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Chapter 1 PREVIEW
The course topics will concentrate on the following three areas:

Fitting polynomials to:
Discrete data
(either computed or empirical, and collected in a table of x and y values).
This may be done for several different reasons. We may want to

1. accurately interpolate (compute y using a value of x not found in the table
itself).

2. draw a smooth picture connecting all data points,

3. fit a simple curve (linear, quadratic) to empirical (not so accurate) data. The
curve be ’as close as possible’ to the individual data points - we will have to
agree on some overall criterion.

More complicated mathematical functions
over a specific range of x values. Similarly to the previous case. we cannot do this
exactly, but have to minimize (in some well defined sense) the error of the fit.
There are several reasons for doing this:

1. Polynomials are easy to evaluate (we just add/subtract and multiply - and
ultimately, all numerical computation has to be reduced to these)

2. they are also easy to integrate and differentiate - we may thus substitute our
fitted polynomial for the actual function (which may be very hard or even
impossible to integrate).

To facilitate the procedure (of fitting polynomials to a function), several sets of
orthogonal polynomials are introduced (e.g. Legendre, Chebyshev, Hermite,
etc.).

Numerical Integration and Differentiation
Here the objective is clear; we know that many functions are impossible to integrate
analytically, so we want to have an accurate way of doing this numerically. We
would also like to have some idea and control over the accuracy of the results.

Integration

The way how we can numerically evaluate
BR
A

y(x) dx is to choose a set of x values

(so called nodes) in the [A, B] interval, for each (say xi, i = 0, 1, 2, ..., n) of
these compute the corresponding yi ≡ y(xi). We then have to develop a formula
for combining these yi values to accurately estimate the integral (the area between
the y(x) function and the x axis).
A part of the problem is clearly the choice of the nodes. There are two distinct

ways of approaching it:
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1. A sensible (but in a sense arbitrary) choice of n equidistant values (effectively
subdividing [A, B] into n equal-length subintervals, leading to two basic
’rules’ of integration, trapezoidal and Simpson, to be studied in detail.

2. A choice of n points which is, in a certain sense, optimal (we can define
’optimal’ only when we have a better understanding of the issues).

Differentiation
similarly involves estimating the value of y0(x), y00(x), etc. at x = x0. This can be
done by computing y(x) at x0 and a few extra values of x in the neighborhood of
x0 (this time, we will almost always choose them equidistant), and plugging them
into the corresponding formula (which, of course, will be our task to develop). The
major problem facing us here will the round-off error.

Related issues
The formulas for numerical differentiation can also be used (this is in fact their
major application) to solve, numerically, various types of ordinary and partial
differential equations. We will deal with some examples of the ODE variety
only (boundary-value problem). In this context, we will also have to learn
solving nonlinear (regular) equations.

Matrix Algebra
The basic problem is to solve n linear equations for n unknowns, i.e. Ax = r,
where A is an n by n (square) matrix, x is the (column) vector of the n unknowns,
and r is similarly a vector of the right hand side values. The simplest technique
uses the so called Gaussian elimination and backward substitution. One
can reduce the round-off error by adding an extra step (row interchange) called
pivoting.
In some (important) special cases (related to our treatment of differential equa-

tions) A is tridiagonal (only the elements on or adjacent to the main-diagonal are
non-zero). It then becomes more efficient to use a different approach, namely a so
called LU decomposition of matrix A.
We will then employ some of these techniques to learn how to solve, itera-

tively, n non-linear equations for n unknowns, by Newton’s method (we will
start with a single equation for one unknown).

Eigenvalues and eigenvectors
of square matrices are defined by

Ax = λx

where x (non-zero) is an eigenvector and λ an eigenvalue.
To simplify the issue, we will assume that A is symmetric (a fairly important

class of matrices), which implies that both eigenvalues and eigenvectors must be
real (they could be complex in general). We will then learn how to find them, one
by one (there is n of them in general), by first utilizing Housholder’s method
to reduce A to a tridiagonal matrix, and then the applying, repeatedly, the so
called QL algorithm to extract the smallest eigenvalue. The resulting matrix is
then deflated and the process repeated till all eigenvalues are found.
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Remaining Topics
There is a number of important topics which we will not have time to discuss in
this brief course, namely:

1. Solving ordinary differential equations (initial-value problem).

2. Solving partial differential equations.

3. Optimizing a function of several variables (finding its largest or smallest
value).
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Chapter 2 USING MAPLE
Basics
Typing an expression (following Maple’s > prompt) results in evaluating it.
When the expression contains only integers (no decimal point), one gets the exact
(rational) answer, as soon as at least one number in the expression is real (with a
decimal point), the result is real (rounded off to 10 significant digits). The symbols
∗, / and ˆ facilitate multiplication, division and exponentiation, respectively. Note
that each line of your input has to end with a semicolon:

> 4 ∗ 5− 3 / (5 + 2) + 2 ˆ (−3) ;
1103
56

The result of any computation can be stored under a name (which you make up,
rather arbitrarily), and used in any subsequent expression. Maple then remembers
the value, until the end of your session, or till you deliberately replace it with a
new value. Note that this (giving a name to a result) is achieved by typing the
name, followed by a colon and the equal sign (a group of two symbols, representing
a single operation), followed by the actual expression to be stored:

> a := (3.0 + 4) ∗ (2− 6) + 2 / 3− 4 / 5 ;
a := −28. 13333 333

> a/ 7 + 9 ;

4. 98095 238

> a := 14 / 6 ;

a := 7
3
;

> a/ 7 + 9 ;

a := 28
3
;

(from now on, we will omit the > prompt from our examples, showing only
what we have to type).

