proof: Let f(x) be any other smooth function passing through the n points. We
define g(z) = S(x) — f(x). Clearly, g(z) is equal to zero at each x; (let us
call them NODES). We need to prove that

7[]8”(:13)]2 dr = 7[5"(@]2 dx+7[g”(:r)]2 dr—2 79”@)5”(;1;) dr > 71 18" (2))? dx
Since

we will be done if we can show that

Tn

/ §"(2)S" (z) dz = 0

xr1

Utilizing by-part integration, we can write

Tn Tn

/ g"(2)8" () du = ¢ ()S"(2) [— / g'(x)S" (z) da

1 1

20

50 ¢

50 \r

_/5 10 12.5 15 17.5 20

Figure 1

The first term is zero because of (4.1), the second term can be rewritten as

n—1 Titt n—1 Titt n—1
- Z / g'(z)8" (x) dz = — Z Ci / g'(x)dr = — Z ¢i [9(zi41) — g(z:)] =0

since S”(x), within each segment is a constant (denoted ¢;), because S(z) is
a cubic polynomial. [J

Step-by-step Solution

To actually construct S(z), we first modify our convention concerning the number
of points - we will now assume that there is n + 1 of them (instead of the old n),
resulting in n segments, and the same number of cubic polynomials. These will be
constructed in the following form:

p(®) = a+bi(z—2)+elr—a)* +di(or —ay)? when 21 <z < 2,
p2(2) = ay +ba(x — 1) + o — 12)? + do(1 — 12)? when 75 < 2 < 23
pu(1) = a1 +by(v —x,) + cu(w — 2,)? + dp(z — 1,)3 when z, <z <z,

Clearly, substituting the left-most value of x implies that each of the a coefficients
must be equal to the corresponding y (i.e. a1 = y1, ag = ys, etc.). Similarly,
substituting the right-most value, we get

Y1+ blhl + Clh% -+ dlh? = Yo (42)
Yo + b2h2 + Cghg + dghg = U3

Yn + bnhn + Cnhi + dnhi = Un+1

where hy = x5 — 1, ho = 13 — 29, etc.

21

To match the values of first derivatives between consecutive segments requires
by +2c1hy +3dih? = by (4.3)
by + 2cohg + 3dah3 = by
by1 4 2p—1hn_1 + 3dn_1hl_, = bn
We also have to match the second derivatives:
2c; +6dihy = 2¢
2¢y + 6dohy = 2c3
2¢,_1+6d,_1h,—.1 = .20n
to which we may add the (last) end-point condition
2¢, + 6d,h, = 2c,11 =0

(the S”(x1) = 0 condition implies that ¢; = 0).
The last n equations can be solved for

C —C1

dy, = 4.4
! 3h, (44)
C3 — C2
d, =
2 3hsy
CnJrl_Cn
d, = -l ™
3h,,

When substituted back in (4.2) and (4.3), this yields, respectively:

+2
b1—|—C2 3 Clhl = 51 (45)
2
b2+¥h2 = 5
mn 271
bn—i_%hn = s,

where s; = yzh_l N y?’h; %2 " etc. (note that these are the straight-line slopes),
and

(Cl + Cg)hl = bg — bl (46)
(02 + Cg)hg = bg — bg

(Cnfl + Cn)hnfl - bn - bnfl

22

Subtracting consecutive equations of (4.5), multiplying the result by 3, and
utilizing (4.6) finally results in

Clhl —+ 202(h1 + hg) + Cghg = 3(82 - 81)
coho + 263(h2 + hg) + cahy = 3(83 — 82)
Cn—lhn—l + 2cn(hn—1 + hn) + Cn+1hn = 3(571 - Sn—l)

This is now an ordinary set of n — 1 linear equations for co, cs, ..

form would look as follows:

.Cp. Its matrix

Q(hl + hg) hQ 0 0 0 3(82 — 81)
hg 2(h2 + hg) h3 0 0 3(83 - 82)
0 h3 2(h3 + h4) h4 0 3(84 - 83)
0 0 h4 2<h4 + h5) 0 3(85 - 84)
0 0 0 Bt | 2(hp—1+ hn) || 3(Sn — Sn—1)
@7

(to the left of the double line is the coefficient matrix, to the right is the right-
hand-side vector).

Once we have solved for the ¢ coefficients, we can compute d and b from (4.4)
and (4.5) respectively.

Example: Our first example will apply the procedure to the following simple data

set with only three segments:

x: 2(4|7
y: 3101
This implies that
h: 1123
Ay:||-53]1
st -5 % %

and

(385] 5[5

The set of equations for ¢y and c¢3 is thus

6| 2
2 (10

wl\lwlg

We can solve it by constructing the coefficient-matrix’ INVERSE

10 —27
e
where the division (by the matrix’ determinant) is ELEMENTWISE (i.e. each

element of the 2 by 2 is to be divided by 56), and then multiplying the inverse
by the right hand side vector, thus:
101
:| - 56 - l 2185]
14

10 —2 2
-2 6| -1

This means that

EUE-EEEAL

(don’t forget our convention about ¢4 = 0), and

L | H -5 11
Based on (4.4):
Ld [S |1 15
and, based on (4.5)
o RO P
- F oy E -y =g
The final solution is thus
521 101
2 - —(x—1 —(z—1)3 1 2
84(x) 84@) < x<
109 101 131
B——@ -2+ —@—-2°—-—=(@—-2)° 2 < x<4
BTyl =2 - —2) *
52 15 5
—(x—4)— —(z—4)*+ —=(x—4)? 4 < z<T
o) -l -+ ple—d) v

One can verify that this solution passes through all four points and is smooth.

One can also plot it by utilizing the piecewise feature of Maple.

To solve (4.7) when the data has more than three segments, we utilize the fact
that our coefficient matrix is TRI-DIAGONAL. This makes the construction of the
corresponding solution relatively easy, regardless of the matrix’ size. We will now

detour to look at this issue in detail.

Tri-diagonal Systems (LU Decomposition)*

First we show that any tri-diagonal matrix can be written as a product of two
bi-diagonal matrices, the first having non-zero elements below the main diagonal,
the second above. Furthermore, the below-diagonal elements of the fist matrix are
those of the original matrix, and the main-diagonal elements of the second matrix
are all equal to 1. This constitutes the so called LU DECOMPOSITION of the original

matrix.

Example: Consider the following tridiagonal matrix

3 -3 00
-3 8 -2 0
A= 0 1 2 4
0 0 -2 6
It can be written as
m o0 0 O 1
-3 0 0 01
0 1 0 00
0 0 -2 @ 00

o~ BH o

— | o o

24

where m implies that the actual value is yet to be determined (the number in-
side indicates the order in which one should proceed). Following this pattern,

we obtain:
3.0 0 0 1 -1 0 0
-35 0 0 01 =20
01 2 0 0 0 1 2
0 0 —2 2 00 0 1

Multiplying these two (the first is usually called L, the second one U), one
can verify that their product yields the original matrix.

What is the advantage of having written a tridiagonal matrix A as a product of
two bidiagonal matrices? Well, it greatly simplifies solving a linear set of equations,
with A as the coefficient matrix.

Example: To solve
7

8
2
-3
where A is the matrix of the previous example, and x is a vector of the four
unknowns, we can rewrite it as

Ax =

LUx =Ly =

W DN 00

first solving (rather easily) for y. Starting from the top equation, this yields:

_ 7 _ 8+7 _ =3 —3-¢
Y1 =13, Y92 = =3,ys = z

= _E and y, = —x¢ = —%. Once we have
3
solve for y, we can similarly get the elements of x based on

7
3
12
23
56
but this time we have to work from bottom up: 24 = =2, 13 = —5+32-2 =
ég, =3+ g % and T = % + g—g 457 . One can easily Verlfy that this

is the solution of the original set, of equatlons

We will go (more quickly) over one more example, this time a bit larger (5 by
5). Note that applying the general technique (which you must have all seen before)
to a problem of this size would be very tedious.

Example:
2 5 000 2 0 0 0 0 130 0 0
4 -3 =200 4 -13 0 0 0 01 % 0 0
0 3 110(fx=|0 3 & 0 0 001 £ 0 |x=
0 0 10 2 0 0 1 -2 0 000 1 —%
0 0 024 o 0o o 2 2 000 0 1

— W N O

25

~ _ _ 8 _ 2 23 . _ 59 _ 59 .. _ 39
vields y1. = 2, 9o = 33, Ys = %, ya = 35, ¥s = —g5 and o5 = —g5 24 = I,
61 17 1
T3 = — 55, X2 = 55, L1 — —¢g-
40 20° 8

We will now return to our discussion of natural cubic spline.

Example

We will now fit a cubic spline to our first example (where the regular polynomial
fit did not fare too well):

h: 5! 3 4 6
Ay: —116 104 —53 —85
o 16 104 _53 _8
: 5 3 4 6

. 868 575 11

6 3 0 || 2

5
314 4| 55
0 42 || -5

The LU decomposition of the last coefficient matrix is

16 0 0 1 13—6 0
215 64
3 16 40(314 0 1 215
0 4 T 0O 0 1
We will thus get ¥, = 3 = 4T, v, = (~52 3. 2010 — gy, = (-4
4. 328Y215 _ 213839 . 0. D 213830 328 64" 213839 " 14060 . _
oy 25 044 "BOSSO. 4 80880 ° 3 25 215 30880 1011 0 “2
S0 T 16" Toir — ‘iess o implying
Ac: 22676 138328 446213 213839
© 1685 5055 26960 80880
(. 22676 138328 446213 _ 213839
© 25275 45495 323520 1455840
and
p: 230656 109484 102668 _ 166763
: 5055 5055 5055 6740

which results in a lot more sensible fit:

26

Figure 2

27

Chapter 5 LEAST-SQUARES FIT
(MATRIX ALGEBRA™)

When fitting experimental data with a lot of random scatter, it may be more
sensible to use a curve not passing exactly through all its points. Instead, we
can let it pass 'between’ points., to follow the overall general trend only. We will
assume that this can be achieved by a relatively simple polynomial (straight line,
parabola, etc.) - its degree is normally chosen by simply eye-balling the graph of
the data.

To be able to fit the best, say, parabola to a set of points, we must first decide on
some sort of criterion to define ’best’. A simple and sensible choice is to minimize
the sum of squares of the RESIDUALS (vertical distances from each point the fitted
curve). This of course gives the procedure its name.

The reason that we use squares of the distances rather than the distances
themselves is rather technical - to define distances, we have to use absolute values,
which would be difficult to deal with mathematically. Using squares makes the
optimization a lot easier; furthermore, it imposes an extra penalty on producing
even a single large residual - this is quite often what we want anyhow.

Using vertical distances (rather than , say perpendicular distances), also has
the advantage of simplifying the procedure mathematically; furthermore, it makes
the result scale independent (not effected when changing the units of x, say from
miles to km).

We will now derive the relevant formulas. For simplicity, we will assume that
out MODEL (the type of curve we are fitting) is a parabola - the results can be
extended to a polynomial of any degree quite easily.

Normal Equations

Let us assume that we have the usual table of z-y observations with n pairs of
values (they are denoted z1, xs, ... , and y1, ya, ... ¥,). To this data, we are trying
to fit a parabola, whose general equation is

y=a+bxr+ca?

where a, b and ¢ are yet to be determined coefficients.
For each of our points, we can compute the vertical residual (distance from y;
toy; = a+bx; + cx?) to be

yi—a—bxi—cx?

We want to minimize (by varying a, b and ¢) the sum of squares of these residuals,
or

SEZ(yi—a—bxi—cx?)z
i=1

This can be achieved by making each of the three partial derivatives, i.e. %, %

28

and %—f, equal to zero, namely:
n
—22(%‘ —a—bu; —cx?) =0
. =1
—22(%‘ —a—bu; —cx?) z, = 0
i=1

—QZ(yi—a—bxi—cx?)xf = 0
i=1

Cancelling the factor of 2, applying the summation individually to each term, and
reorganizing yields

n n n
2 _
an—l—bg l‘i—l-CE x; = E Yi
=1 =1 =1
n n n n
b 2 3 _
a T; + r; +c r; = TiY;
=1 =1 =1 =1
n n n n
2 3 4 2
ag xi—kbg xi+cg xr; = g 5y
i=1 =1 =1 i=1

This is a linear set of equations (called NORMAL EQUATIONS) for a, b and ¢; it can
be rewritten in the following matrix form:

9 r n
i=1

-

n ZT;

™=

=1

Ti
—_
IS

n n n n
Yo Yoap il | | b | = | Yo
1=1 i=1 =1 1=1

n n n n
Yo yw Y Eﬁ%

L i=

s
I
—

1 1

..
Il
<.
Il

n
(note that n can be also written as > z?, just to complete the pattern).
i=1
It should be quite obvious that, if we repeat the whole procedure using a straight
line y = a + bx instead of a parabola, the normal equations will read:

n n
DD 2 Yi
i=1 [a } _ | =1
n n n
POEEDIE > Ty
i=1 i=1 i=1

Similarly, fitting a cubic y = a + bx + c2? + d 23 requires solving

r n n n 7 [~ n 7
noow y i YT > Yi
=1 =1 =1 =1
Ti YT YT DT, b D il
=1 =1 =1 =1 — =1
N2 NN 3 N~ L4 NS5 c S
D DE AN DE D DF d AT
ifll zil iil iil iil
doap ot Yap Yl > Ty
L i=1 i=1 i=1 i=1 i L =1 i

29

etc.
One can show that the resulting smallest value of S (say Sy,) can be computed
by (going back to the 'parabola’ case):

;yi
ny—[a b c]- z:lxzy,
i=1 “

n
L i=1 J

where a, b and ¢ are the optimal coefficients. This can serve to define the so called
TYPICAL ERROR:

Smin

n—3

where 3 is the number of coefficients in the fitted parabola (2 for a straight line, 4
for a cubic, etc.).

Example: Fit a parabola to the following data:

= [1[2[3T4[5
v 23221

The normal equations we need to solve have the following matrix form:

5 | 15 | 55 || 10
15 55 | 225 || 27
95 | 225 [979 || 89

To learn how to solve these, we have to make to following detour:

Gaussian Elimination*
We will now describe a procedure for solving a linear set of equations (in principle,
of any size) by GAUSSIAN ELIMINATION followed by BACKWARD SUBSTITUTION
(this is hopefully just a review for most of you). The procedure works fine when
performing exact (i.e. fractional) computation, it needs to be modified when work-
ing with decimal numbers (to be done in a subsequent chapter).

First we have to realize that there are the following four ELEMENTARY OPER-
ATIONS which can be used to modify a linear set of equations without changing its
solution. These are:

1. Adding (subtracting) a multiple of a row to (from) any other row.
2. Interchanging two rows (i.e. equations).
3. Multiplying a row (equation) by a non-zero number.

4. Interchanging two columns of the coefficient matrix (since this involves in-
terchanging the corresponding unknowns, we have to keep track of these).

30

It should be quite obvious that, if we proceed in a systematic way, with the help
of the first two elementary operations we can make all elements below the main
diagonal of the coefficient matrix equal to zero. ’Systematic’ means eliminating
the below-diagonal elements in the following order (using a 4 by 4 example):

B X | X

X | X | X|X

BN Bl X
A X |X|X

(x denotes the elements we don’t need to worry about). We may run into a small
difficulty by encountering a zero element on the main diagonal, but that can be
resolved by interchanging the corresponding row with a subsequent row having a
non-zero value in that place (if we cannot find it, the set of equations does not
have a unique solution).

Example: Using the normal equations of our previous example, we first subtract
the first row multiplied by 3 (11) from the second (third) row, getting

51 15| 55 || 10
0110| 60 || -3
0160|374 | 21

Then, we subtract the second row multiplied by 6 from the third row:

511555 10
010|603
00 |14 -3

Starting from the bottom, we can then compute the value of each unknown, one
by one (this step constitutes the backward substitution). In terms of our previous
example, it yields:

3
c = _ﬂ
- —3+60-5; 69
10 70
10-15-B+55-% 7
¢ = 5 ~5

One can easily verify that these solve the original set of normal equations. The
typical error of this fit is

\/22—10-%—27~%+89~%_04781

5—3

We now return to our discussion of least-square polynomials (Statisticians call
the procedure REGRESSION).