Maple can also handle the usual functions such as sin, cos, tan, arcsin,
arccos, arctan, exp, ln, sqrt, etc. All angles are always measured in radians.

sin(3.) ; sqrt(8) ;

.14112 00081

2
√
2

We can also define our own functions by:

f := x− > x ˆ 2 ;
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f := x→ x2

f(3);

9

where f is an arbitrary name.

Lists and Loops
Maple can store, under a single name, a whole list of values, thus:

a := [3 / 2, 5, sqrt (3), 7] ;

a := [3
2
, 5,
√
3, 7]

The individual elements of a list can be referenced by indexing (and used in
computing another expression):

a[2] ∗ 4 ;
20

One can add elements of a list by the following command (as Maple calls
them):

sum(’a[i]’,’i’= 1..4) ;
27
2
+
√
3

One can convert the last answer to its decimal form by:

evalf(%) ;

15.23205 081

Note that the % symbol always refers to the previous expression.
Similarly to sum, one can also compute product of elements of a list.

To subtract say 3 from each element of the list a, redefining a correspondingly,
can be achieved by:

for i from 1 to 4 do a[i] := a[i]− 3 end do :
Note that terminating a statement by : instead of the usual ; will prevent

Maple from printing the four results computed in the process (we may not need
to see them individually). Also note that, upon completion of this statement, i
will have the value of 5 (any information i had contained previously will have been
destroyed)!
We can easily verify that the individual elements of our a list have been updated

accordingly:

a[2] ;

2

We may also create a list using the following approach:

b := [ seq (2 ˆ i, i = 1..6)] ;

b := [2, 4, 8, 16, 32, 64 ] ;
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Variables and Polynomials
If a symbol, such as for example x, has not been assigned a specific value, Maple
considers it a variable. We may then define a to be a polynomial in x, thus:

a := 3− 2 ∗ x+ 4 ∗ xˆ2 ;

a := 3− 2x+ 4x2

A polynomial can be differentiated

diff(a, x);

−2 + 8x

integrated from, say, 0 to 3

int(a, x = 0 .. 3) ;

36

or plotted, for a certain range of x values

plot(a, x = 0..3) ;

We can also evaluate it, substituting a specific number for x (there are actually
two ways of doing this):

subs(x = 3, a) ; eval(a, x = 3);

33

33

We can also multiply two polynomials (in our example, we will multiply a by
itself), but to convert to a regular polynomial form, we nee to expand the answer:

a ∗ a ; expand(%) ;

(3− 2x+ 4x2)2

9− 12x+ 28x2 − 16x3 + 16x4
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Procedures
If some specific computation (consisting, potentially, of several steps) is to be done,
more than once (e.g. we would like to be able to raise each element of a list of
values to a given power), we need first to design the corresponding procedure
(effectively a simple computer program), for example:

RAISETO := proc(L, N) ; local K, n, i ; K := L ; n := nops(L) ;

for i from 1 to n do K[i] := K[i] ˆN end do ; K end proc :

where RAISETO is an arbitrary name of the procedure, L and N are arbitrary
names of its arguments (also called parameters), the first for the list and the
second for the exponent, K, n and i are auxiliary names to be used in the actual
computation (since they are local, they will not interfere with any such names
used outside the procedure). First we copy L into K (Maple does not like it if we
try to modify L directly) and find its length n (by the nops command). Then,
we raise each element K to the power of N, and return (the last expression of the
procedure) the modified list. We can organize the procedure into several lines by
using Shift-Enter (to move to the next line).
We can then use the procedure as follows:

SV FL([2, 5, 7, 1], 2); SV FL([3, 8, 4], −1) ;
[4, 25, 49, 1]

[1
3
, 1
8
, 1
4
]

Matrix Algebra
We can define a matrix by:

a := matrix(2, 2, [1, 2, 3, 4]) :

where 2, 2 specifies its dimensions (number of rows and columns, respectively),
followed by the list of its elements (row-wise).
We multiply two matrices (here, we multiply a by itself) by

evalm(a &∗ a) :

Note that we have to replace the usual ∗ by &∗. Similarly, we can add and
subtract (using + and −), and raise a to any positive integer power (using ˆ).
We can also multiply a by a vector (of matching length), which can be entered

as a list:

evalm(a &∗ [2, 5]) :

Note that reversing the order of a and [2, 5] yields a different answer.

To compute the transpose and inverse of a, we must first ask Maple to make
these commands available by:
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with(linalg) :

We can then perform the required operation by

transpose(a) :

etc.
Similarly, to solve a set of linear equation with a being the matrix of coefficients

and [2, 3] the right hand side vector, we do:

linsolve(a, [2, 3]) :

Other useful commands:
a := randmatrix (5, 5) :

creates a matrix of specified dimensions with random elements,

augment(a, [6, 2, 7, 1, 0]) :

attaches the list, making it an extra (last) column of a,

submatrix(a, 2..4, 1..2) :

reduces a to a 3 by 2 submatrix, keeping only rows 2, 3 and 4, and columns 1
and 2,

swaprow(a, 2, 5) :

interchanges rows 2 and 5 of a,

addrow(a, 2, 4, 2/3) :

adds row 2 multiplied by 2
3
to row 4 of a.

To recall the proper syntax of a command, one can always type:

?addrow

to get its whole-page description, usually with examples.

Plots
Plotting a specific function (or several functions) is easy (as we have already seen):

plot( {sin(x), x− xˆ3/6}, x = 0..P i/2) :

One can also plot a scattergram of individual points (it is first necessary to ask
Maple to make to corresponding routine available, as follows:

with(plots) :

pointplot( [[0, 2], [1,−3], [3, 0], [4, 1], [7,−2]]);
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Note that the argument was a list of pairs of x-y values (each pair itself enclosed
in brackets).
We can combine any two such plots (usually a scattergram of points together

with a fitted polynomial) by:

pic1 := pointplot( [seq( [i/5, sin(i/5)], i = 1..7)] ) :

pic2 :=plot(sin(x), x = 0..1.5) :

display(pic1, pic2) :

To plot a function defined in a piecewise manner, we first define it by, say

f := piecewise(x < 0,−xˆ2, x < 4, xˆ2, 4 ∗ x) :

(note that 4∗x will be used ’otherwise’, i.e. for all x values bigger than 4), and
then use the regular

plot(f, x = −5..10) ;



15

Chapter 3 INTERPOLATING
POLYNOMIALS

In this chapter, we will construct polynomials to fit (which, in this chapter, means
to pass exactly through each point) a discrete set of data, such as, for example

x: 0 1 3 4 7
y: 2 —3 0 1 —2

or that generated by evaluating a specific function, say y = sinx, at x = 0, 0.1,
0.2, ... 1.0.
There are two standard techniques for achieving this (they both result in the

same polynomial), which we discuss in the next two sections.

Newton’s Interpolation
The first thing to realize when fitting a polynomial (exactly) to discrete data is
that the polynomial must have as many parameters (i.e. coefficients) we are free
to vary as there are conditions (i.e. points) in our data set.
Thus, for example, to run a polynomial through all points of the above table,

it needs to have 5 coefficients (i.e. degree 4), such that

c0 + c1xi + c2x
2
i + c3x

3
i + c4x

4
i = yi

where i = 1, 2, ... 5. The resulting 5 equations for 5 unknowns are linear, having
a unique solution (unless there are two or more identical values in the x row).
Later on we learn how to solve such systems of linear equations, but the general
technique is quite lengthy and tedious.
Fortunately, due to the rather special from of these equations, there is an easier

and faster way of getting the answers. It works as follows:

We fit the first point only by a zero-degree polynomial (a constant),

we extend this to a linear fit through the first two points,

quadratic fit through the first three points,

..., until we reach the end of the data.

Each step of the procedure can be arranged to involve only one unknown pa-
rameter, which we can easily solve for.

Example: To fit the data of the original table, we start with the constant 2 (the
first of the y values). Then, we add to it c(x − 0), where c is a constant
to yield, for the complete expression, −3 (the second y value), i.e. 2 +
c = −3 ⇒ c = −5. Our solution so far is thus 2 − 5x. Now, we add to it
c(x− 0)(x− 1) so that the total expression has, at x = 3, the value of 0, i.e.
2− 5× 3 + c× 3× 2 = 0 ⇒ c = 13

6
. This results in 2− 5x+ 13

6
x(x− 1). Add

c(x− 0)(x− 1)(x− 3) and make the result equal to 1 at x = 4 ⇒ c = − 7
12
.
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Finally, add c(x− 0)(x− 1)(x− 3)(x− 4) and make the total equal to −2 at
x = 7 ⇒ 19

252
. Thus, the final answer is

2− 5x+ 13
6
x(x− 1)− 7

12
x(x− 1)(x− 3) + 19

252
x(x− 1)(x− 3)(x− 4)

Expanding (quite time consuming if done ’by hand’) simplifies this to

2− 275
28

x+
1495

252
x2 − 299

252
x3 +

19

252
x4

One can easily verify that this polynomial passes, exactly, through all five
points.

Computing the c values is made easier by utilizing the following scheme:

0 2
−3−2
1−0 = −5

1 —3
3
3
−(−5)
3−0 = 13

6

0−(−3)
3−1 = 3

2

− 1
6
− 13

6

4−0 = − 7
12

3 0 1− 3
2

4−1 = −16
− 1
18
−(− 7

12
)

7−0 = 19
252

1−0
4−3 = 1

− 1
2
−(− 1

6
)

7−1 = − 1
18

4 1 −1−1
7−3 = −12−2−1

7−4 = −1
7 —2

Lagrange interpolation
This is a somehow different approach to the same problem (yielding, in the end,
the same solution). The main idea is: Having a set of n pairs of x-y values, it is
relatively easy to construct an n− 1 degree polynomial whose value is 1 at x = x1
and 0 at x = x2, x = x3, ... x = xn, as follows

P1(x) =
(x− x2)(x− x3)....(x− xn)

(x1 − x2)(x1 − x3)....(x1 − xn)

where the denominator is simply the value of the numerator at x = x1. Similarly,
one can construct

P2(x) =
(x− x1)(x− x3)....(x− xn)

(x2 − x1)(x2 − x3)....(x2 − xn)

whose values are 0, 1, 0, ..... 0 at x = x1, x2, x3, .... xn respectively, etc.
Having these, we can then combine them into a single polynomial (still of degree

n− 1) by
y1P1(x) + y2P2(x) + ....+ ynPn(x)

which, at x = x1, x2, .... clearly has the value of y1, y2, .... and thus passes through
all points of our data set.
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Example: Using the same data as before, we can now write the answer almost
immediately

2
(x− 1)(x− 3)(x− 4)(x− 7)

(−1)(−3)(−4)(−7) − 3x(x− 3)(x− 4)(x− 7)
1(−2)(−3)(−6) +

x(x− 1)(x− 3)(x− 7)
4× 3× 1× (−3) − 2x(x− 1)(x− 3)(x− 4)

7× 6× 4× 3
which expands to the same.