31

Symmetric Data
One can simplify the normal equations when the x-values are spaced symmetrically
around a center (say &, clearly equal the AVERAGE of the x; values); this of course
is the case with EQUIDISTANT SPACING. (such as in our example).

The simplification rests on the following idea: Instead of using the original
y = a+ bx + cx? parabola, we now express it in the following equivalent form:

y=di+bx—1i)+é(x— i)

(it should be clear how one can go from one model to the other). The normal
equations for a, b and ¢ now read

.M:
|
\i};
NE
|
=>
e

n Zn:1 iil d 7,21

Zl(l"i — 1) Zl(l"z —7)? Zl(l“z — 1) b | = El(% — 1) y;
ZTT 17:1 1? é Z?L
D= L= 8 ()" >~)

But. due to the symmetry of the z; values, the sum of odd powers of x; — & must
cancel out. The set will thus simplify to

S Q>

>

L =1 =1 . L =1 -

which means that we can separately solve for the odd

n

n > (i —)2
S ||

—_

7
(z; —)
1 7

n
1=

1 i=1
and even .
(2 =2 =) (& =2y,
i=1 i=1
coefficients (by a process called DECOUPLING of equations). We than need to solve

the two sets of equations, each of a smaller (half) size; this is usually a lot easier
than dealing directly with the full set.

M:

b

Example: Returning to our original example, we can clearly see that & = 3,
resulting in

T—: | 2] -1]0]1]2
v 23221

The set of equations for a and ¢ then reads:

o sl [2]= [

o

32

which can be solved by

EIEE 70—{-7%}

The b equation is quite trivial, namely 10b = — = 1%. The best fitting

parabola is thus
17 3 3

9_7—E(r—3)— 14(—3)?

One can verify that this expands to the same answer as our previous solution.
It also yields the same value of typical error:

Weighted Fit

Suppose that some of the pairs of z-y values in our data are repeated two or more
times. It is then convenient to simplify the corresponding table by listing each such
pair only once, but adding a new row of the so called WEIGHTS (i.e. how many
times was the pair observed), e.g.

z: | 11213145
yv: 2131221
w: 412111113

To fit the best (least-square) parabola, we now have to minimize
S = Zwi (yZ —a—bx;, — cx?)2

since each squared residual must be multiplied by the corresponding weight (note
that this yields the same value as the old approach would, using the original,
uncompressed data).

The normal equations now read

n n n = r n =
Sowi Yo wir Yy wiry Z w;Y;
’?L:l izl iil a
Zﬁ zz zz c
Zl w;T? 231 w;T? Z:l w;x? Z w; T2y,
L. 1= 1= 1= - -

and are solved in pretty much the same manner as before. Note that the symmetry
trick will work only if the w; values possess similar symmetry (not very likely). Also
note that Sy, is now computed by

;wiyi
=
> owwi=[a b el | Yuway
;wzxf%

33

resulting in the typical error of

n Smin
n n—3
> w;
i=1

Example: We will now fit the best straight line to the previous set of data. The
normal equations are

11| 30 || 21
30 | 112 || 49

The solution is
441
112 =30 [20] . g0 [4%
=30 11 49 39312

yielding the following 'best’ straight line

441 91

Y7166 332"

with the typical error of

5 45—21-32 449 2
= 0.6326
11 5—2

We could also use weights to make the procedure work harder (bigger weights)
on points in a range (or ranges) considered more important by us, and be less
concerned (smaller weights) with the rest of the data.

Linear Models
If (for whatever reasons) we decide to replace x, #2,.... in our polynomial model
by any other specific functions of = (e.g. I, €”, Inz, etc.), i.e.

y=afi(z) +b fo(x) + c f3(z)

in general, the procedure for finding the best (least-square) parameters requires
only the following minor modification of normal equations:

Z_ilfé(xz)fl(l'z) Z,_Zn:lﬁ(xi)z Z_Zn:lf2(xz)f3(xz) b | = Zi:
DRCIACHID S ACHIACAID SR z

This time, symmetry of the x values cannot be of any help to us.

34
Example: Let us fit our old data (without weights) by the following curve
y= 2 +b+ca®
x

This means that fi(z) = 1
are

(r) =1 and f3(z) = 2. The normal equation

Mcn
Y
o
Mm
8-
™
j%
Mcn
8ls

@
I
-
-
I
i
.
I
—
-
I
—

52@
pjm
p@qm

-
Il
R
-
Il
R
-
Il
MR

Mm
=
o
M
8
=0
|
=
B
Mers
<
=
o

=1 =1 =1 =1
or, numerically
5269 137 55 73
3600 60 15
= b 225 10

60
95 225 20515 || 333

Gaussian (forward) elimination results in

5269 137 55 73
3600 60
0 D6 66675 12686
5269 479 6
0 0 31673515 it
7576 3788
T cldae o — 628542 3 2253323 __ 8891100
and the back substitution yields: ¢ = —22222 b= 2252 and a = —Z22=

with the typical error of

7534703 15 684973 37673515 = 0.4483

\/22 L 8801100 73 _ 2253393 () 4 628542 339

(this is only a slight improvement over a simple quadratic polynomial, re-
flecting the fact that the choice of our new model was rather arbitrary).

We could easily modify this procedure to incorporate weights.

Our last example is also a clear indication that performing exact computation
(using fractions) is getting rather tedious (or even impossible - consider using In x
as one of our f(z) functions), and that we should consider switching to decimals.
This necessitate modifying the Gaussian-elimination procedure, to keep the round
off errors of the computation in check. Let us then take another detour, and look
at the corresponding issues.

Pivoting*

Switching to decimals when solving a set of linear equations by Gaussian elimi-
nation makes the procedure more efficient (especially for computers), but our last
algorithm then poses some problems. One of them is quite obvious: an exact
zero may, due to the round-off error, 'masquerade’ as a small nonzero value (e.g.
—1.308 x 107?). If this happens on the main diagonal, the procedure will not carry
out the required row interchange, and the results will immediately turn out to be
totally nonsensical. We may guard for this by checking whether the element (called

35

PIVOT) is, in absolute value, smaller than say 3 x 107 (if yes, assume that it is
zero), but that will not totally eliminate the problem of round-off errors. These
will tend to erode the accuracy of our results, especially when a main diagonal
element (which, when performing the corresponding row subtraction, appears in
the denominator), is non-zero but small.

To alleviate this process (erosion of accuracy), we watch for small (not just
zero) diagonal elements, and trade them (by row interchange) for the largest (in
absolute value) possible element below. When done consistently (i.e. each main
diagonal element, small or nor, is checked against all elements of the same column.
downwards) the procedure is called PARTIAL PIVOTING).

Accuracy can be further improved (at a cost of more computation) by finding
the largest (in absolute value) element below and to the right (without crossing
the double line) of the diagonal element, and then swapping the two by the corre-
sponding row and column interchange (to get the solution straight, we have to keep
track of the latter). This is done at each step of the procedure, and constitutes the
so called COMPLETE (maximal, full) PIVOTING.

Both partial and complete pivoting can further benefit from a procedure called
SCALING, which replaces (when searching for the largest element) absolute magni-
tudes by scaled (i.e.e relative to the largest element of the same row) magnitudes.

To simplify the matter, our pivoting will always be of the complete type, with-
out any scaling (it is one of the best pivoting strategies and it has a rather simple
logic).

Example: We will re-do our previous example of Gaussian elimination, this time
using decimals:
a b c
1.46361 2.283 55 4.86
2.283 5 225 10
55 225 20515 || 333

where 4.86 represents 4.866666667, etc. Note that now we need an extra
(first) row, to keep track of the unknowns. The largest element is clearly
20515, which becomes our first 'pivot’. We thus need to interchange rows 1
and 3, and columns 1 and 3:

c b a
20515 225 55 333
225 5 2.283 10
55 2.283 1.46361 | 4.86

We then eliminate the last two elements of the first column (by the usual
subtraction):

c b a
20515 225 55 333
0.1x1076 2.532293445 1.68016175 || 6.347794298
0.1x1077 1.680116175 1.316158028 || 3.973905273

Note that, due to the round-off error, we are getting 0.1x107% and 0.1x10~7
(relatively "large’ values) instead of true zeros. But, since we know better,

36

we can simply take these to be zeros (which we will do, from now on) - a
good computer program would not even bother to compute them.

Now, we are lucky, and the largest element of the bottom right 2 by 2 cor-
ner is 2.543261029, sitting already in its proper position (no interchanges
necessary). We can thus easily complete the elimination step:

c b a

20515 225 55 333
0 2.532293445 1.680116175 || 6.347794298
0 0 0.201441103 || —0.237704521

Moving on to the backward substitution, we start with the last unknown,
which is a (due to our interchanges):

0.237704521

6.347794298 — 1.680116175 a
= =3.2 2282
b 2.532293445 5.28905 228

333 — 550 — 225 b
- — —0.0166839 2228
¢ 20515

Note that, in spite of pivoting, some accuracy has been lost over the exact a =

— 25 = —1.180019969, b = 22382 — 3280652293 and ¢ = —z —

—0.0166839 2238.

Matrix Inverse*

Inverting square matrices follows a similar pattern, so we may as well discuss it
now. Hopefully we all remember that an inverse of a SQUARE matrix A is a matrix
(of the same size) usually denoted A~! such that

AATT=ATTA =T

where I is the UNIT matrix (1 on the main diagonal, 0 otherwise). A square matrix
which does (not) have an inverse is called REGULAR (SINGULAR) respectively.

The basic algorithm for constructing a matrix inverse works as follows:

The matrix to be inverted is appended (the corresponding Maple’s command is
augment) by a unit matrix of the same size (so now we have a matrix with twice
as many columns). Using the first three elementary operations, the original matrix
is converted to a unit matrix, while the appended matrix becomes the desired
inverse. This can be achieved by

1. making the diagonal elements, one by one, equal to 1 (dividing the whole row
by the diagonal element’s original value) - if the diagonal element is equal to
0, we look for the first nonzero element directly below, and interchange the
corresponding two rows first,

2. subtracting a multiple of this row (whose main diagonal element was just
made equal to 1) from all other rows, to make the elements above and below
this 1 equal to 0.

37

This will work nicely when using exact (fractional) numbers. The only difficulty
we may encounter is finding 0 on the main diagonal, trying to exchange it with a
nonzero element of the same column going down, and discovering that all of these
are also equal to zero. This simply means that the matrix is SINGULAR (does not
have an inverse), and the procedure thus terminates.

Example: To invert

0 3
3 2
4 =2
we first append a 3 by 3 unit matrix
[0 3 —4
3 2 -1
4 2 1
then interchange the first two rows
(3 2 -1
0o 3 —4
4 -2 1
multiply the first row by %
L3
0 3 —4
4 -2 1
and subtract the first row, multiplied by 4,
1
L5 —3
0 3 —4
u 1
0 -5 3
Then, we multiply the second row by
multiplied by 2 (—4!) from Row 1 (3):
10 §
01 g
00 —%

Finally, we multiply the last row by —

by 2 (—3) from Row 1 (2):

1
0
0

o = O

The resulting inverse is thus

o O

—_

o= O

o= O

16
1
35

9

357

—4
~1

1

10 0]
010
00 1|
01 0]
100
00 1|
0 5 0
1 00
001

form the last row

1
0 3 0
1 00
4
0 —3 1
%, and subtract the resulting row,

_ o O

Wik O Wl

and subtract the result, multiplied

1 1
6 _ib
35 35
2 _ 9
35 35

1
14

which can be easily verified by direct matrix multiplication.

38

Incorporating pivoting

When working with decimals, to maintain good accuracy of the procedure (for
matrix inversion), we have to do the same kind of pivoting as when solving sets of
linear equations. To keep things simple, we will use only complete pivoting without
scaling. Since this involves column interchange, we have to keep track of these and
‘undo’ their effect when reaching the final answer. This is best explained by an

Example: Let us now invert

—-53 8 49 78
17 72 =99 -85

-86 30 80 72
66 —29 —-91 -53

using decimal arithmetic. First we append a 4 by 4 unit matrix, then we
identify —99 as our first pivot. This means that we have to interchange rows
1 and 2, and columns 1 and 3 (using Maple, by swaprow and swapcolumn):

@ 21

-99 72 17 -8 0 1 0 0
49 8 =53 78 1 0 0 O
80 30 -8 72 0 0 1 0

-91 =29 66 -53 0 0 0 1

Note how we are keeping track of column interchanges. We then go over one
step of the procedure, reducing the first column to 1 and three 0’s (the actual
print out shows 0.999999999, 0, .1e-7 and —.1e—7, but we know better):

M]

-072 —-017 8 0 —001 0O
120.63 —44.58 3592 1 049 0
8818 —7226 331 0 080 1
—-9518 5037 2513 0 —091 0

o O O
_ o O O

Now, we have been lucky, the largest (in absolute value) element in the
remaining 3 by 3 corner is 120.63 itself, so no interchanges are necessary.
The next reduction step yields:

il 2!

1 0 —0.4405.. 1.0751.. 0.0060.. —0.0071.. 0 O
0 1 -0.3695.. 0.2978.. 0.0082.. 0.0041.. 0 O
0 0 —39.6716.. —22.9501.. —0.7309.. 0.4462.. 1 O
0 0 15.1955.. 53.4794.. 0.7889.. —0.5286.. 0 1

Now, the largest element in the remaining 2 by 2 block is 53.4794.. This
means we have to carry out one more interchange:

2! Il

0 1.0751.. —0.4405.. 0.0060.. —0.0071..
1 0.2978.. —0.3695.. 0.0082.. 0.0041..
0 53.4794.. 15.1955.. 0.7889.. —0.5286..
0 —22.9501.. —39.6716.. —0.7309.. 0.4462..

o O O
— OO O O
o= O O

39

The next step yields:

2! il

1 0 0 —-0.7460.. —0.0098.. 0.0035.. 0 —0.0201..
0 1 0 —-0.4542.. 0.0038.. 0.0070.. 0 —0.0055..
0 0 1 0.2841.. 0.0147.. —0.0098.. 0 0.0186..
0 0 0 —33.1505.. —0.3923.. 0.2194.. 1 0.4291..

At this point we have reached the last main diagonal element (no more in-
terchanges possible), so we just carry out the last reduction:

d m

1 0 0 0 —0.0010.. —0.0014.. —0.0225.. —0.0297..
01 0 0 0.0092.. 0.0040.. —0.0137.. —0.0114..
0 01 0 0.0113.. -0.0080.. 0.0085.. 0.0223..
0 0 0 1 0.0118. -0.0066.. —0.0301.. —0.0129..

And now comes the essential last step: We drop the leading unit matrix
and attach the corresponding column labels to rows of the remaining matrix,

thus:
—0.0010.. —0.0014.. —0.0225.. —0.0297..

0.0092.. 0.0040.. —0.0137.. —0.0114..
@ 0.0113.. —0.0080.. 0.0085.. 0.0223..
@M 0.0118.. —0.0066.. —0.0301.. —0.0129..

The result needs to be rearranged (by row interchanges) to bring back the
natural sequence of labels:

M 0.01183634283 —0.006618577468 —0.03016539786 —0.01294518528
0.009271619264 0.004040818703 —0.0137015577 —0.01144897059
—0.001003899605 —0.001425749021 —0.02250376794 —0.02976201497
@ 0.01139012326 —0.008005031964 0.00857116598 0.0223770053

This is then the resulting inverse, as can be easily verified.

40

41

Chapter 6 APPROXIMATING
FUNCTIONS

Suppose that we would like to find the ’best” way of approximating the sin x func-
tion by a polynomial. We will do this only for 0 < x < 7, since we know that, due to
the sin 2’s periodicity, this would be sufficient to evaluate the function everywhere.