Based on this fit, we can now interpolate (i.e. evaluate the polynomial)
using any value of x within the bounds of the tabulated x’s (taking an x outside
the table is called extrapolating). For example, at x = 6 the polynomial yields
y = 1

63
= 0.015873. Since interpolation was the original reason for constructing

these polynomials, they are called interpolating polynomials. We will need
them mainly for developing formulas for numerical differentiation and integration.
To conclude the section, we present another example, in which the y values

are computed based on the sinx function, using x = 60, 70, 80 and 90 (in degrees),
i.e.

x sinxo

60 0.8660
70 0.9397
80 0.9848
90 1.0000

The corresponding Lagrange interpolating polynomial is

0.866
(x− 70)(x− 80)(x− 90)

−6000 + 0.9397
(x− 60)(x− 80)(x− 90)

2000
+

0.9848
(x− 60)(x− 70)(x− 90)

−2000 +
(x− 60)(x− 70)(x− 80)

6000
=

−0.10400 + 2.2797× 10−2x− 9.7500× 10−5x2 − 2.1667× 10−7x3

Plotting the difference between this polynomial and the sinxo function reveals that
the largest error of such and approximation throughout the 60 to 90 degree range
is be about 0.00005. This would be quite sufficient when only a four digit accuracy
is desired. Note that trying to extrapolate (go outside the 60-90 range) would yield
increasingly inaccurate results.
This example should give us a rough idea as to how calculators (and computers)

evaluate various functions - they replace it by evaluating close-fitting polynomials
(with the advantage of having to add, subtract and multiply only a handful of
times).
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Chapter 4 CUBIC SPLINE
Suppose we would like to join n points by a smooth curve passing through them
all, to make a nice visual presentation of our data. Why not use an interpolating
polynomial? Because these, to reach all data points, tend to have many ’unnatural’
peaks and dips. For example, fitting

x: 4 9 12 16 22
y: 157 41 145 92 7

we get the results of Figure 1, clearly ’overshooting’ the original data.
The proper solution should be a sufficiently smooth, continuous function of x,

say f(x) (let us define ’smooth’ as having both f 0 and f 00 also continuous), with
the minimal amount of curvature. Since curvature can be measured by (f 00)2, we
try to minimize its total amount, integrated over the full data span, namely

xnZ
x1

[f 00(x)]2 dx

The solution, let us call if S(x), is a collection of cubic polynomials (one of each
subinterval or segment), tied to each other in a smooth and continuous manner,
with the following two extra conditions, imposed at the beginning and at the end
of the x range:

f 00(x1) = f 00(xn) = 0 (4.1)

Proof: Let f(x) be any other smooth function passing through the n points. We
define g(x) ≡ S(x) − f(x). Clearly, g(x) is equal to zero at each xi (let us
call them nodes). We need to prove that

xnZ
x1

[f 00(x)]2 dx =

xnZ
x1

[S00(x)]2 dx+

xnZ
x1

[g00(x)]2 dx−2
xnZ

x1

g00(x)S00(x) dx ≥
xnZ

x1

[S00(x)]2 dx

Since
xnZ

x1

[g00(x)]2 dx ≥ 0

we will be done if we can show that

xnZ
x1

g00(x)S00(x) dx = 0

Utilizing by-part integration, we can write

xnZ
x1

g00(x)S00(x) dx = g0(x)S00(x)|xnx1 −
xnZ

x1

g0(x)S000(x) dx
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The first term is zero because of (4.1), the second term can be rewritten as

−
n−1X
i=1

xi+1Z
xi

g0(x)S000(x) dx = −
n−1X
i=1

ci

xi+1Z
xi

g0(x) dx = −
n−1X
i=1

ci [g(xi+1)− g(xi)] = 0

since S000(x), within each segment is a constant (denoted ci), because S(x) is
a cubic polynomial. ¤

Step-by-step Solution
To actually construct S(x), we first modify our convention concerning the number
of points - we will now assume that there is n+ 1 of them (instead of the old n),
resulting in n segments, and the same number of cubic polynomials. These will be
constructed in the following form:

p1(x) = a1 + b1(x− x1) + c1(x− x1)
2 + d1(x− x1)

3 when x1 ≤ x ≤ x2

p2(x) = a2 + b2(x− x2) + c2(x− x2)
2 + d2(x− x2)

3 when x2 ≤ x ≤ x3
...

pn(x) = a1 + bn(x− xn) + cn(x− xn)
2 + dn(x− xn)

3 when xn ≤ x ≤ xn+1

Clearly, substituting the left-most value of x implies that each of the a coefficients
must be equal to the corresponding y (i.e. a1 = y1, a2 = y2, etc.). Similarly,
substituting the right-most value, we get

y1 + b1h1 + c1h
2
1 + d1h

3
1 = y2 (4.2)

y2 + b2h2 + c2h
2
2 + d2h

3
2 = y3

...

yn + bnhn + cnh
2
n + dnh

3
n = yn+1

where h1 ≡ x2 − x1, h2 ≡ x3 − x2, etc.
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To match the values of first derivatives between consecutive segments requires

b1 + 2c1h1 + 3d1h
2
1 = b2 (4.3)

b2 + 2c2h2 + 3d2h
2
2 = b3

...

bn−1 + 2cn−1hn−1 + 3dn−1h2n−1 = bn

We also have to match the second derivatives:

2c1 + 6d1h1 = 2c2

2c2 + 6d2h2 = 2c3
...