One way to do this would be to evaluate sinz at x = 0, 10, 20, ... 90 degrees,
and fit the best (least-square) polynomial using techniques of the previous section.
But of course this leaves the question of what would be the accuracy of our fit
between the points thus chosen, and should not we really need to go to x = 0, 5,
10, 15, ...90 degrees, etc.

To avoid the problem of how finely do we have to subdivide the original interval,
why don’t we try to cover it all, to letting each of its points contribute to the
’sum’ of residuals. To be able to do that, we must of course replace ’'sum’ by the

corresponding integral, as follows:

S = (sinx—a—baz—cx2)2dx

O\%

(assuming we want to fit the best quadratic polynomial), and

Szf(y(x) —a—bx—cm2)2dx

in general (fitting a quadratic polynomial to a function y(z), in the [A, B] interval

of z values).
It is a simple exercise to minimize S, getting the following set of normal equa-

tions for a, b and ¢

B B B B
[dz [xdx [2%dx| [y(z)de
A A A A

B B B B

Jxdr [2?dr [2dr || [zy(z)de
A A A A

B B B B
[a?de [2dr [a2tde || [2%y(z)de
A A A A

We can substantially simplify solving this set of equations (of any size) by
assuming that A = —1 and B = 1. This is not really a big restriction, since we can
always go from y(z) to Y(X) = y (442 + £54 X)) | where Y/(X), when X varies
from —1 to 1, has exactly the same values as y(x), when = varies from A to B.

Once we have found a polynomial fit to Y (X), we can easily convert it to that of

y(x) by the following replacement: X — % (resulting in a polynomial of

the same degree).

42
We can thus concentrate on solving
1 1 1
[dX [XdX [XX [Y(X)dX
1 1 1
1 1 1
[XdX [X%dX [X%dX | [X -Y(X)dX
1 51 1

1 1 1
[X2X [X3dX [X%X | [X2-Y(X)dX
-1 -1 -1

(or an equivalent). The question is: can we find an equivalent formulation of the
problem at hand, which would be easier to solve?
Well, one thing should be obvious: ¥ = a +bX + ¢ X? and

Y:d%(X)‘*‘B%(X)“‘é%(X) (6.1)

where ¢y (X), ¢1(X) and ¢,(X) are, at this point arbitrary, polynomials of degree
zero, one and two (respectively), are equivalent models (they both represent a gen-
eral quadratic polynomial). Furthermore, we can choose these ¢,(X) polynomials
to be ORTHOGONAL in the (—1,1) interval, meaning that

[ox)- 004X =0

whenever i # j (this will be verified shortly, by actually constructing them, one by
one, to meet this property).

We already know (analogically with the discrete case) that, using (6.1) as our
model, the normal equations are

f do(X)2dX f Bo(X) 1 (X) dX f Bo(X) 1 (X) dX f Do(X)Y (X)dX

1 1

J oo coax [oxpax f o (X)a(X) dX f o (XY (X) dX

T oa000x) ax f b6 (X)X [by(X)%dX f DXV (X) dX

-1

Now, choosing the ¢,(X) polynomials to be orthogonal makes all off-diagonal ele-
ments of the coefficient matrix equal to zero, and the corresponding set of equations
trivial to solve:

o Loy (X)dx
o LLe)y(x)ex

where ag = [, ¢o(X)2dX, ar = [¢,(X)2dX, etc.

43

Furthermore, if we decide to extend our fit to a cubic polynomial, we don’t
have to solve the normal equations from scratch, we can simply add

Jh os(X)Y(X)dX

a3

d=

to the previously obtained a, b and & (they remain unchanged).
Similarly to the discrete case, typical error of the resulting fit is computed as

. 2
the square root of the average value of (Y(X) —ady(X)—bpy(X)— é¢2(X)> :
namely

[Som LY (X)2dX — aga? — oy B2 — ap &
2 2

Orthogonal (Legendgre) Polynomials
We now construct polynomials which are orthogonal over the (—1,1) interval.
We start with

¢0(X) =1

(any non-zero constant would do, we choose the simplest one); the corresponding
ayp is equal to f_ll 12dX = 2.

The next, linear polynomial must be orthogonal to ¢,(X); this means we have
one condition to meet. Itsleading coefficient can be chosen arbitrarily, and we make
it equal to 1 (this will be our choice throughout the procedure - such polynomials
are called MONIC, but we don’t have to remember that). Its absolute term will
be, at this point, arbitrary, thus: ¢,(X) = X + C. Making it orthogonal to ¢y(X)
requires

1
/1~(X+C)dX:2C:O

-1

which implies that C' = 0. We thus have
ol (X) =X

with a; = [1, X?dX = 2.

At this point we may realize that polynomials containing only odd powers of X
are automatically orthogonal (in this sense) to polynomials with only even powers.
And, this will thus be the general pattern of the ¢, ¢;, ¢,,... sequence (each
polynomial will consist of either odd or even powers of X only, depending on its
degree). We will now continue with our construction, utilizing this ’shortcut’.

The next polynomial thus have to have the following form: ¢,(X) = X? + C
(not the same C' as before). It is automatically orthogonal to ¢, (X), we must also
make it orthogonal to ¢,(X) by

1
/1-(X2+C)dX:§+2C:0:>C:—%
-1

44

This results in

1
¢2(X) =X - 5

+% = £ (the f_ll X dX = - formula

) 1
with ap = f—l 5 1

comes handy).
Similarly, ¢4(X) = X3 + C X. Making it orthogonal to ¢;(X):

(X2 1)2ax = 2 -

Ol

1

2 2
/X-(X3+C’X)dX:g+§C:O:>C:—§
e
Thus
- Lx

_rt 3 _ 2 _ 6. 2 9 2 _ 8
and@g—f_l(X3—gX)2dX—7—gg—l—%g—m

To construct ¢,(X) we can use X* + C,X? + Cj, but it is more convenient
(why?) to use ¢ (X) = X* + Cay(X) 4+ Cogy(X) instead. We have to make it
orthogonal to ¢y (z):

1

[0+ (X! + Ca6(X) + Cotn(X)) dX = 2 +2C0 =0 Co = —

-1

and to ¢(X):

1
2 1 2 8 6
/¢2(X)'(X4+C2¢2(X)+Co¢o(X)) dX:?_g'g"i_ECl:0:>01:_?
-1
implying that
6 1\ 1 6 3
X)=X'—— (X2 =X - X?+ —
¢a(X) 7< 3> 5 7% T35

(note that, in the final answer, the coefficient signs always alternate), with ay =
Lll()('4 —SX% + 2)2dX = &= (at this point we may as well let Maple do the
dirty work).

It should be obvious, how to continue this process (called GRAM-SCHMIDT
ORTHOGONALIZATION). The resulting polynomials are called LEGENDRE, and are
quite useful in many other areas of Mathematics and Physics (their usual definition
differs from ours - the leading coefficient is not equal to 1).

Example: We will fit the sinx function by a cubic polynomial, in the (1, %) in-
terval. Replacing x by “TB + BT’AX = 2(1+4 X), this is the same as fitting

45

sin[Z(1 + X)] over (—1,1). The previous formulas enable us to find

a flsin§(1+X)]dX_z

_ y -2
. Jo Xsin[f(1 4+ X)]dX 4—n
b = 5 =6 —;

3 m
o JLee - Dsin[f(1+ X)) dX 48— 127 —
© = El =-15- 3
45

o JL(P - 2 sinE(4 X)dX 55 . 960 — 2407 — 247° + 7°

_ ! o :

T

almost immediately (with a bit of help from Maple, concerning the integra-
tion). The corresponding least-squares polynomial is thus

2 4 —7 48 — 121 — 72 1
Z46- X _-15. — % = (xX2__Z
7r+ 2 3 (3)
— 2407 — 2472 3
_35‘960 O7T4 T+ (X?’—EX)
T 5

having the following typical error

= 0.000833

\/f | sin[Z(1—|—X)]2dX—2&2—§b _%@2_1_3;5612
2

(as an approximation, the polynomial will be correct to three digits). The
final answer must of course be given in terms of x. This is achieved by the
following replacement: X — % -x — 1 (Maple can do this, quite efficiently,
using the subs command). The result was also expanded and converted to
decimal form.

—2.25846 244 x 1072 + 1.02716 95532 — 0.069943 765422 — 0.11386 84594>

One can plot this cubic, together with the original sinx, for x from 0 to
%, to see that the fit is quite good (the two curves will appear identical).
Note that, as soon as go beyond 7, the disagreement becomes clearly visible
(no extrapolation possible). Furthermore, when displaying the difference
between the two functions, we can see (in Figure 1) that the error is clearly
the largest at each end of the original range (more than double of what it
would be otherwise).

Chebyshev Polynomials

In our last example, we noticed that the error of our polynomial fit increases toward
the interval’s ends. This is undesirable when the objective is to minimize the largest
(rather than typical) error. Developing a procedure to find the best (in the new
sense) solution would is quite difficult, but there exists a compromise approach
which is capable of getting quite close to it. The idea is to use weights (or, in this

46

0.001
0.25 0.5 0.75 1.25 1.5
-0.001
-0.002
Figure 1

case, a WEIGHT FUNCTION), chosen so that the least-square procedure is forced to
work harder at the interval’s ends. The usual choice (which works quite well) is

1

W=

which increases (actually, it goes to infinity) as X — 1 and X — —1.
We now have to modify the procedure to minimize

=

) and ®,(X) are polynomials of degree zero, one and two. This

where q)()(X), (Dl(

Y (X)—ao(X) b1 (X)—¢ @2(X))’
V1-X2

dX

leads to the following normal equations:

f 2dX fl Do (X)P1(X)dX fl Po (X j« Do(X)Y(X)dX
J V1-X2 1 \/1 X2 o 1-X2

1 D1 (X)Po(X)dX 1 ®1(X)2dX 1 o1 (X dx 1 &1 (X)Y(X)dX
fl \/1_ _J; 1—X?2 _fl \/1 X2 _J; V1=Xx?2

fl Po(X fl Do (X)P1(X)dX } P2 (X)2dX j« Do(X)Y(X)dX
_1 \/1 X2 J V1-X2 e 1-X2 e 1-X2

Assuming that ®(X), &;(X

) and ®,(X) are orthogonal in the following new sense

=0

/1 B(X)D;(X) dX
ST

47

whenever i # j, the best coefficients are clearly

1 ¢ (X)Y(X)dX

G -1 1—X2
Qp
1 9(X)Y(X)dX
po— 2ot 1-X2
aq
1 ¢ (X)Y(X)dX
& = —1 1—X2
&)
1 ¢o(X)2%d I ¢ (X)%dX

where ag = |7, e ,a1 X etc.
The typical-error formula needs to be modified to

a2 — a1 b% — i 2

™

where the denominator 7 equals to total weight, i.e. f L \/%

Using the Gram-Schmidt procedure, we now proceed to construct this new set
of orthogonal polynomials. Since our weight function is symmetric, i.e. W(X) =
W(—X), the polynomials will also consist of either even or odd powers of X only.

We may also need
1
X"dX (n—1)!

V- X2 nl!
el

when n is even (equal to zero for n odd).
The first polynomial is always

™

with ag = f 1 \/ﬁ
Similarly, the next one is
o (X)=X

2
with oy = f | XdX =

To construct @2(X)

s
5

X2+ C, we have to establish the value of C, based on

(X2 +C)dX T 1
/ = 7TC'—|—2—0:>C— 5
21
SO)
(I)2<X):X2—§
Withang_ll%:g

Similarly

1
(X*+CX)-XdX 3rm 3
=—=+-C=0=0C=—~
/ VvV1—X?2 32 4

48

which yields
By(X) = X3 — %X

(X3-2X)2%dx -
and a3 = fl A =3

NOW, CI)Q(X) X4 + C’Q@Q(X) + C’()@()(X), where

1
4 .
/(X + Ca®y(X) + Co®o(X)) - Po(X)dX z+%02:oz>02:_

V1— X2 8
-1
1
X4+ Cy®9(X) + Coy®o(X)) - Po(X) dX 3 3
/(+ Cy®y()+1 0)?§) - @o(X) _ %+7T00—0:>CO
—1
resulting in
1. 3 1
X)) =X'—(X2—2) -2 =X*'—X24=
4(X) (2) 8 +8
1 (X4-X2+41)2dX T
and oy = [1, S =
Etc.

The resulting polynomials are called CHEBYSHEV, they also have a variety of
other applications.

Example: Repeating the previous example using Chebyshev’s polynomials (rather
than Legendre’s) yields

P /1 SN) so219 4701
L Jiox

A 1 X sin[Z(1 4 X)]dX

- / sinff+ OIdX . 7 _) 5136251666
., T-Xx°
L(x2 - Yginl®(1 + X)) dX

5 — / (X2 = 3)sinFA+ X1dX 7 _ 4 50709 26885
1 V1—-X2 8

. (X3 — 2X)sin[Z(1 + X)] dX

d = / (X750l DIY 75 409813603 x 102
4 V1-X2 $ 32

resulting in

0.60219 4701 + 0.51362 51666 X — 0.20709 26885(X> — 1)
—5.49281 3693 x 107*(X° — 2X)

having the typical error of

1 sm% 1+X]2dX ~9 T 79 T A9 T 3
\/f W&-Eb—gc—ﬁd

™

= 0.000964

Even though this is larger than what we got with Legendre polynomials, the
overall fit (in terms of its maximum error) is much better, as we will see
shortly.

49

0.0015

0.001

0.0005

0.75 1 1.25 1.
-0.0005

-0.001

-0.0015

Figure 2

Replacing X by % - — 1 (this part is the same as before) and expanding the
answer, yields

—1.24477557 x 107 + 1.02396 75537 — 0.068587 596322 — 0.11337 70686°

Plotting the difference between this approximation and sinx clearly shows
that the largest error has now been reduced to what appears to leave little
room for improvement:

Laguerre and Hermite Polynomials

As long as the weight function (always non-negative) can be multiplied by any inte-
ger power of X and integrated over the chosen interval (yielding a finite value), one
can construct the corresponding orthogonal set of polynomials. This is true even
when the interval itself is infinite. We will go over two interesting and important
examples:

Laguerre
The interval is [0, 00) and W (z) = e~®. The polynomials (we will call them Ly(x),
Lq(z), etc.), are to be orthogonal in the following sense:

[e.o]

/ e " Ly(w) Ly (x) da = 0

0

whenever i # j. Using Gram-Schmidt (and the following helpful formula: fooo e Txdr =
n!), we get:

50

Lo(z) = 1 with ag = 1, Ly(z) = x + ¢ (there is no symmetry now, we have to
use all possible powers of x) where

/ (x+c)dr=14c=0=c=—-1= Li(x)=x—1
0

with oy = fe (x —1)2dz = 1.
Simllarly7 Ly(z) = 2® + 1Ly (z) + coLo(x), so that

oo

/e“ (£B2 + 1Ly (x) + coLo(x)) Lo(z) de = 24 ¢y = co= —2

/ (2”7 + c1Li(2) 4+ coLo(x)) Li(z)dz = 6—2+c; = ¢ = —4
0

implying that
Ly(x) =2 —4(z — 1) -2 =2% — 4o + 2

with ay = fe ? —4a +2)*dx = 4.
And, one more: Lz(z) = 2® + caLo(x) + 1 L1 (x) + coLo(x), where

e " (2° + caLa(z) + ¢1 L1 (x) + coLo(w)) Lo(z) dz = 6+ co = co = —6

e " (x?’ + coLo() + 1 Ly () + coLg(x)) Li(x)de = 24—6+4c¢ = ¢ =—18

0\8 0\8 0\8

resulting in

Ly(x) =2 —9(z®> — 42 +2) —18(x —1) —6 = 2° — 92> + 182 — 6

and a3 = f e (23 — 92 4+ 18z — 6)? dx = 36.
These are the so called LAGUERRE POLYNOMIALS.

Hermite
Finally, we will consider the interval of all real numbers, with W (z) = e~*". Uti-
lizing the W(x) = W(—x) symmetry, we get:

Ho(z) =1 with ag = [e dr = /7, Hi(z) = z and oy = s w2 dx =
@, Hy(z) = 2 + ¢ where

o 1 1
/ (x2+c)e_x2dx:g+cﬁ:0:c:—§:Hg(x):a?—ﬁ

o0

e " (:U3 + colo(x) + 1 Ly () + C(]Lo(l’>) Ly(z) de = 120 —96 + 124+ 4cy = 5 =

-9

o1

and ap = [(22 — 1)2e " dx = 4, Hs(z) = 2% + cx so that

/°° g _3\/7?“? 3 ; 2

(2* +cx)we dr = 4 =0=c

[e.o]

I
|
|
4
=
=
I
]
|
|
S

with ag = [* (2% — 32)%e~"dz = 2,/7, etc. These polynomials are called HER-
MITE.

For our purpose (of approximating functions), neither set of these orthogonal
polynomials is as important as the previous two (Legendre and Chebyshev), but
they are very useful when studying Differential Equations, etc. To us, deriving
them was just an exercise in Gram-Schmidt - given an interval and a suitable
weight function, we have to be able to construct the first few correspondingly
orthogonal polynomials.

52

53

Chapter 7 NUMERICAL INTEGRATION

As we all know, integrating a given function may often be impossible analytically;
one can always (assuming that the answer is finite - something we can tell in
advance) carry out the corresponding integration numerically, to any desired ac-
curacy. There are several techniques for doing this, in this chapter we will study
most of them.

The basic idea is to replace the function to be integrated (the INTEGRAND)
by a ’closely fitting’ polynomial, integrating the polynomial instead (always quite
trivial). The main thing to decide is: how to construct a ’closely fitting’ polynomial,
to a given function.

We have spent the previous chapter doing exactly that, so we may fee that we
have the answer. WRONG, that approach is not going to work now. The reason
is that, to fit the 'best’ polynomial, we first had to compute a whole bunch of
integrals, including the integral whose value we are now trying to approximate. So
that would amount to circular reasoning.

We now have to go back to the simpler approach of an earlier chapter, where
we would first evaluate a function at a few values of x (the so called NODES), and
then do Lagrange (not Legendre) -type interpolation. So now the only choice to
make is: How many nodes, and where?

Trapezoidal rule
We will start ’easy’, with only two nodes, chosen (rather arbitrarily, but sensibly)
at each end of the integration interval, where the function will be evaluated. The
corresponding interpolating polynomial will be a simple straight line connecting
the two points thus obtained.

Specifically, to approximate f L y(x) dz, we evaluate y(r) at A and B, fit the
interpolating straight line

Tz — B rz— A
a5 VB 54

y(A)

and integrate it instead

12 oo 42 [
(5 Bwf 2 (5- Axﬂ
:j(“%(_B(B- A>+g (2A2—A(B—A))

= o) (T3 = B)) (P57 - a) - LR 5

(this can be easily verified geometrically to be the area of the resulting trapezoid).
The resulting trapezoidal’ rule is thus

/By(x)dxzw'(B—A)

54

To estimate the error of the last formula, we (Taylor) expand y(x) at © = z. =
"HTB, thus

y"(l‘c) y" IC) yw (IC)

y(z) = y(z)+y (x.)(x—20)+ 5 (z—m.)*+ é (r—m.)%+ 51 (z—zc)* ...
(7.1)
Integrating the right hand side exactly yields
_ 2B " . 318
W(w) - (B=A) +y/(a) Ll () ot g
2 r=A 2 3 z=A
y"(x.) (v — x6)4 o yw<$6> (v — xe)5 b
+ + .
6 4 A 24 5 A
B y' () 5 Y (x) 5
=y(x.) h+ 51 h’ + 1990 >+ ... (7.3)

(where h = B — A is the length of the integration interval), whereas, applying the
trapezoidal rule to it results in
v Ic)

y'(ze) 3, y"(
y(xe) h + g h® +)

The difference between the approximate and the exact result is clearly the error of
the latter, equal to

R+ ..

Y'(xe) 15, Y () o5
12 h’ + 180 h+ ..
Note that the leading term is proportional to the third power h; also note that
only odd powers of h contribute (this is due to choosing the nodes symmetrically).
In its current form, the trapezoidal rule is clearly too primitive to yield accurate

results. For example, applying it to foﬂ/ *sinz dr (which has the exact value of 1)
we get % - % = 0.785, off by 21.5%. How could we improve the accuracy of the
trapezoidal rule? Since its error is proportional to h3, we clearly need to reduce
that value of h. This can be done by subdividing the original (A, B) interval into
n (equal-length) subintervals, and apply the trapezoidal rule individually to each

subinterval, adding the results. This leads to the so called

Composite rule

The new value of h is now clearly equal to B—;A, with the nodes at o = A,
xr1 = A+ h, xo = A+ 2h, ..., x, = B (we will call the corresponding values of
the integrand o, y1, ..., instead of the full y(z¢), y(z1),, just to simplify our
notation). The complete formula will now read

yo+ylh+yl+y2h+w+yn—1+ynh:
2 2 2
2 2 e+ 2y, n
Yo + 2y1 + y2-2F t2Yn11Y (B—A)
n

where the first term is a weighted average of the y; values, the endpoints taken
only half as ’seriously’ as the rest. This is called the COMPOSITE TRAPEZOIDAL
RULE. The overall error of the result will be

3 n
h_ y//(zi‘i’;i—l)

12 4
=1

55

which will tend (as n increases) to

h? " 2 B-A
E-nyaqu... =h B

where y! is the average value of y”(z) over the (A, B) interval. Since both v/,
and 31_2‘4 are fixed, we can see that the error will be proportional to h? (the higher
order terms proportional to h*, k% etc.). Later on this will give us an idea of how

to further improve the results.

(A

Example: When we apply this composite rule to foﬂ/ *sinz dr usingn =1, 2, 4, 8,
16, 32 and 64 (it is convenient to double the value of n each step; this means
we can still utilize the previously computed values of the function). we get:

z <1+2 nzl sin(;—é))

=1

o error
0.7853981635 0.2146
0.94805 9449 0.0519
0.98711 5801 0.0129
0.99678 5172 0.0032
0.9991966805 0.0008
0.9997991945 0.0002
64 0.99994 98 0.00005

R Ve

Note that, with n = 64, we have achieved a 4 digit accuracy. Also note that
the error is reduced, in each step, roughly by a factor of four.

Romberg integration

Realizing that the error of the composite rule follows a regular pattern (i.e. is
reduced by 4 when doubling n), we can write Io = I + 55, L1 = [+ 57, I = 3,
I3 = 5, ..., where [; is the result of the composite rule with n = 2 subintervals
and [is the exact answer. We can now eliminate the error term from any two such
consecutive results, i.e.

c
I, = I+ —
+ 7
c
Iipq I+ T
and solve for I, by
j 4l — I;
3

This will result in a substantially more accurate answer for I (still not exact though,
we know that there are additional error terms proportional to n, n, etc.).

Example: Using our previous example, we get

g = 4Ii+§—11-
1.00227 9878
1.00013 4585
1.00000 8296
1.00000 0517
1.00000 0033
1.00000 0002

ST W N~ .

56

The errors are now a lot smaller (we have reached nearly a 10 digit accuracy),
furthermore, they decrease, in each step, by roughly a factor of 16.

Getting the new column of more accurate answers (.J;), and realizing that their
errors are now reduced by a factor of 16 in each step, we can continue the idea of
eliminating them, by computing

16Ji41 — J;

K;
15

The K’s errors will decrease by a factor of 64, so we can improve them further, by

I = 64K; 1 — K;

T 63

etc., until we end up with only one number (or the values no longer change, within
the computational accuracy).

Example: Continuing the previous example:

16J;11—J; 64K;11—K;
Jz Kz — 'Likg 1 LZ — 141 7

1.002279878 0.99999 15654 1.00000 ?)009
1.000134585 0.9999998774 0.99999 99997
1.000008296 0.99999 9998

1.00000 0517

=W N s,

at which point we have clearly reached the 10-digit limit imposed by Maple
(which, by default, evaluates all results to this accuracy only - this can be
increased by setting Digits := 20;). Note that we have reached a nearly 10
digit accuracy with 16 evaluations of the function gone through two stages
of Romberg (K3), or 8 evaluations with three Romberg stages (L1).

Once we reach the limit of Maple’s accuracy, the results start to deteriorate
(whether we increase i, or go to the next stage of Romberg), so we should not overdo
it (ultimately, monitoring convergence, and imposing some sensible ’stopping’ rule,
should be incorporated into the procedure - we will not go into this).

Simpson Rule

Another idea to improve the basic trapezoidal rule is simply to increase the number
of nodes (from 2 to 3). The most logical choice for the extra (third) node is to put
it at the center of the (A, B) interval. The corresponding interpolating polynomial
is the following quadratic

(v — 4FE)(z — B)

TE(A-B)

(2 — A)(x — 457)

2

B A)Ea y(B)

57

To integrate over x from A to B, we first evaluate (using by-part integration)

B oo |B B
/(I—MTB)@—BW _ (x—MTB)%x_A—%/ (z — B)da

A A
_ (B-A® | (A-B)* _ (B-A)®
= 7 N 15
%o — e me® 1 [T gy
(r—A)z—B)dr = (x— A= LT3 (x — B)*dx
A = A
_ (B—A)*

6

B 9 B B
/ (x—A)(z—2E)dx = @(x—hf) A—%/ (x — A)?dx
A = A

(B-A _ (B-A)* _ (B-A)

4 6 12

Putting it together, the interpolating quadratic integrates to

y(4) +4y(457) + y(B)
6

(B - A)

which is our new approximation to ff y(x) dz called the SIMPSON RULE. Note
that the first term represents a weighted average of the three computed values of
y(x), the mid point being 4 times as ’heavy’ as the two end points.

One can easily verify that the formula yields the exact answer whenever y(z)
is a polynomial of degree 2 or less (as ti must), it is actually also correct for all
cubics (due to its symmetry), but fails (resulting in a small error) as soon as quartic
terms are encountered (we will do this using A = 0 and B = 1, which proves to be
sufficient):

y(x): Simpson: Exact:
1

1 L —1 [Jde=1
0-&-4-%—&-1 1 1 1

T —2 == rdr = =
22 0+4.6§+1 - f ﬁ 2da _21
3 0+4§§+1 ? ’ 3 i’

x =1 Jy 2’dr =7
4 0+4-95+1 5 U o4 1
xr 6 =2 fo ridr = 3

Note that the first four answers are correct, but the last one is off by about 4%.

This may actually give us an idea as to how to derive the Simpson-rule coeffi-
cients more efficiently: Knowing that the formula has to be exact for all quadratics,
and knowing that it will have to have the following form:

[y(A) + coy(HE) + ¢ y(B)] (B — A)

we apply it to y(z) = 1, z and 22, using A = —1 and B = 1 (the most convenient
choice now), getting
y(x): Formula: Exact:
1 2(c; 4 c.+) 2
x 2(c, —)
z? 2(¢, + 1)

who O

58

This implies that

¢+ c.+ ¢, 1
cc—c = 0

1

cr+c = 3

which is solved by ¢; = ¢, = %, Ce = %, resulting in the same rule as before (if one
remembers that a symmetric choice of nodes must result in symmetric c coefficients,

one can proceed even faster).

Error analysis
Applying the Simpson rule to (7.1) yields

y'(xe) |3 Y () 5
h h> + ...
24 + 1152 +
which means that the error of the Simpson rule is

y(ze) h +

yw (IC) 5
———h
2880 +

(only odd powers of h contributing). This is a substantial improvement over the
trapezoidal rule. And, true enough, applying Simpson to the old foﬂ/ *sinz dz yields

1.002279877, a fairly respectable answer (compare this to trapezoidal’s 0.785 - even
though we are not quite fair, since we now need an extra evaluation).

Composite rule

We can improve the accuracy of the Simpson rule by dividing (A, B) into § subin-
tervals (where n is even - here we want to be fair to trapezoidal rule in terms of
the total number of function evaluations, which should equal to n + 1). Applying
the Simpson rule individually to each subinterval, and adding the answers, yields

4 4 o+ 4y,
Yo + g1+y2h+y2+ g3+y4h+....+y” 2+ gn 1+ynh:
yo+4y1+2y2+4y3+2y4+..-+2yn72+4yn71+yn‘(B_A)
3n

since now h = 254 = 2 (B — A). The error of this composite rule is qual to
2

n/2
Bo . w n o h* <
(@9 . =y = B—-A)y + ..

where the next term would be proportional to h®, h®, etc. This should give us a
clear idea as to how to apply Romberg algorithm to improve consecutive results of
the composite rule.

Example: Applying the Simpson composite rule to fol sin x dzx yields

Tl 1+4 %2 sinMJrQ n/iilsinﬂ

2 =1 Zn =1 an 161,411, 64K, 1—K;
n 3n Ky = —5 L = 63
2 1.00227 9878 0.99999 15654 1.00000 0009
4 1.00013 4585 0.9999998774 0.99999 99997
8 1. 00000 8296 0.99999 9998
16 1.00000 0517

59

Note that:

1. the error of the composite rule decreased, in each step, roughly by a
factor of 16,

2. we skipped (as we must) the J; stage of Romberg.

Other Rules

Going beyond trapezoidal (two-node) and Simpson (three-node) rule, we now learn

to design our own rules, using any number of nodes.

Example: The most 'natural’ choice of 4 nodes is at A, A + BT*A, B — BT’A, B
(equidistant). Incorporating the symmetry of this choice, the corresponding
rule will have the form of

[cey(A) + ciy(A+ E52) + ciy(B — 254) + coy(B)] (B — A)

So, it now boils down to finding the value of ¢, and ¢;. We can do this most
efficiently by taking A = —1 and B =1 (A—I—BT_A =—3,B- BT_A = 1), and
making the rule correct with y(z) = and y(z) = 2% (odd powers integrate to

zero automatically), namely:

(2¢e + 2¢;) - 2
(2c,+29)-2 =

win DN

which yields ¢, =
rule is thus:

% — ¢, 1 —2¢ + %ci = % = = %, Co = %. The resulting

(B —A4)

/By Lo VA 3yt B5) 4 3y(B — B4) 4 y(B)
- 8
A

Dividing (A, B) into £ subintervals, we can now construct the corresponding
composite rule.

In our next example, we try a different (yet sensible) choice of nodes.

Example: Going back to 3 nodes, we divide (A, B) into three equal subintervals

and place a node in the middle of each, thus: z; = A + B A , Ty = ’”TB,
r3=B-2 6A The resulting formula has to read
(Cs y1 + ceyp + csys) (B — A)
where y; = y(21), y2 = y(x2), ... Using the same approach as before (now
T = —%, 1o =0, x3 = %) we get
(2c54+¢.)-2 = 2
4 2
2) Cs 2 = 3

60

implying that ¢, = % and c. = %, ie.

B
/y(m)dx: 3y1+2gz—|—3y3 (B—A)

A
Based on (?77?) and (7.2), the error of this rule is

y'(xe) 5, ¥ (@) 5 o Y () 5 | ¥ (@) 5
<y(mc)h—|— 51 h® + 5509 h> + ... y(a:c)h+—24 h +—1920 h> + ...

i.e. smaller (in terms of its leading term) than that of the Simpson rule, and
of the opposite sign. This makes us think: Is there a way of eliminating the
leading term entirely, by yet another choice of nodes (which seem very likely
now), and how would we do it? We will take up this issue in a subsequent
section.

We will go over one more example of constructing our own rule, based on a
choice of nodes which is no longer symmetrical. Under the circumstances, such a
choice would be rather unusual and inconvenient, but we need to learn how to deal
with that possibility as well (what we lose is the symmetry of the corresponding
weights, i.e. the ¢ coefficients).