2cn−1 + 6dn−1hn−1 = 2cn

to which we may add the (last) end-point condition

2cn + 6dnhn = 2cn+1 ≡ 0

(the S00(x1) = 0 condition implies that c1 = 0).
The last n equations can be solved for

d1 =
c2 − c1
3h1

(4.4)

d2 =
c3 − c2
3h2

...

dn =
cn+1 − cn
3hn

When substituted back in (4.2) and (4.3), this yields, respectively:

b1 +
c2 + 2c1
3

h1 = s1 (4.5)

b2 +
c3 + 2c2
3

h2 = s2

...

bn +
cn+1 + 2cn

3
hn = sn

where s1 ≡ y2−y1
h1

, s2 ≡ y3−y2
h2

, etc. (note that these are the straight-line slopes),
and

(c1 + c2)h1 = b2 − b1 (4.6)

(c2 + c3)h2 = b3 − b2
...

(cn−1 + cn)hn−1 = bn − bn−1



22

Subtracting consecutive equations of (4.5), multiplying the result by 3, and
utilizing (4.6) finally results in

c1h1 + 2c2(h1 + h2) + c3h2 = 3(s2 − s1)

c2h2 + 2c3(h2 + h3) + c4h3 = 3(s3 − s2)
...

cn−1hn−1 + 2cn(hn−1 + hn) + cn+1hn = 3(sn − sn−1)

This is now an ordinary set of n − 1 linear equations for c2, c3, ...cn. Its matrix
form would look as follows:

2(h1 + h2) h2 0 0 · · · 0 3(s2 − s1)
h2 2(h2 + h3) h3 0 · · · 0 3(s3 − s2)
0 h3 2(h3 + h4) h4 · · · 0 3(s4 − s3)
0 0 h4 2(h4 + h5) · · · 0 3(s5 − s4)
...

...
...

...
. . .

...
...

0 0 · · · 0 hn−1 2(hn−1 + hn) 3(sn − sn−1)
(4.7)

(to the left of the double line is the coefficient matrix, to the right is the right-
hand-side vector).
Once we have solved for the c coefficients, we can compute d and b from (4.4)

and (4.5) respectively.

Example: Our first example will apply the procedure to the following simple data
set with only three segments:

x: 1 2 4 7
y: 2 —3 0 1

This implies that
h: 1 2 3

4y: —5 3 1
s: —5 3

2
1
3

and
34s: 39

2
—7
2

The set of equations for c2 and c3 is thus

6 2 39
2

2 10 —7
2

We can solve it by constructing the coefficient-matrix’ inverse·
10 −2
−2 6

¸
÷ 56

where the division (by the matrix’ determinant) is elementwise (i.e. each
element of the 2 by 2 is to be divided by 56), and then multiplying the inverse
by the right hand side vector, thus:·

10 −2
−2 6

¸ ·
39
2−7
2

¸
÷ 56 =

·
101
28−15
14

¸
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This means that
c: 0 101

28
−15
14

0

(don’t forget our convention about c4 ≡ 0), and
4c: 101

28
−131

28
15
14

Based on (4.4):
d: 101

84
−131
168

5
42

and, based on (4.5)

b: −5− 101
28

3
= −521

84
3
2
− 2· 101

28
−15
14

3
· 2 = −109

42
1
3
− 2·−15

14

3
· 3 = 52

21

The final solution is thus

2− 521
84
(x− 1) + 101

84
(x− 1)3 1 < x < 2

−3− 109
42
(x− 2) + 101

28
(x− 2)2 − 131

168
(x− 2)3 2 < x < 4

52

21
(x− 4)− 15

14
(x− 4)2 + 5

42
(x− 4)3 4 < x < 7

One can verify that this solution passes through all four points and is smooth.
One can also plot it by utilizing the piecewise feature of Maple.

To solve (4.7) when the data has more than three segments, we utilize the fact
that our coefficient matrix is tri-diagonal. This makes the construction of the
corresponding solution relatively easy, regardless of the matrix’ size. We will now
detour to look at this issue in detail.

Tri-diagonal Systems (LU Decomposition)∗
First we show that any tri-diagonal matrix can be written as a product of two
bi-diagonal matrices, the first having non-zero elements below the main diagonal,
the second above. Furthermore, the below-diagonal elements of the fist matrix are
those of the original matrix, and the main-diagonal elements of the second matrix
are all equal to 1. This constitutes the so called LU decomposition of the original
matrix.

Example: Consider the following tridiagonal matrix

A =


3 −3 0 0
−3 8 −2 0
0 1 2 4
0 0 −2 6


It can be written as 

1 0 0 0
−3 3 0 0
0 1 5 0
0 0 −2 7



1 2 0 0
0 1 4 0
0 0 1 6
0 0 0 1
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where n implies that the actual value is yet to be determined (the number in-
side indicates the order in which one should proceed). Following this pattern,
we obtain: 

3 0 0 0
−3 5 0 0
0 1 12

5
0

0 0 −2 28
3



1 −1 0 0
0 1 −2

5
0

0 0 1 5
3

0 0 0 1


Multiplying these two (the first is usually called L, the second one U), one
can verify that their product yields the original matrix.

What is the advantage of having written a tridiagonal matrix A as a product of
two bidiagonal matrices? Well, it greatly simplifies solving a linear set of equations,
with A as the coefficient matrix.

Example: To solve

Ax =


7
8
2
−3


where A is the matrix of the previous example, and x is a vector of the four
unknowns, we can rewrite it as

LUx ≡ Ly =


7
8
2
−3


first solving (rather easily) for y. Starting from the top equation, this yields:

y1 =
7
3
, y2 =

8+7
5
= 3, y3 =

2−3
12
5

= − 5
12
and y4 =

−3−5
6

28
3

= −23
56
. Once we have

solve for y, we can similarly get the elements of x based on

Ux =


7
3

3
− 5
12−23
56


but this time we have to work from bottom up: x4 = −2356 , x3 = − 5

12
+ 5
3
· 23
56
=

15
56
, x2 = 3+

2
5
· 15
56
= 87

28
and x1 = 7

3
+ 87

28
= 457

84
. One can easily verify that this

is the solution of the original set of equations.