Example: Rather than deriving a general rule applicable to any A to B integral,
we derive a formula to approximate

/3 y(z) do

assuming that only three values of y(x) are known, y(0), y(1) and y(3). The
formula will have the form of

coy(0) 4+ c1y(1) + c3y(3)

where the values of the c coefficients will be computed by making the formula
exact for y(z) = 1, y(r) = z and y(r) = z? (now, we cannot skip odd
powers!), namely:

CQ+01+03 =

c1+9c3 =

3
o/
3
c1+3c3 = /acda::
0
3
o/

61

The last two equations can be solved for ¢; and c3 by

2] ee= (]

implying (based on the first equation) that ¢y = 0. The final rule is thus

N [SVTN Ne)

[v@de= o0+ 30)

Incidentally, this example also demonstrates that is possible to get a three-
point formula for the price of two function evaluations!

Being able to design our own formulas is important for the following reason:

Singular and improper integrals
All the formulas we derived so far will fail miserably when evaluating an integral

like)
exp(z?)
d
/ VR

0
which exists, having a finite value. The reason is that the integrand, when evalu-
ated at = 0, has an infinite value, so most of our approximate formulas would
simply ’blow up’. Even those formulas which do not use the left end point would
perform rather badly, their errors would be quite large and would not follow the
usual pattern (Romberg integration would not work). The old formulas implicitly
assumed that the integrand is not just continuous (and therefore finite) throughout
the [A, B] interval, but also that all of its derivative are (this means, we would have
difficulty not only when dividing by /= at z = 0, but also when multiplying by
\/z, since its derivatives become singular).

There are two ways of resolving this, one is analytical (not always available,
and not of the main interest to us in any case), which removes the singularity by
some smart change of variable (such as z = \/x in the above case). The other one
would 'remove’ the singularity by redesigning our formulas of numerical integration
along the following lines:

The actual singularity (in the original example) is due to the % part of the

integrand. Even though creating such a havoc numerically, the % function is quite
trivial to integrate analytically (right?), so we will separate it from the rest of the

integrand, thus:
1
y(x)
—=d
/ Vi
0

where y(z) can now be arbitrary. We can now derive an approximate formula
for this kind of integral in the usual fashion: select a few nodes in (0, 1), fit the
corresponding interpolating polynomial to y(z) - leaving the ﬁ part out of it, and

the integrate~~
1
/ p(@) .
x

0

62

instead (quite trivial now), where p(z) is the interpolating polynomial.

Example: Using z = 0, % and 1 as our nodes, we get

=P

p(x) =

Since

1

x(r—1) B 4
/ x dr = 15
0

; 1
/MW _ 1
N3 15

0

The rule is exact whenever y(z) is a polynomial of degree two or less.

This gives us yet another (more expedient) way of finding the coefficients:
Writing the rule as

1

/% dr = coy(0) + ey y(3) + ery(l)

0

(note that ¢y no longer equals ¢, ﬁ 'breaks’ the symmetry), we make it
correct using y(z) = 1, z and z*:

1

1
Co—f—C%—f—Cl = /—dmz

B

0
1
n T d 2
22 NZ7 3
0
1 n x?
—c1+ ¢ —dr =
4 2 \/E
0
: : _ 2 2\ __ 16 _ 2 _ o 16 2_12
resultmgmm 4(——5)—1—5,0—3—15 15,amdco 2— R =1

(Check) Applying this rule to the original fo eXp(x dz results in 22 + 12 et +

-t € = 2.532. This compares favorably (0.4% error) with the exact answer of
2.543.

63

To extend the formula to fOA L\/? dz, we introduce z = Az and write

- vg'A 15 15

This can be used to develop the corresponding composite rule: Divide the original
interval into several subintervals, apply the last formula to the first of these subin-
tervals, the usual Simpson rule to the rest (no singularity there). We don’t have
time to go into details.

Similarly, our standard rule would not work with an integral like [EXP 2 dg,
where the length of the interval is infinite. Again, we can fix this elther analytl-
cally (change of variable), or by selecting a few nodes in the (0,00) interval and
approximating

/y7 y(3) d= [12 v+ Eyay 1y va

jfy(x)epr—x)dw

by J;° p(x)exp(—z)dx, where p(x) is the interpolating polynomial to the y(x)
functlon (note that, similarly to the previous case, we separated exp(—zx) from the
rest of the integrand, so that the actual integration becomes possible).

Example: We choose z = 0, 1, 2 and 3 as our four nodes. The interpolating
polynomial is thus

(x — 1)(x_—62)(x —3) y(0) + x

_’_x(x—i)z(x—?)) y(2) + x(x— lg(x—Q) y(3) =
x3—6x2_211x—6y<0)+ x3—5§2+6xy(1)+

x® — 42?2 + 3z x® — 32?4+ 22
O A LE

z(x—2)(z—3)

xT

Multiplying by e * and integrating from 0 to oo yields (remember that

IS atemmdr = K!):

6124116 6—10+6 6—8+3 6—6+2
y(0) + ———y() + ——— (@) + ————y(3)
—6 2 —2 6
sv(0) +y(1) — 39(2) +3y(3)

which is our final rule for approximating [;° y(x) exp(—x) da. Note that, this
time, one of our coefficients is negative. This can happen, but it is usually
an indication of badly chosen nodes (we would like the coefficients to be

all positive, and of similar size). Apphed to the original [;° m dx. our
formula yields: g : % + % — % : % + % = 0.3583, reasonably close (0 8% error)
to the exact answer of 0.3613.

The obvious questions to ask are: Is there a better way of selecting our four
nodes? Is there a best way of selecting them? ’Best’ in what sense?

64

Gaussian Integration
We will first try to answer these questions in the context of approximating the

basic
/ y(z) dx

1

We know that any three (four, five)-node formula will be exact for all quadratic
(cubic, quartic, ...) polynomials, but if we are lucky (e.g. Simpson’s rule), we can
go higher than this. How high can we go?

The answer is this: If we choose n nodes to be the roots of the n degree
Legendre polynomial (one can show that they all must be in the —1 to 1 range),
the corresponding rule (called GAUSSIAN) will be exact for all polynomials of degree
< 2n — 1 (instead of the usual n — 1). This also pushes the order of the leading
error term from A"t to h?"*! - a very substantial improvement!

Proof: We know that ¢, (z) is orthogonal to ¢y(x), ¢,(z),¢,_,(z). Since any
polynomial, say ¢(z), of degree n — 1 (or less) can be written as a linear
combination of these, ¢(x) itself must be orthogonal to ¢, (x), i.e.

/ 4(2) - 6,(2) dz = 0

-1

Let p(x) be an arbitrary polynomial of degree smaller than 2n. Dividing it by
¢, () (synthetic division!) will yield a quotient ¢(z) and a remainder r(z),
both of degree smaller than n (even though for different reasons). One can
thus write

p(x) = q(x) - ¢, (x) + r(z)

The exact integration of p(x) is thus equal to

/ r(z) do

-1

since the first term integrates to 0, as we already know. Applying the corre-
sponding Gaussian rule to f_ll p(z)dr = f_ll q(x) - ¢, (z) dx + f_ll r(x) dr will
also yield the exact answer of 0 for the first term (since ¢, (z) evaluates to 0
at all nodes!), and the exact answer for the second term (since the degree of
r(z) is less than n, and any n-node rule is exact in that case). [J

Example: To derive a three-node formula we first find the roots of ¢4(z) = 2*—2x.

These are clearly: z; = —\/E To = 0 and z3 = \/g The actual real will

59
read
2- [y(zr) + cay(z2) + 1 y(as)]

(c3 = ¢1 due to symmetry). We make the rule exact with y = 1 and y = 2%

4Cl+202 = 2
3 2

der -2 = Z
“y 3

65

implying that ¢; = 1% and cp = 1%. The final rule is thus

5y(z1) +8y(xa) + 5y(w3)
18

2.

One can verify that it is also exact when y = a*: 2- (5. 5x +5- o) + 18 =
(it is automatically correct for all odd powers of x). It can be extended t
approximate

2
5
0

Sy(A2 — \[1254) + 8 y(458) + 5 (242 + | [2254)
18

/By(ac) dx ~ (B—A)-

Applying it to our usual benchmark of foﬂ/ sinz d yields:

37T_6 . (5 sin[%(1 — \/g)] + 8sin(§) + 5sin[f (1 + \/g)]> = 1.00000 8122

a spectacular improvement over Simpson’s 1.0022. Furthermore, applying it
separately to the (0,7) and (%, %) subintervals (the composite idea), results
in

% : (5 sin[Z(1 — \/§>] +8sin(Z) + 5sin[Z(1 + \/g)]) +
% : (5 sin[Z(3 — @] + 8sin (3

a 68 fold increase in accuracy (theory predicts 64). Romberg algorithm fur-
ther improves the two results to (64 x 1.000000119 — 1.00000 8122) =+ 63 =
0.99999 9992 .

|4

) + 5sin[Z(3 + \/§>]> = 1.00000 0119

Similarly, we can now find the best (Gaussian) n-node formula to approximate
the [y(x) e “dx integration. An almost identical approach leads to the following
prescription:

1. Using Gram-Schmidt, construct a sequence of polynomials (up to degree n)
orthogonal in the following sense

/0 " Li@)Li(x) edr — 0

when i # j (we have already done this, these are the Laguerre polynomials).
2. Find the roots of L,(z) = 0 - they are to be used as nodes.

3. Replace y(x) in the original integral by the corresponding interpolating poly-
nomial and carry out the integration (which is now quite trivial). This yields
the desired formula, which is exact when y(z) is a polynomial of order less
than 2n (rather than the usual n).

66

Example: When n = 3, we first solve
2 —92° + 18 — 6 =0

with the help of Maple’s fsolve command (we will learn how to solve non-
linear equations later on), getting

r1 = 0.4157745568
Ty = 2.294280360
r3 = 6.289945083

The corresponding interpolating polynomial is

p(z) = % y(z1) + w (z2) + w (3)

ro—x1)(x2—23) Y x3—x1)(x3—22) Y

x

which, when multiplied by e™*, integrates to

0.7110930101 y(x1) + 0.27851 77336 y(x2) + 0.010389 2565 y(x3)

We can now check that the rule is exact not only for y(x) = 1, z and x*:

0.7110930101 + 0.27851 77336 + 0.0103892565 =1 = [e “dx
0

8

0.71109 30101 24 + 0.27851 77336 25 + 0.0103892565 13 = 1 = [ze "dx

0
0.7110930101 2% + 0.27851 77336 25 + 0.010389 2565 23 = 2 = 1l i dx
0
but also for y(x) = 23, 2* and 2°:
0.7110930101 2 + 0.27851 77336 23 + 00103802565 2% = 6 = [ae “da
0

0.71109 30101 2% 4 0.27851 77336 23 + 0.010389 2565 24 = 24 = [2* e “du
0

0.71109 30101 25 4 0.27851 77336 25 + 0.010389 2565 25 = 120 = [2%¢ “dx
0

6

whereas with y(z) = 2° we get

0.71109 30101 2% + 0.27851 77336 25 + 0.010389 2565 25 = 684

which is 5% off the correct answer of 720.

00 exp(—x

Applying the formula to [~ =5) 4z of one of our previous examples yields

0.7110930101 0.2785177336 0.010389 2565
- -
T+ 2 X9 + 2 T3 + 2

= 0.3605

which is a lot closer (0.2% error) to the correct answer of 0.3613 than the
four-node rule derived earlier.

67

To extend this three-node formula to

o0

/y(x) e Py

we introduce z = [x, which enables us to write the integral as

L [0. 7110030101 (%) + 0.27851 77336 (22t) + 0.010380 2565 y(%)]

Similarly, we could deal with

[ee)

/y(m) e “dx

A

where the lower limit is A instead of 0 (try it).

It should now be quite obvious how to construct a Gaussian formula with a
given number of nodes to approximate

1
/ yl@) o
V1—2x2
“1
using the roots of the corresponding Hermite polynomial for nodes.

The situation is slightly more difficult in a case like

1

where we don’t have the corresponding set of orthogonal polynomials as yet. This
means that the task of designing a Gaussian formula for approximating the above
integral will first require constructing these, using Gram-Schmidt.

Example: To design a modest two-node Gaussian formula to approximate the
previous integral, we need to find the first three polynomials orthogonal in

the following sense
1
R
\/E
0

when i # j. We have practiced this enough, so we skip the details, quoting
the results only:

go(z) = 1
¢i(z) = v—3

bola) = aP= 2o+ =

But, to be on the save side, we do verify that they are correct:

/lqﬁo(%(:v) .

O/lgﬁo(%(x) o

oleo| =
|
wl=|wol—
I
(@]

ol =
|
vlw|~le
+
M""l%l“
I
(e

0
1
7 5 1 3 5 3 11
T 3 2 3 3\3 3 3
Our two nodes will thus be
3 9 3 3 2
Y i A T)
T 7 Va9 37 3
3 9 3 3 2
— S - =S4 V30
S TR T T
the interpolating polynomial is p(z) = " y(x1) + ——— y(x5) which,
xr1 — To Ty — T1

when divided by +/z, integrates to

2 _ 2 _

3 y(xy) + 3
T1 — To Ty — 1

2%2 2%1

y(@2) = (14 32) y(a) + (1 - 42 y(a2)

This rule can be verified to be correct for y(z) = 1, x, 2% and 23

(1+“1§_0)+(1 @) _
(o) (1) -
<1+%>x3+<1—%>x3 = %
(1+33) i+ (1-32) a3 = %

but

9258
<1+@>ﬁ+ (1_@) 7y = 1225

no longer equal the correct answer of % (off by about 5%).

To approximate

1

2

[22 e (14 0 explad) + (1 -) expla?) = 2528
Vi

0

which is reasonably close (0.6% error) to the exact answer of 2.543.

69

We now modify the formula to approximate

/yT = /y\(/%) dz ~ VA [(1 —I—\{—?’?) y(Awzp) + (1 - \{_3_80> y(sz)]

This, applied to

yields
% [(1 + %) exp(Zh) + (1 - W) exp(é)} — 1.4808

a fairly decent (0.02% error) approximation to the exact answer of 1.4901.

70

71

Chapter 8 NUMERICAL
DIFFERENTIATION

In this chapter we learn how to design formulas to numerically approximate the
value of the first (second, third) derivative of a specific function at a given point.
There are some similarities with numerical integration, but also some major differ-
ences, namely:

1. The motivation: Unlike integration, differentiation is an easy, routine proce-
dure when done analytically, why bother with numerical estimation? True
enough, the main application of numerical differentiation is not to compute
derivatives, but to solve differential equations, both ordinary and partial.

2. Now, we will not fuss much about selecting nodes; we usual use simple,
equidistant spacing (no ’Gaussian’ differentiating).

3. In addition to reducing the so called TRUNCATION ERROR any such formula
(the one expanded in powers of h), we will also have to fight the ROUND-OFF
ERROR which, for numerical differentiation (unlike integration), becomes a
major issue (that is why they sometimes say that numerically, integration is
easy and differentiation hard - the exact opposite of the analytic situation).

The main idea remains the same though, to approximate say y'(zo) we select
a few nodes (at and near xy), evaluate y(z) at these nodes, fit the corresponding
interpolating polynomial, and differentiate it, instead of the original function.

Example: We choose, as our nodes, z itself and then zo — h and xy + h, where
h is ’small’. The corresponding interpolating polynomial is

(x — x0)(x — 20 — h) (x —xg+ h)(x —z0 — h)

(—h) - (—2h) y(zo —h) + h-(—h) y(wo) €8.1)
(I_xo;f)h(x_%) y(0 + h)

Differentiating with respect to x, and then substituting x = xq yields

/ N y(xo—h) ylwo+h) ylxo+h)—y(re—h)
ylwo) = ==+ =y — = o

which is clearly the slope computed based on the two end points. Using (7.1),
the right hand side reduces to

"

y"(20), 5 ¥'(20), 4
6 h® + 120 h*+ ...

Y (o) +
The truncation error of the formula is thus

y"(w0) o Y’ (20), 4
6 h* + 120 h*+ ...

72

This formula may give us the impression that the error can be reduced, fast and
easily, by making h very small. Unfortunately, when A is very small, the round-off
error of the expression becomes huge, wiping out any accuracy gain achieved by
reducing the truncation error.