We will go (more quickly) over one more example, this time a bit larger (5 by
5). Note that applying the general technique (which you must have all seen before)
to a problem of this size would be very tedious.

Example:
2 5 0 0 0
4 −3 −2 0 0
0 3 1 1 0
0 0 1 0 2
0 0 0 2 4

x =

2 0 0 0 0
4 −13 0 0 0
0 3 7

13
0 0

0 0 1 −13
7

0
0 0 0 2 80

13



1 5

2
0 0 0

0 1 2
13

0 0
0 0 1 13

7
0

0 0 0 1 −14
13

0 0 0 0 1

x =


4
0
2
−3
−1





25

yields y1 = 2, y2 = 8
13
, y3 =

2
7
, y4 =

23
13
, y5 = −5980 and x5 = − 59

80,
x4 =

39
40
,

x3 = −6140 , x2 = 17
20
, x1 = −18 .

We will now return to our discussion of natural cubic spline.

Example
We will now fit a cubic spline to our first example (where the regular polynomial
fit did not fare too well):

h: 5 3 4 6
4y: −116 104 −53 −85
s: −116

5
104
3
−53

4
−85

6

34s: 868
5
−575

4
−11

4 16 3 0
3 14 4
0 4 20

°°°°°°
868
5−575
4−11
4


The LU decomposition of the last coefficient matrix is 16 0 0

3 215
16

0
0 4 4044

215

 1 3
16

0
0 1 64

215

0 0 1


We will thus get Y1 = 868

5·16 =
217
20
, Y2 = (−5754 − 3 · 21720 ) 16215 = −32825 , Y3 = (−114 +

4 · 328
25
) 215
4044

= 213839
80880

and c4 =
213839
80880

, c3 = −32825 − 64
215
· 213839
80880

= −14060
1011

, c2 =
217
20
+ 3

16
· 14060
1011

= 22676
1685

, implying

4c: 22676
1685

−138328
5055

446213
26960

−213839
80880

d: 22676
25275

−138328
45495

446213
323520

− 213839
1455840

and
b: −230656

5055
109484
5055

102668
5055

−166763
6740

which results in a lot more sensible fit:
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Figure 2
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Chapter 5 LEAST-SQUARES FIT
(MATRIX ALGEBRA∗)

When fitting experimental data with a lot of random scatter, it may be more
sensible to use a curve not passing exactly through all its points. Instead, we
can let it pass ’between’ points., to follow the overall general trend only. We will
assume that this can be achieved by a relatively simple polynomial (straight line,
parabola, etc.) - its degree is normally chosen by simply eye-balling the graph of
the data.
To be able to fit the best, say, parabola to a set of points, we must first decide on

some sort of criterion to define ’best’. A simple and sensible choice is to minimize
the sum of squares of the residuals (vertical distances from each point the fitted
curve). This of course gives the procedure its name.
The reason that we use squares of the distances rather than the distances

themselves is rather technical - to define distances, we have to use absolute values,
which would be difficult to deal with mathematically. Using squares makes the
optimization a lot easier; furthermore, it imposes an extra penalty on producing
even a single large residual - this is quite often what we want anyhow.
Using vertical distances (rather than , say perpendicular distances), also has

the advantage of simplifying the procedure mathematically; furthermore, it makes
the result scale independent (not effected when changing the units of x, say from
miles to km).
We will now derive the relevant formulas. For simplicity, we will assume that

out model (the type of curve we are fitting) is a parabola - the results can be
extended to a polynomial of any degree quite easily.

Normal Equations
Let us assume that we have the usual table of x-y observations with n pairs of
values (they are denoted x1, x2, ... xn and y1, y2, ... yn). To this data, we are trying
to fit a parabola, whose general equation is

y = a+ b x+ c x2

where a, b and c are yet to be determined coefficients.
For each of our points, we can compute the vertical residual (distance from yi

to yi = a+ b xi + c x2i ) to be

yi − a− b xi − c x2i

We want to minimize (by varying a, b and c) the sum of squares of these residuals,
or

S ≡
nX
i=1

¡
yi − a− b xi − c x2i

¢2
This can be achieved by making each of the three partial derivatives, i.e. ∂S

∂a
, ∂S

∂b
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and ∂S
∂c
, equal to zero, namely:

−2
nX
i=1

¡
yi − a− b xi − c x2i

¢
= 0

−2
nX
i=1

¡
yi − a− b xi − c x2i

¢
xi = 0

−2
nX
i=1

¡
yi − a− b xi − c x2i

¢
x2i = 0

Cancelling the factor of 2, applying the summation individually to each term, and
reorganizing yields

an+ b
nX
i=1

xi + c
nX
i=1

x2i =
nX
i=1

yi

a
nX
i=1

xi + b
nX
i=1

x2i + c
nX
i=1

x3i =
nX
i=1

xiyi

a
nX
i=1

x2i + b
nX
i=1

x3i + c
nX
i=1

x4i =
nX
i=1

x2i yi

This is a linear set of equations (called normal equations) for a, b and c; it can
be rewritten in the following matrix form:

n
nP
i=1

xi
nP
i=1

x2i
nP
i=1

xi
nP
i=1

x2i
nP
i=1

x3i
nP
i=1

x2i
nP
i=1

x3i
nP
i=1

x4i


 a

b
c

 =


nP
i=1

yi
nP
i=1

xiyi
nP
i=1

x2i yi


(note that n can be also written as

nP
i=1

x0i , just to complete the pattern).