Example: Using the formula of the last example, we approximate y'(z¢) where
y(z) = exp(z?) and xy = 1. The exact value is easily computed to be 2e =

5.43656 3656 .

h exp[(1+h)2}2—he><p[(1—h)2] Error:
0.1 5.052788 333 0.0913197
0.01 5.43746 980 0.0009061
0.001 5.43657 250 0.0000088
0.0001 5.43656000 0.0000037
0.00001 5.43655000 0.0000136

0.000001 5.43650000 0.0000636

According our formula, the error should be reduced by a factor of 100 in
each step. This is clearly so up to h = 0.001, but the next improvement is
only by a factor of 2.4, and after that the results actually deteriorate! This
means that the formula should never be used with A much smaller than 0.001
(assuming a 10 digit computational accuracy).

Richardson Extrapolation

We can reduce the truncation error of the formula by a technique practically iden-
tical to the old Romberg algorithm which, in this context, is called RICHARDSON
EXTRAPOLATION. We just have to be careful not to reduce h beyond the value of

0.001 .

Example: Re-doing the previous example (this time, we will keep on reducing h
by a factor of 2):

R; =
exp[(l—&-h)z}—exp[(l—h)z} S _ M T _ 1651;_,.173,' 64Ti+17T,'
2h v 3 v 15 63

6.03135 7050 5.429387349 5.436577469 5.43656 3669
5.579879776 5.436128086 5.43656 3886 5.43656 3704
5.47206 6010 5.436536649 5.43656 3708
5. 44541 8990 5.43656 2016
5.43877 6260

El)—lgl)—‘glbimhiﬂkhi >

at which point we have clearly reached the limit of how much accuracy we
can squeeze out of this table (the correct digits are in bold). Note that now
it is short of impossible to get the full 10 digit accuracy (we will be lucky
to get 8 correct digits), due to the round off error (always looming in the
background).

73

Higher-Degree Formulas

To obtain a more accurate and faster converging formula, one has to increase the
number of nodes. The most logical next step is to use x = x, xg+h and xo+2h. We
may have noticed already (in our previous example) that the resulting coefficients
are ANTISYMMETRIC (i.e. symmetric nodes have coefficients of opposite sign),
which effectively eliminated the y(xy) value (it had 0 coefficient). One can show
that this is the case in general, when approximating a derivative of an odd order
(even-order derivatives will still require symmetric formulas).

There are two ways of further simplifying the formula derivation:

1. We can derive the formula assuming that zp = 0 and h = 1, and then
transform it to allow arbitrary values (similar to introducing X when fitting
functions - this time X = £5%). In this new scale, the interpolating polyno-
mial (using only x4+ h and x¢ £ 2h as nodes, not expecting xy to contribute)
becomes

(X+1)(X71)(X72)Y(_2) 4 (X+2)(X71)(X72)y(_1) +

(=1)x(=3)x(-4) 1x(=2)x(-3)
X42)(X41)(X =2 X42)(X4+1)(X -1
(3)>52><(—)§))Y(l) + ()4(1><3><i()Y(Q)

Differentiating this expression with respect to X, then setting X = 0 yields

(71)X(72)+1jlé,2)+1x(71)Y(_Q) + (*1)><(*2)+2g<(*2)+2><(*1)Y(_l) +
1><(72)+27><6(72)+2><1y(1) i 1x(fl)+2lx2(*1)+2X1Y(2) =

Ly =3y +2v() - v (@)

12 3 3 12
Since di’l—f) = %ﬁf) : % = dzg(x) . %, our final approximate formula reads:

(o) ~ y(xo — 2h) — 8y(xg — h) 1+28y(:c0 + h) —y(xo + 2h) (8.2)

2. Faster yet, knowing that the formula (due to antisymmetry) must have the
form of

—e Y (=2) — oY (1) + Y (1) + 2V (2)

and be exact when Y(X) =1, X, X? X3 and X* (since it is, effectively, a
five node formula) we make it correct with Y/ (X) = X and X3 (it already is
correct with 1, X% and X*, why?):

2CQ+61+61+262 =1
8Cg+61+861+62 =0

implying that ¢; = —8¢; and ¢y = —%. We thus get, much more quickly, the
same answer as before.

74

With the help of (7.1), we get

y(xg — 2h) =

4h? 8h3 16h* 32h5

—9ha Yoo o v _
y(zo) hy'(xo) + 5 Y (20) g Y (7o) + 21 (o) 120 Y
y(ro —h) =
(x0) — 1/ (@) + o (o) — /() + () — () +
Y\Zo Yy \Zo 5 Yy (To 6 Yy 24y 1209
y(xo+ h) =
! 2 1 3 " h4 h5

y(Io)Jrhy(Io)JF?y (%)Jrgy ($)+24 (IO)JFEZJ (z0) + ...
y(zo +2h) =

4h? 8h3 16h* . 32h5

2 ! - - n 20

y(wo) + 2h Yy (w0) + 5 y" (z0) + 5 Y (z0) + 5 Y (z0) + 120 7

The right hand side of (8.2) is thus equal to
h4
/ —_— —

where the second term represents the error of the formula.

(8.6)

7o) + ..

64T, 1T,

63
5.43656 2332
5.43656 3667

Example: Estimating deL(m) at x = 1 yet one more time (using our last formula),
we get:
R; =
A —exp[(1+2h)?]+8 exp[(1+h):]2;8 exp[(1—h)?]+exp[(1—2h)?] T, = 16R;+1—R;
y 5.30723 9257 5.437530565
% 5.42938 7358 5.43657 7463
% 5.43612 8081 5.43656 3885
3—12 5.43653 6647

with a bit of Richardson extrapolation.

Nonsymmetric spacing

Sometimes we are restricted in our choice of nodes. For example, we may be

required to evaluate y(z) only at and to the right of x.

Example: We would like to approximate 3'(xy) by a formula with three nodes,
Zo, To + h and xg + 2h. We know that, in terms of X, the formula will have

the form of
C()Y(O) + 01Y(].) + CQY<2)

(the coefficients will no longer have any symmetry). Making it exact for

Y(X) =1, X and X? yields:

Co+ci+ec = 0
c1+ 262
c1 + 402 =0

75

which yields ¢, = —%, c1=2,c = —g. The transformed formula is thus:
—3y(xo) + 4y(zo + h) — y(xo + 2h
Y (20) ~ y(zo) y(02h) — y(xo)

Its right hand side, with the help of (8.5) and (8.6) evaluates to

h2 " h3 3

Y (x0) — 3 (z0) — Zy“’(xo) — .

Note that the main error term is now proportional to h? (since we have three
nodes), after which both odd and even powers of h contribute.

Applied to our benchmark problem, this yields:

R, =
h —3exp(1)+4exp[(1+h)2]—exp[(1+2h)2} S _ 4R, 1 —R; 8S;+1—S;

2h v 3 7
1_16 5. 35149 250 5.439090859 5.43653 1527
% 5.41719127 5.43685 1443
= 5.43193 640

Note the formula’s poor performance (due to being nonsymmetric). Due to all
orders of h now contributing to the error term, Richardson extrapolation now
follows a different pattern (for the same reason, the resulting improvement is
not as impressive as before).

Higher derivatives

To approximate y”(xg), we first derive a basic three-node (symmetric) formula.
The interpolating polynomial is of course the same (8.1), differentiating it twice
yields the following result:

y(ro — h) — 2y(zo) + y(x0 +)
72

Utilizing (8.5) and (8.4), this equals to

" yiv (‘TO} 2
——h*+ ..
y" (o) + 19 +
where the second term represents the truncation error. The round-off error is
now substantially bigger than in the 3/'(zo) case (a reflection of having h? in the

denominator, instead of h).

Example: We will use the previous formula to approximate the second derivative
of exp(z?) at * = 1 (analytically, the second derivative equals to (42 +
2) exp(2?), and evaluates, at z = 1, to 6e = 16. 30969 097):

Ri =
h exp[(1—h)?]—2exp(1)+exp[(1+h)?] S — 4R, 1—R; 165;41—5S;
h? N 3 15
1_16 16.377100 16.309653 16.309712
% 16. 326515 16.309708
= 16. 313910

76

Clearly, the second stage of Richardson extrapolation can no longer improve
the accuracy (due to the extra random error). Things would look different if
the computation is carried out using a 15-digit accuracy:

R =
h exp[(lfh)2}72exp(1)+exp[(1+h)2} S _ 4R;1—R; 165i+175i
h2 U 3 15
1—16 16. 37709 985 16.30965102 16.30969 098
3—]‘2 16. 32651 323 16. 30968 848
i 16. 31380 467

Finally, we derive a formula to approximate y"”(zo). Here, the minimum of four
nodes is needed (always the order of the derivative plus one), we will choose them
at xo = h and z¢ + 2h. This time, we use the X trick; in the ’capital’ scale, the
formula must read (utilizing its antisymmetry):

—C9 Y(-Q) —C Y(-].) + Y(l) + Co Y(Q)
Furthermore, it has to yield the exact answer with Y (X) = X and X?:

2c04+c;+c1+2c0 = 0
802+Cl+01+802 = 6

which implies ¢; = —2¢o and ¢y = % We thus obtain

Y(2) = 2Y(1) + 2V(~1) — Y(-2)

Y"(0) ~
0) -

or, going back to y(x):

" y(xo 4 2h) — 2y(xo + h) + 2y(20 — h) — y(zo — 2h)
y" () = 573

With the help of (8.3) to (8.6), the right hand side reduces to

(@
y" (o) + Yy o) (4 0) h? + ...

Example: We use this formula to approximate the third derivative of exp(z?) at
x =1 (the exact answer is 20e = 54. 36563 657). Based on our previous ex-
perience, we carry out the computation using 20-digit accuracy (to eliminate
the round-off error, which would otherwise ’steal’” from us another two digits).

Ri —
B exp[(14+2h)?]—2 exp[(1+h)2]+2 exp[(1—h)?]—exp[(1—2h)?] S = 4R; 1 1—R; 165;11—5;
2h3 v 3 15
é 54.57311 583 54.36553087 54.36563 659
é 54.41742711 54.36562 998
= 54.37857 926

As mentioned earlier, the main application of these formulas is to solve, numer-
ically, several types of ordinary and partial differential equations. Before we can
do that, we have to first study yet another important issue, that of solving

7

Chapter 9 NONLINEAR EQUATIONS

We will start with the case of one equation with one unknown, which can be always
written as

flx) =0

Finding all solutions graphically is easy: we plot f(z) against x (using a wide
enough range of x values, to make sure we have not missed anything); then each
time the graph crosses (or touches) the z axis, the corresponding x coordinate
provides a solution to the equation. The only difficulty with this approach is the
accuracy - we will be lucky to get the first two digits of the correct answer. But,
this will be enough to give a good estimate of the solution, which can ten be refined
(to any accuracy) by the so called

Newton's Method

Expanding the graph of f(z) around the point of intersect and observing only a
small segment of it, the result will look almost like a straight line (with only slight
curvature). We will also assume that the graph crosses the z axis at a non-zero
angle (rather then just touching it). It is then obvious (draw the corresponding
picture) that our initial estimate of the root (say z() can be improved by fitting
a straight line with a slope of f'(xg) trough the point [z, f(z0)], and finding its
intercept with the x axis. Since

y — f(zo) = f'(20) - (x — 20)
is the equation of this straight line, solving
—f(z0) = f'(z0) - (x — 20)
for x yields the desired improved solution, namely:

f(x0)
f'(xo)

This yields a better, but not necessarily 10-digit accurate solution. But clearly, we
can now apply the same idea again, using x; in place of xy. This will result in

Tr1 = g —

I f(x1)
PR T)
And again:
g = 1y f (@)
f'(2)

etc., until the answers no longer change (within our usual, 10-digit accuracy).

One can show that this procedure is QUADRATICALLY CONVERGENT, which
means that the number of correct digits roughly doubles in each ITERATION (one
step of the procedure).

78

Example: To solve
e"=2—-x
we plot the two functions (e” and 2—z) and note that they intersect in a point
whose = coordinate is roughly equal to 1 (this is an alternate way of doing it
- one does not even need Maple). Our xy is thus set to 1, f(z) =e* — 24z
and f'(x) = e 4+ 1. And we are ready to iterate:

941
v = 1- 972" 5378828428
e+1
1 __ 2
vy = 2 — ST 44561 67486
e*1 41
4i) _ 2
By = mg— ST 44985 67246
e’z 41
xr3 . 2
v o= my— 2T () 44285 44011
e’ + 1
T4 __ 2
vy = ay— AT 44985 44011
evs 41

at which point the value no longer changes. Quadratic convergence is be
clearly observed.

The method fails (convergence becomes extremely slow) when f(z) only touches
the x axis, without crossing it (this is an indication that both f(x) and f’(x) have
a root at that point), or crosses it at 0 angle (an indication that f”(x) is also equal
to zero at that point). The best way to overcome this problem is: As soon as we
notice it (from graph, or slow convergence of the standard technique), we switch
to solving f’(z) = 0 instead. If that is still giving trouble, solve f”(z) = 0, etc. In
the end (to be on the save side), we should verify that the final answer does meet

f(z)=0.

Example: We know that f(z) = 1 + sinz has a root at z = 37 = 4. 712388981
(= 270°). If we try to find it by the regular technique (starting at xo = 5),

we get
v = g LTSI g ess194091
COS T
o
vy = oz — T 7e8670356
CoS T
vy = my— AT mig01 457
COS Ty
o
v = ms— =T34 730190891
COS T'3
vs = ay— AT mo199 4109
COS T4
ve = w5 LTSI g 684156
COS T5
Lo
vy = mg— TS g w1461 527

COS Tg

79

Even though the procedure seems to converge to the correct answer, the
process would obviously take forever.

If instead we solve (1 +sinz)’ = cosz = 0, we get

v = 1o+ —10 4 704187084
S111 T

2y = a4+ 2T _ 4 712389164
SN Ty

2y = @+ 222 _ 4 71238898
sin

2y = w3+ 2T _ 4 71238898
SN T3

we get the exact answer in 3 iterations (even though an extra iteration is
needed to confirm that). One can now easily verify that

1+ sin4. 71238898 = 0

We now have a technique for finding roots of our orthogonal polynomials which,
luckily, all must have SIMPLE real roots spreading over the original (A, B) interval
(otherwise, polynomial roots require special consideration - we will not go into
that).

Example: When dealing with the third-degree Laguerre polynomial, we had to
rely on Maple to get its three roots. Now, we can do this on our own. Plotting

23— 922 + 182 —6=0
indicates that there is a root near o = 6. We thus get

3 — 923 + 1819 — 6

= wo— — 6.333333333
T T T 180 + 18
3 2
7 — 927 + 1871 — 6
- — 6.29071 5373
T T TR 18, + 18
3 2
Ty — 915 + 1879 — 6
— — 6.28994 5332
T T TR 180, + 18
3 02 + 1873 — 6
v = ma— BT OIS0 6 989945083

322 — 1823 + 18

Based on our experience with quadratic convergence, we don’t have to verify
that the last answer is correct.

Once we have a root of a cubic equation, we can DEFLATE the polynomial
by carrying out the following SYNTHETIC DIVISION:

(2 — 922 + 182 — 6) + (— 6. 28994 5083) =
2% — 2.710054917 x + 0.9539034002

The remaining two roots can then be found easily to be:

2TODANT 4 \/ (2TOBANTY2 — (.9530034002 = 2.29428 0362

2710004017 _ \/ (2H00BIT)2 — 0.9539034002 = 0.41577 45565

in agreement with our previous example.

80

We will now extend this technique to solve the case of

Several Unknowns

We will start by trying to solve two nonlinear equations with two unknowns, which
we will call z; and x5 (collectively x, using a vector notation). The two equations
can be always written in the following form:

Fi(x1,22) = 0
Fy(xy,29) = 0

where each F' is now a function of two variables (our unknowns). The issue of
finding a reasonably accurate starting (INITIAL) solution is now a lot more difficult
- plotting the two functions is still possible (even though now we need two 3D
plots), but extracting the information we need is a lot more difficult (and even
this approach will ultimately fail, when we have 3 or more unknowns). There are
various techniques capable of a GLOBAL SEARCH (in n dimensional space, where
n is the number of unknowns) for a good staring point; due to a lack of time, we
have to bypass this step and simply assume that a reasonably good estimate is
provided to us.

All we need to do then is to adapt the Newton’s technique to two and more
variables. Assuming that we have a pair of initial values z;, and x,,, each of the
F' functions can be (Taylor) expanded, around this point, as follows:

aFl(xlovx%) 6F1<l'10,.1'20)

Fi(z1,22) = Fi(z1y,22,) + A, (x1 — 21,) + o, (w2 — @3,) + ...
OF.) OF:)
FQ((L‘l, 5172) = Fg(l‘lo, .’1320) —+ M (.’ﬂl — 1'10) —+ M (l‘g — (L‘QO) + ...
81’1 8I2
or, using a matrix notation,
OF
F(x) = F(x()) + Ix (x — %)) + ... (9.1)
X(0)

where x () is a column vector with components x1, and z,,, and 3—5 denotes, rather
symbolically, the following matrix of partial derivatives (called the JACOBIAN)

0F, 0F
IF _ | 921 0O
ox ~ | o oL
Oory 0xy

of each equation (one per row) differentiated with respect of each variable (one per
column). Making the left hand side of (9.1) equal to a zero vector, and solving for

x yields:
7-1

[OF

X)) = X0 ~ | 5% F(x())
L X(0)

which constitutes one iteration. In this spirit we can continue:
- 1-1
OF

X@) =X~ | 5% F(xq))

L X(1) |

etc., until convergence is reached.

81

Example: Solve

ricosze +0.716 = 0

TosSinxy — x% —1305 = 0

starting with x;, = 1 and z, = 3. The Jacobian is clearly

COS Ta —x18In Ty
ToCOST] — 217 sin xq

Evaluating the left hand side of each of our equations (using the initial values
of z1 and z5) yields
P —0.27399 24966
© 7 0.2194129540

similarly evaluating the Jacobian results in

o = —0.98999 24966 —0.14112 00081
© =1 —0.379093082 0.84147 09848

We can now compute the values of z1, and x5, as the two components of

) 0.77486 46744
x() = %) ~ Jo] " Fo) = [2. 63782 4472 }

where x(g) is the initial vector (with components 1 and 3). This completes
the first iteration. We can now repeat the process, until the two values no
longer change.

Even though we can still manage to do this with a calculator, we have clearly
reached the point at which it may be better to delegate the routine but tedious
computation to Maple. This can be done as follows:

F := [z[1]*cos(z[2]) + 0.716, z[2]*sin(z[1]) — z[1]"2 — 1.305 |;

J := matrix(2,2):

for i to 2 do for j to 2 do J[i, j] := diff(F[i], z[j]) end do end do:
x:=[1, 3.

with(linalg):

x := evalm(z — linsolve(J, F));

The last line computes the x(1y vector (instead of J ~1IF, we solve the equiva-
lent set of equations). We find it convenient not to introduce a new name, but
call both x(g) and x(;) simply x. This has the advantage that, by re-executing
the last line, we will automatically get x(2) etc. In our case, executing the
last line five times yields:

0.7748646744, 2.637824472]
[0.7825429930, 2, 719825617]

82

[0.7854682773, 2.717842400]
[0.7854606220, 2.717875728|
[0.7854606228, 2.717875728|

at which point the procedure has clearly converged (note that, due to the
round off error, the last digit of either component may keep on changing,
sometimes indefinitely).

It should be clear how the formulas extend to the case of three or more un-
knowns. Let us do an example which was in the last year’s exam.

Example: We need to solve the following three equations (the algebraic, geometric
and harmonic mean of three numbers is given, respectively, as):

T+ To + X3

= 7
3
\3/3711’2273 = 4
3 16
1 1 1 7

I) T3

For the initial values we will take z; = 1.5, 5 = 5 and x3 = 10. All we need
to modify in our previous computer 'program’ is the definition of F, thus (it
does not hurt to simplify the equations):

F = [z[1]+ 22|+ 23] — 21, z[1] * z[2] * x[3] — 64, 1/x[1]+1/x[2] + 1/x[3] —21/16
I
the dimensions (i.e. 3 instead of 2 in the next two lines), and the initial
values. We will also need to rewrite the last line (to fix one of Maple’s many
quirks) as follows:

x := evalm(z — inverse(J) &« F');
As result, we get:

6989495801, 3.572619045, 16.72843138|

8746180084, 4.895879953, 15.22950204]

9791494539, 3.948814285, 16.07203626]

9992737556, 4.004281052, 15.99644519]

9999992176, 3.999999364, 16.00000142]

9999999991, 4.000000005, 16.00000000]

The exact answer thus seems to be 717 = 1, 9 = 4 and z3 = 16 (this can be
easily verified against the original equations).

[.
[.
[.
[.
[.
[.

If we used the equations in their original form, it would have taken us 9
iterations to reach the same conclusion.

The choice of the initial values is quite critical, see what would happen if we
change x;, to 2.0 .

83

Chapter 10 ODE, BOUNDARY-VALUE
PROBLEM

We will consider only the case of 2"¢ order differential equations, which can usually
be written as

v'=fz,y.y) (10.1)
As we all know, there is normally an infinite set of solutions (i.e. y(x) functions

which meet the equation) - to narrow it down to a single, unique solution, we have
to impose two extra conditions. These are of two basic types:

1. INITIAL VALUES, where both y(x) and y/(x) are specified at the same, ’initial’
value of 7 (often equal to 0). To solve this kind of problem requires techniques
which we don’t have time to discuss in this course.

2. BOUNDARY VALUES of y(z) are given at * = A and z = B. This is the
situation we will study in detail now.

We will make our task easier by first considering a special case of (10.1), namely
that of a

Linear Differential Equation
which can be written as follows

y' (@) + pla)y' () + q(x) y(z) = r(z) (10.2)
where p(z), q(z) and r(x) are specific (given) functions of z. The equation is linear
in y(z) and its derivatives (but not in z). It is now more convenient to combine all
y related terms on the left hand side of the equation. The two boundary conditions
will be written as y(A) = « and y(B) = p.

The equation is quite often impossible to solve analytically, so we need a nu-
merical technique for doing the job. The idea is quite simple: we subdivide the
(A, B) interval into n equal-length subintervals (the nodes will be denoted xg, x1,
Ty weee Ty_1, Tn, where zg = A and z,, = B), and try to solve for the corresponding
Yo, Y1, Y2, - Yn—1 and y, (the first and last of these are simply equal to A and
B respectively, but how about the rest?). This is done by replacing y” and 3’ in
(10.2) by a suitable numerical approximation (we know how to compute these), at
each of the inside nodes, thus getting n — 1 ordinary, linear equations for 1, o, ...
Yn—1- Solving these will give us a good approximation of the desired solution (we of
course get only a set of z-y points, instead of a function, but we know how to extend
this to a smooth curve). This is sometimes referred to as the FINITE-DIFFERENCE
technique.

The simplest (and reasonably adequate) way of approximating y” at x; is to

take
Yi-1 — 2Ui + Yitr
2
Similarly, we can approximate 3" at x; by

Yi+1 — Yi—1
2h

84

where h = BT_A. Note that both formulas have error terms proportional to h? (in
terms of the leading term). The same can then be expected of our final solution.
When substituting these into (10.2), point by point, we get

Yo—2y1+Y2 . Y2 — Yo

12 + 5, D1 +thqg = 1
Y1 —20+Ys | Ys— Y B

Yn—2 — 2yn71 + Yn Yn — Yn—2

12 + o pnfl—i_ynlenfl = Tn-1

where p; = p(x1), p2 = p(x3), (similarly for ¢;, ¢, ... and 71, 79,).
This can be expressed in the following matrix form:

h 1 - .
2+ hq 1+t 0 0 "
h h .
1_ﬂ —2 4+ h2qy 1+ﬂ :
2 L 2 Y2
0 1—% 24+ ks e 0 =
Ys3
. l_hpn72 :
h 2 '
0 0 1— p;‘l 24+ h2g, . | LY]
[h
r1h2—y0<1—ﬂ)
2
7’2h2
7“3h2
[hpa
Tn_1h?® — yp (1 + p2 1>

The fact that the resulting matrix of coefficients is tri-diagonal greatly simplifies
the task of solving the equations.

Example: Using the technique, we will solve the following differential equation

+my:1+$

with boundary conditions: y(1) = 0 and y(2) = 9. Coincidentally (the equa-
tion is of a very special form), this problem has the following analytic solution:

y(z)=2"+2° -z -1

which will enable us to compare our results with the exact answer.

85

First we choose n =4 (h = 1), and fill out the following table:

hp; 2 2

| @ | M | WP | B |
3 T g
1.25 18 841 64
150 | =2 | = | =
e N

This means, to get the corresponding set of y; values, we have to solve the
following linear (tri-diagonal) set of equations:

T T 2T
81 18 O 64 0 X 18
P 1 R 10
20 21500 22038 11 fid 19
0 2% |~ lla—9%X%

Bypassing the details (we have nothing new to learn here), the answers are:

1935711

y1 = y(l1.25) = T3 02— 1.25876 (1.265625)
B 1197625
B 148071847

Comparing them with the exact values (in parentheses), we can see that their
relative errors are about 0.5, 0.3 and 0.1% respectively.

We can improve the value of y, by Richardson extrapolation by redoing the

problem using n =2 (h = %) the new table of hgi, h2q; and h%r; values now
has only one row:

| @ | | P | WP |
3 7 10
(150 [=55 % | &% |
and the corresponding set of equations is reduced to only one:

[=25 [16 —0x 15 -9

Note that now we are using a different system of indexing (the new y; is the
old s, etc.); also note that the right hand side has been computed based on

rih?® = yo(1 — #5) — (1 + %)

(this obviously happens only with n = 2). The solution is y; = y(1.5) =
3.08424, having a 1.3% error. Richardson extrapolation can now improve the
value of y(1.5) by computing

4 x 3.11518 — 3.08424
3

having the error of only 0.015% (a twenty-fold improvement over the n = 4
answer). We get a substantially improved accuracy, but at fewer points.

= 3.12549

In our next example, we like to achieve a better accuracy by simply increasing
the value of n. That of course makes the computation rather tedious, so we abandon
the ’by-hand’ approach and write the corresponding Maple 'program’ instead.

86

Example: We now solve
y'—exp(%)y +In(1+2z)y =sinz
with y(0) = 2 and y(3) = 5, by typing:
n:=6: h:=3./n:
x:=[seq(h*i, i=1.n—1)]:
MC := matrix(n —1,n — 1,0):
for i to n —1do MCYi,i] := =2+ h"2% In(1 + z[i]) end do:
for i ton —2 do MCl[i,i + 1] := 1 — h/2x exp(z[i]/2) ;
MCTi+1,1] :==1+ h/2x exp(z[i + 1]/2) end do:
r:= [seq(h 2% sin(z[i]), i = 1.n — 1)]:
r[1] :=r[1] — 2% (1 + h/2% exp(x[1]/2)):
rln—1]:=rn—1] — 5% (1 — h/2x exp(z[n — 1]/2)):
with(linalg) :
y := linsolve(MC,r);
y = [2.284400610, 2.673196903, 3.177073356, 3.797670488, 4.504905834]
with(plots) :

poinplot([[0,2], seq([[z[i], y[i]], i =1..n—1), [3,5]]);
the last line plotting the results. We can now re-run the program with n = 12,
getting a better approximation to the solution. We can then also substan-
tially improve the values of y(0.5), y(1.0), y(1.5),.... y(2.5) by Richardson
extrapolation.

Nonlinear Case
We will now go back to the general (nonlinear) case of

y” _f(xay>y,) =0

where f(z,y,y’) can be any expression involving z, y and 3. We can discretize this
equation (subject to some boundary conditions) in the same manner as before, this
time getting a nonlinear set of ordinary equations for y1, yo, Yn_1.

Example: To solve

" y-y
+
y 1+ 22

—x=0

87

subject to y(0) = 2 and y(3) = —1, weuse n = 3 (h = 1). At x; = 1 and
To = 2, our approximation yields:

wo—2n+p+ 2L L1 —
2 2
91—292+y3+y3;y1'%—2 =0

where yop = 1 and y3 = 0. These are then two nonlinear equations for y; and
y2. They will be solved by finding the Jacobian

— Y1 Y
R
10 10
and a sensible set of initial values, which in these circumstances can be ob-
tained from a simple straight line connecting the boundary values (y; = %
and yp = % in our case). And we are ready to iterate, i.e. replace y; and ys
by the two components of

R }1{_2““’””51-%

Yo 1-£2 -—2-& =2y — 4 -2 -2

evaluated using the current (starting with the initial) values of y; and ys.
The iterations yield:

Y1t Ya!
—0.7230514093 —1.295190714
—0.4987596596 —1.281172478

—0.4984471907 —1.281152950
—0.4984471901 —1.281152950

The Newton’s technique thus converged in three iterations. This of course
does not mean that we have a 10-digit accurate solution to the original dif-
ferential equation!

To build a more accurate solution, we use n = 6 (h = %) This can be done,
with the help of Maple, as follows:

n:=6: h:=3/n: yl0]:=2: yln]:=—1:
= [seq(h*i,i=1.n—1)]:
F = [seq((y[i + 1] — 2+ y[i] + yli — 1])/h"2+

(yli +1] — i — 1)/2/h * y[i]/(1 + 2[i])"2) — z]i], i = 1. — 1)]:
J = matrix(n — 1,n — 1)
for i ton—1do for j ton—1do J[i,j] :=diff(Fli],y[j]) end do end do:
yi=[seq(2. — 3« hxi, i=1.n—1):

with(linalg) :

88

for i to 5 do y :=evalm(y—inverse(J) &+ F') end do;
y = [0.5386935342, —0.5221789195, —1.395663039, —1.905281418, —1.651949253]
y := [0.6283620082, —0.3227896441, —1.087744374, —1.579900666, —1.618444037]
y :=[0.6329774788, —0.3158610669, —1.082427720, -1.579185984, —1.618252806]
y :=[0.6329807695, -0.3158595491, —-1.082428414, -1.579186594, —1.618253133]
y :=[0.6329807697, —0.3158595490, —-1.082428414, -1.579186594, —1.618253134]

Comparing the second and fourth value with y; and y, of our previous (n = 3)
solution, we can see that the solution is not yet very accurate. We can im-
prove the accuracy of the y(1) and y(2) values by Richardson extrapolation,
but now (having a general program) it is a lot easier to simply keep on dou-
bling the value of n, until a sufficiently close agreement between consecutive
solutions is reached. Note that to re-run the program using a new value of
n, we first have to type:

restart:

89

Chapter 11 MATRIX" EIGENVALUES

Here we assume a rudimentary knowledge of matrix algebra (adding, subtracting
and multiplying two matrices; we have already learned how to invert a square
matrix). Let us go over the other basic matrix properties and related definitions:

Making rows of a matrix A to be columns of a new matrix AT (for a square
matrix, this means flipping the matrix around its main diagonal) create the so
called matrix TRANSPOSE. On can easily show that

(AB)" =BTAT

A matrix which equals its own transpose (it must be square) is called SYMMET-
RIC. Note that a product of two symmetric matrices is not necessarily symmetric:
(AB)T = BTAT = BA which is not equal to AB in general (matrix multiplication
is usually not COMMUTATIVE).

For an important class of matrices, AT is equal to A™! (matrix inversion then
becomes trivial). Such matrices are called ORTHOGONAL. One can show that a
product of two orthogonal matrices remains orthogonal:

(P1Py) ™ =Py 'Py =Py Py = (P1P)"
For a square matrix A, a vector x such that
Ax = Ax

(i.e. when pre-multiplied by A, x changes its length by a factor of A, but not
its direction) is called the matrix’ EIGENVECTOR (A is the corresponding EIGEN-
VALUE). Eigenvectors and eigenvalues of real matrices may be complex in general.
But, for symmetric matrices, they must be all real. To simplify our task (and
avoid dealing with complex numbers), we will learn how to construct eigenvalues
and eigenvectors of symmetric matrices only.