It should be quite obvious that, if we repeat the whole procedure using a straight
line y = a+ b x instead of a parabola, the normal equations will read: n

nP
i=1

xi
nP
i=1

xi
nP
i=1

x2i

 · a
b

¸
=


nP
i=1

yi
nP
i=1

xiyi


Similarly, fitting a cubic y = a+ b x+ c x2 + dx3 requires solving

n
nP
i=1

xi
nP
i=1

x2i
nP
i=1

x3i
nP
i=1

xi
nP
i=1

x2i
nP
i=1

x3i
nP
i=1

x4i
nP
i=1

x2i
nP
i=1

x3i
nP
i=1

x4i
nP
i=1

x5i
nP
i=1

x3i
nP
i=1

x4i
nP
i=1

x5i
nP
i=1

x6i




a
b
c
d

 =



nP
i=1

yi
nP
i=1

xiyi
nP
i=1

x2i yi
nP
i=1

x3i yi
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etc.
One can show that the resulting smallest value of S (say Smin) can be computed

by (going back to the ’parabola’ case):

nX
i=1

y2i −
£
a b c

¤ ·


nP
i=1

yi
nP
i=1

xiyi
nP
i=1

x2i yi


where a, b and c are the optimal coefficients. This can serve to define the so called
typical error: r

Smin
n− 3

where 3 is the number of coefficients in the fitted parabola (2 for a straight line, 4
for a cubic, etc.).

Example: Fit a parabola to the following data:

x: 1 2 3 4 5
y: 2 3 2 2 1

The normal equations we need to solve have the following matrix form:

5 15 55 10
15 55 225 27
55 225 979 89

To learn how to solve these, we have to make to following detour:

Gaussian Elimination∗
We will now describe a procedure for solving a linear set of equations (in principle,
of any size) by Gaussian elimination followed by backward substitution
(this is hopefully just a review for most of you). The procedure works fine when
performing exact (i.e. fractional) computation, it needs to be modified when work-
ing with decimal numbers (to be done in a subsequent chapter).
First we have to realize that there are the following four elementary oper-

ations which can be used to modify a linear set of equations without changing its
solution. These are:

1. Adding (subtracting) a multiple of a row to (from) any other row.

2. Interchanging two rows (i.e. equations).

3. Multiplying a row (equation) by a non-zero number.

4. Interchanging two columns of the coefficient matrix (since this involves in-
terchanging the corresponding unknowns, we have to keep track of these).



30

It should be quite obvious that, if we proceed in a systematic way, with the help
of the first two elementary operations we can make all elements below the main
diagonal of the coefficient matrix equal to zero. ’Systematic’ means eliminating
the below-diagonal elements in the following order (using a 4 by 4 example):

× × × ×
1 × × ×
2 4 × ×
3 5 6 ×

(× denotes the elements we don’t need to worry about). We may run into a small
difficulty by encountering a zero element on the main diagonal, but that can be
resolved by interchanging the corresponding row with a subsequent row having a
non-zero value in that place (if we cannot find it, the set of equations does not
have a unique solution).

Example: Using the normal equations of our previous example, we first subtract
the first row multiplied by 3 (11) from the second (third) row, getting

5 15 55 10
0 10 60 —3
0 60 374 —21

Then, we subtract the second row multiplied by 6 from the third row:

5 15 55 10
0 10 60 —3
0 0 14 —3

Starting from the bottom, we can then compute the value of each unknown, one
by one (this step constitutes the backward substitution). In terms of our previous
example, it yields:

c = − 3
14

b =
−3 + 60 · 3

14

10
=
69

70

a =
10− 15 · 69

70
+ 55 · 3

14

5
=
7

5

One can easily verify that these solve the original set of normal equations. The
typical error of this fit iss

22− 10 · 7
5
− 27 · 69

70
+ 89 · 3

14

5− 3 = 0.4781

We now return to our discussion of least-square polynomials (Statisticians call
the procedure regression).



31

Symmetric Data
One can simplify the normal equations when the x-values are spaced symmetrically
around a center (say x̂, clearly equal the average of the xi values); this of course
is the case with equidistant spacing. (such as in our example).
The simplification rests on the following idea: Instead of using the original

y = a+ b x+ c x2 parabola, we now express it in the following equivalent form:

y = â+ b̂(x− x̂) + ĉ(x− x̂)2

(it should be clear how one can go from one model to the other). The normal
equations for â, b̂ and ĉ now read

n
nP
i=1

(xi − x̂)
nP
i=1

(xi − x̂)2

nP
i=1

(xi − x̂)
nP
i=1

(xi − x̂)2
nP
i=1

(xi − x̂)3

nP
i=1

(xi − x̂)2
nP
i=1

(xi − x̂)3
nP
i=1

(xi − x̂)4


 â

b̂
ĉ

 =


nP
i=1

yi
nP
i=1

(xi − x̂) yi
nP
i=1

(xi − x̂)2yi


But. due to the symmetry of the xi values, the sum of odd powers of xi − x̂ must
cancel out. The set will thus simplify to

n 0
nP
i=1

(xi − x̂)2

0
nP
i=1

(xi − x̂)2 0

nP
i=1

(xi − x̂)2 0
nP
i=1

(xi − x̂)4


 â

b̂
ĉ

 =


nP
i=1

yi
nP
i=1

(xi − x̂) yi
nP
i=1

(xi − x̂)2yi


which means that we can separately solve for the odd n

nP
i=1

(xi − x̂)2

nP
i=1

(xi − x̂)2
nP
i=1

(xi − x̂)4

 · â
ĉ

¸
=


nP
i=1

yi
nP
i=1

(xi − x̂)2yi


and even

b̂
nX
i=1

(xi − x̂)2 =
nX
i=1

(xi − x̂) yi

coefficients (by a process called decoupling of equations). We than need to solve
the two sets of equations, each of a smaller (half) size; this is usually a lot easier
than dealing directly with the full set.