It is very easy to find eigenvalues (with their eigenvectors) of DIAGONAL ma-
trices, right?

One can show that, when S is regular (and, of matching size), the new matrix

ST*AS

has the same eigenvalues (not eigenvectors) as A (modifying A in this manner is
called SIMILARITY TRANSFORMATION).

Proof: S"!ASy = My implies ASy = ASy. Thus, A is and eigenvalue of A, with
the corresponding eigenvector x = Sy. [

Thus, if we can find a similarity transformation to result in a diagonal matrix
D (= ST'AS), we have effectively found the eigenvalues (and eigenvectors - the
columns of S) of the original matrix (and this is how it is usually done). Working
with symmetric matrices only actually gives us a further advantage: one can show
that, when A is symmetric, it will be diagonalized by a similarity transformation
with S not just regular, but also orthogonal.

90

Constructing the corresponding orthogonal matrix (let us call it P instead of
S, to emphasize the fact) will be a long and tedious process, consisting of a whole
sequence of similarity transformations (each trying to get us a bit closer to a fully
diagonal matrix), thus:
PP PTAPP,P;...

As we already know, a product of orthogonal matrices will remain orthogonal
throughout this process.

First, we describe a procedre for making A (by an orthogonal similarity trans-
formation) tri-diagonal (clearly a major step towards full diagonalization).

Householder's Method
Let us assume that w is a (column) vector whose NORM (defined as vVwTw, i.e.
the square root of the sum of squares of all its elements) is equal to 1. Then

P=I-2ww'
is clearly both symmetric and orthogonal, since P? = (I-2ww')? = I—-4ww? +
dwwiww!l = -dww! +4ww! = L

Suppose now that we have a symmetric matrix A,and would like to make it tri-
diagonal by an orthogonal similarity transformation. We first construct a vector
u; by::

1. Take the first column of A and replace its first element by zero.

2. Compute the norm (say hi) of the remaining elements, and subtract it from
the second element, when this element is positive (add otherwise). Note that
the norm of the new vector is Hy = 2hy(hy — |ag1|).

The matrix

T
2u;ug

H,

is clearly symmetric and orthogonal (by the previous argument), and

]P’lz]l—

P, AP,

is a similarity transformation of A, which makes all but the first two elements in
the first column (and row, due to symmetry) equal to 0 (we will skip the proof,
but we will clearly see this 'at work’ in our subsequent example).

We will then construct us by relacing the first two elements of the second row
(of the resulting matrix) by 0, computing the (remaining element) norm hy and
subtracting (adding) it from (to) the third element. Based on this, we compute

T
_2upuy

Py=1
2 2

and carry out the corresponding similarity transformation.
Continuing in this manner, we will transform the orginal matrix to its similar,
tri-diagonal form in n — 2 steps (n is the matrix dimension).

91

Example: To tri-diagonalize

41 -2 2
12 0 1
—2 0 3 —2
2 1 -2 -1
we have hy = /12 = (—2)2 + 22 = 3,
0
1-3
u; = _9
2
H =2-3-(3—1)=12, and
1000 0 0 0 0 1 0 00
p_|0 100 |0z 2z Jo 122
COLOL Y g g)
0001 0 -3 -5 3 0 5 35 3

There are various ’shortcuts’ for computing P; AP, but we will concentrate
on the logic of the algorithm, rather than its efficient implementation. So we
will let Maple do the evaluation, efficient or not:

1 0 00 41 -2 271 0 00
0o + -2 2 12 0 1 0o + -2 2
IS O B I _ 313
0 -2 3 20 3 =20 |0 -2 33
0 5 3 3 21 2 -1][0 35 35 3
4 3 0 0
0 -1 -3 3

Continuing to similarly reduce the second column (row), we get hy = \/ (—3)2+(—1)2 =
5

3

0

u 0

1= 4

_3+%

-1

Hy=2-3-(3—4)=10 and

1 000 00 0 0 1 00 0
]P)_OlOO 00 0 O] 1010 0
2 = - 1 3 | = 4 3
0010 00 : —% 003 £
0001 OO—% % 00%—%

92

So, finally, P;IP; APP;IPy equals to

100 0][4 3 0 0 100 0
010 0|3 & -2 -1 010 0
005 —5]JL0 -1 -5 3510100735 —3
4 3 0 0
32—- 0
()_?)é___ﬁ
0 0 143

__ﬁ

which has the desired tri-diagonal form. We know that this matrix (let us
call it Ag) has the same eigenvalues as the original one.

Making a symmetric matrix tri-diagonal is the easy part. Making a tri-diagonal
matrix fully diagonal is a lot more difficult, and can be achieved only approximately
(even though, to an arbitrary accuracy) by iterating (until the off diagonal elements
'nearly’ disappear). This is what we will discuss now.

QR Decomposition

Any matrix can be written as a product of an orthogonal matrix, say @, and an
upper triangular matrix R. We need to learn how to do this with our tri-diagonal
matrices only. Once we have achieved that, i.e. found Q and R such that

Ay = QR

it should be clear that
=RQ=Q"AQ

is a similarity transformation of Ay. Not only that, A; remains symmetrical (quite
obvious) and tri-diagonal (not so obvious, but we will see it in our examples).
Finally (and this is the most important part), its off diagonal elements decrease
in magnitude (which means that we can do this repeatedly until they practically
disappear). At that point, we are done: we have found the eigenvalues of the
original matrix to be the main diagonal elements of the resulting one.

So the only missing part of the algorithm is carrying out the () R decomposion.
For this purpose we must define a special kind of orthogonal 2 by 2 matrix called
ROTATION, which has the follwing general form

[+ ¢

where 5% + ¢ = 1. One can easily verify that the matrix is orthogonal, thus:

c s c —s | A4+s* —cs+sc] [10
—s c||s ¢| | —sctes £+ |01
Note that is we replace, in a unit matrix of any size, one of the main-diagonal 2
by 2 submatrices by the previous matrix, e.g.
1 0 0
0 ¢ s
0 —s ¢
0 0 O

_— o O O

93

the resulting matrix is still orthogonal.

The Q)R decomposition is performed as follows: we premultiply A by a rotation
constructed to make the first below-diagonal element equal to zero. This is achieved
by using the following two numbers for ¢ and s, respectively:

1. take the first two elements of column 1,
2. change the sign of the second one,
3. and 'normalize’ them (divide each by the sqaure root of their sum of squares).

Then, similarly, construct and apply another rotation to eliminate the second
below-diagonal element, etc., until you eliminate all below-diagonal elements.

Example: Suppose we want to construct the ()R decomposition of the following
tridiagonal matrix:

2 -1 0 0
-1 3 2 0
Bo=1 o 9 34
0 0 4 1
First we premultiply by
-2 1
v AR
L 2 g0
P,=| V5 5
0 0 10
| 0 0 01
to obtain
VB =5 —2V/5 0
0 V6 2/5 0
0 2 -3 4
0 0 4 1
then by
1 0 0 O
V5
p,— | © TZ ;g 0
0 -3 ¥ 0
0 0 0 1

(note that now ¢ and s have been computed based on the second and third
elements of row 2), to get

Vb =5 —3V5 0
0 3 —2 8
3 3
0 0 —BV5 $V5
0 0 4 1
and finally by

1 0 0 0
P 0 1 0 0
= 23 60
’ 00 - 1249 6245
00 — 60 23

94

(based on the last two elements of column 3), to get the resulting R matrix

VEREVGRES V6 0
0 3 —2 8
3 3
0 0 V6245 —22/6245
0 0 0 —108.\/1249

1249

Note that that the corresponding Q = PTP]PT (this follows from P3Py Ay =
R).

So we have just constructed the QR decomposition of Ay. What we really
want in the end is A; = RPTP]PY, which should turn out to be symmetric
and tri-diagonal. This takes only some extra matrix multiplication (note that
in each step, only two columns of R change - an efficient program would take
that into consideration, since full-matrix multiplication is very ’expensive’),

yielding
[3 —2v/5 0 0
A = -3v5 3 £V6245 0 -
0 26245 80T 1236/
0 0 _ 1236 5 2369
L 1249 1249
[3.0 —1.34164 0787 0 0
—1.341640787 1.555555556 3.512236106 0
0 3.512236106 —3.452272929 —2.212794252
I 0 0 —2.212794252 1.896717374

This procedure can then be repeated to build A,, A3, etc. To make it easier, we
will use the following Maple procedure called step, which takes A; as its argument,
and returns A, q:

step :=proc(A) local n,a,7,7,p; n:= rowdim(A):

for i ton —1do a:= submatrix(A4,i..i+1,1..n):

pli] ;== matrix(2, 2, [a[1, 1], a[2,], —a[2,1],a[1,d]]) / sqrt(a[l,i] 2 + a[2,i]"2):
a = evalm(p|i] &+ a):

for j ton do Afi, j] :=a[l,j]: Ali+1,j] :==a[2,j] end do: end do:
for i ton —1do a:= submatrix(A4,1..n,i.i+ 1):

a := evalm(a &= transpose(p[i])):

for j ton do A[j,i] :==alj,1]: Alj,i+ 1] :=a[j,2] end do: end do:

A end:

To get Ay (assuming that we have already computed A;), all we have to do is
type:

Ay = step(Ay);

and getting

95

3.759259259 —1.477425003 0 0
—1.477425003 —1.705370807 4.388847474 0
0 4.388847474 —0.7240742723 0.9371079120
0 0 0.9371079120 1.670185820

In this form, the procedure converges rather slowly (eventually, we will have to
do something about that!), so we quote the result of every thent iteration only:

—0.0778492650 —5.192390056 0 0
A _ | —5192390056 —1.106701279 0.0320364388 0
10— 0 0.0320364388 2.830526381 0.0021280394
0 0 0.0021280394 1.354024164
—5.726428187 —.9309776898 0 0
A _ | 9309776898 4.542070063 0.00009717882 0
207 0 0.00009717882 2.830337028 —0.0000006391
0 0 —0.0000006391 1.354021096
—5.809267571 —0.09602590019 0 0
A, _ | —0-09602590019 4.624909454 0.0000007118 0
30— 0 0.0000007118 2.830337023 —0.0000000004
0 0 —0.0000000004 1.354021096
—5.810141972 —0.0098268078 0 0
A, _ | —0-0098268078 4.625783856 0.0000000052 0
40 0 0.0000000052 2.830337023 0
0 0 0 1.354021096
—5.810151128 —0.0010055427 0 0
A _ | —0-0010055427 4.625793015 0 0
50— 0 0 2.830337025 0
0 0 0 1.354021096
—5.810151219 —0.00010289358 0 0
A _ | —0.00010289358 4.625793111 0 0
60— 0 0 2.830337017 0
0 0 0 1.354021096
—5.810151211 —0.0000105287 0 0
A _ | —0.0000105287 4.625793102 0 0
0 0 0 2.830337011 0
0 0 0 1.354021096
—5.810151211 —0.00000107738 0 0
Ao — | —0-00000107738 4.625793102 0 0
80— 0 0 2.830337011 0
0 0 0 1.354021096

96

at which point the main diagonal elements no longer change (even though we still
have not reached a full convergence - the off-diagonal elements have not quite
disappeared yet).

Based on this example, we can make a few general observations:

1. The procedure converges much too slowly!

2. The convergence is the fastest at the lower right corner, and slowly drifts up
the main diagonal.

3. The eigenvalues are extracted from the smallest (in magnitude) - the lower
right corner, to the largest (upper left corner).

The main issue is now: how to speed up the convergence? This is achieved
by the so called SHIFT, which works as follows: If, at any stage of the process,
we subtract from A; a multiple of the unit matrix, say sI, all its eigenvalues are
reduced by s (the eigenvectors are not affected). The closer we can bring the
smallest (in magnitude) eignevalue to zero, the faster the procedure will converge.
So it all hinges on how to estimate the smallest eigenvalue. This we do as folows:

We compute the two eignavalues of the lower right 2 by 2 'corner’ (submatrix)

of A;, say
a b
b c
by using the following formula

a+c a—c\> 9

()
and take the one smaller in magnitude to be our s. Then we subtract sI from A,
before we carry out the next RQ step. Then, we repeat the whole procedure (find
the eigenvalues of the lower right corner, subtract the new sl etc.) until conver-
gence is reached (this will now happen a lot faster: each iteration will triple the
number of correct digits in the last eignenvalue - the so called CUBIC convergence).
We of course have to keep track of all the s values, and make the corresponding
adjustment in the resulting eigenvalues.

There is one more trick which will speed up the computation: once we reduce
the off-diagonal element in the last row (and column) to zero, the corresponding
main diagonal element is one of the eigenvalues. We may then delete the last row
and column (the so called DEFLATION) and continue the process with a matrix
of a smaller size. We continue this till we reach a 2 by 2 matrix, for which the
eigenvales can be computed analytically.

Example: Starting with the same

2 -1 0 0
=1 3 2 0
Ao = 0 2 -3 4
0 0 4 1

97

as before, we first find the eigenvalues of the lower right corner:

—14++20
so s = —1 +1/20. Our step procedure is then applied to
3-v20 -1 0 0
-1 4-20 2 0
0 2 —2—+/20 4
0 0 4 2 — /20
resulting in
—2.086016217 —1.127928288 0 0
—1.127928288 —6.142517389 4.548831156 0
0 4.548831156 —2.229740719 —0.7820049124
0 0 —0.7820049124 —0.4302694951

Similarly, the next s is —0.1379246338, which needs to be subtracted from
the main diagonal. Used as the argument of step, we obtain:

—3.944739819 —3.252698362 0 0
—3.252698362 —7.003053686 1.042796325 0
0 1.042796325 1.071996644 0.2847589388
0 0 0.2847589388 —0.4610484219

And, two more times: s = —0.5122327109

—8.127461129 —1.846776024 0 0
—1.846776024 —1.827792430 .6901018070 0
0 6901018070 1.658979780 0.0013572467
0 0 0.0013572467 0.0083593393

s = 0.008358223295

—8.624456904 —0.3419015412 0 0
—0.3419015412 —1.287002968 0.7941414393 0
0 0.7941414393 1.590112347 0.0000000003
0 0 0.0000000003 0.0000001888

So

after four iterations, we found the first eigenvalue, equal to

0.0000001888 + 0.008358223295 — 0.5122327109 — 0.1379246338 — 1 + /20
= 2.83033 7023

Note that, without shift, we needed someting like twenty iterations to get
this value. Also note that, when we use shift, we don’t necesarily extract the
smallest eigenvalue first.

Deflating the matrix to

—8.624456904 —0.3419015412 0
—0.3419015412 —1.287002968 0.7941414393
0 0.7941414393 1.590112347

98

we find that the next s equals to —1.491646077. Subtracting it from the main
diagonal elements of the previous matrix, and applying step, results in:

—7.148692727 —0.03946443807 0
—0.03946443807 3.285889993 —0.0589673574
0 —0.0589673574 0.01639343608

Repeating one more time: s = 0.0153302697

—7.164141138 —0.01802010583 0
—0.01802010583 3.271740963 0.00000000127
0 0.00000000127 0.00000007064

which is sufficient to get the next eigenvalue, thus:

0.00000007064 + 0.0153302697 — 1.491646077 +
+0.008358223295 — 0.5122327109 — 0.1379246338 — 1 + /20
= 1.35402 1097

Note that we had to adjust the eigenvalue by adding cumulative sum of all
the s values so far.

Deflating the last matrix yields

—7.164141138 —0.01802010583
—0.01802010583 3.271740963

whose eigenvalues are —7.164172254 and 3.271772079. Adjusted by the same
cumulative sum, these yield —5.81015 1227 and 4. 62579 3106 for the last two
eigenvalues of the original matrix. Using shift and deflation, we have thus
been able to extract all four eigenvalues in six iterations. This is a substancial
improvement over 80 iterations of the previous example.