Example: Returning to our original example, we can clearly see that x̂ = 3,
resulting in

x− x̂: —2 —1 0 1 2
y: 2 3 2 2 1

The set of equations for â and ĉ then reads:·
5 10
10 34

¸ ·
â
ĉ

¸
=

·
10
17

¸
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which can be solved by·
34 −10
−10 5

¸ ·
10
17

¸
÷ 70 =

·
17
7− 3
14

¸
The b̂ equation is quite trivial, namely 10b̂ = −3⇒ b̂ = − 3

10
. The best fitting

parabola is thus

y =
17

7
− 3

10
(x− 3)− 3

14
(x− 3)2

One can verify that this expands to the same answer as our previous solution.
It also yields the same value of typical error:s

22− 10 · 17
7
+ 17 · 3

14
− 3 · 3

10

5− 3 = 0.4781

Weighted Fit
Suppose that some of the pairs of x-y values in our data are repeated two or more
times. It is then convenient to simplify the corresponding table by listing each such
pair only once, but adding a new row of the so called weights (i.e. how many
times was the pair observed), e.g.

x: 1 2 3 4 5
y: 2 3 2 2 1
w: 4 2 1 1 3

To fit the best (least-square) parabola, we now have to minimize

S ≡
nX
i=1

wi

¡
yi − a− b xi − c x2i

¢2
since each squared residual must be multiplied by the corresponding weight (note
that this yields the same value as the old approach would, using the original,
uncompressed data).
The normal equations now read

nP
i=1

wi

nP
i=1

wixi
nP
i=1

wix
2
i

nP
i=1

wixi
nP
i=1

wix
2
i

nP
i=1

wix
3
i

nP
i=1

wix
2
i

nP
i=1

wix
3
i

nP
i=1

wix
4
i


 a

b
c

 =


nP
i=1

wiyi
nP
i=1

wixiyi
nP
i=1

wix
2
i yi


and are solved in pretty much the same manner as before. Note that the symmetry
trick will work only if the wi values possess similar symmetry (not very likely). Also
note that Smin is now computed by

nX
i=1

wiy
2
i −

£
a b c

¤ ·


nP
i=1

wiyi
nP
i=1

wixiyi
nP
i=1

wix
2
i yi
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resulting in the typical error of vuuut n
nP
i=1

wi

· Smin
n− 3

Example: We will now fit the best straight line to the previous set of data. The
normal equations are

11 30 21
30 112 49

The solution is ·
112 −30
−30 11

¸ ·
21
49

¸
÷ 332 =

·
441
166− 91
332

¸
yielding the following ’best’ straight line

y =
441

166
− 91

332
x

with the typical error ofs
5

11
· 45− 21 ·

441
166
+ 49 · 91

332

5− 2 = 0.6326

We could also use weights to make the procedure work harder (bigger weights)
on points in a range (or ranges) considered more important by us, and be less
concerned (smaller weights) with the rest of the data.

Linear Models
If (for whatever reasons) we decide to replace x, x2,.... in our polynomial model
by any other specific functions of x (e.g. 1

x
, ex, lnx, etc.), i.e.

y = a f1(x) + b f2(x) + c f3(x)

in general, the procedure for finding the best (least-square) parameters requires
only the following minor modification of normal equations:

nP
i=1

f1(xi)
2

nP
i=1

f1(xi)f2(xi)
nP
i=1

f1(xi)f3(xi)

nP
i=1

f2(xi)f1(xi)
nP
i=1

f2(xi)
2

nP
i=1

f2(xi)f3(xi)

nP
i=1

f3(xi)f1(xi)
nP
i=1

f3(xi)f2(xi)
nP
i=1

f3(xi)
2


 a

b
c

 =


nP
i=1

f1(xi) yi
nP
i=1

f2(xi) yi
nP
i=1

f3(xi) yi


This time, symmetry of the x values cannot be of any help to us.
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Example: Let us fit our old data (without weights) by the following curve

y =
a

x
+ b+ c x3

This means that f1(x) = 1
x
, f2(x) = 1 and f3(x) = x3. The normal equation

are
5P

i=1

1
x2i

5P
i=1

1
xi

5P
i=1

x2i
5P

i=1

yi
xi

5P
i=1

1
xi

5P
i=1

1
5P

i=1

x3i
5P

i=1

yi

5P
i=1

x2i
5P

i=1

x3i
5P

i=1

x6i
5P

i=1

yix
3
i

or, numerically
5269
3600

137
60

55 73
15

137
60

5 225 10
55 225 20515 333

Gaussian (forward) elimination results in

5269
3600

137
60

55 73
15

0 7576
5269

66675
479

12686
5269

0 0 37673515
7576

−314271
3788

and the back substitution yields: c = − 628542
37673515

, b = 2253323
684973

and a = −8891100
7534703

with the typical error ofs
22 + 8891100

7534703
· 73
15
− 2253323

684973
· 10 + 628542

37673515
· 333

5− 3 = 0.4483

(this is only a slight improvement over a simple quadratic polynomial, re-
flecting the fact that the choice of our new model was rather arbitrary).

We could easily modify this procedure to incorporate weights.
Our last example is also a clear indication that performing exact computation

(using fractions) is getting rather tedious (or even impossible - consider using lnx
as one of our f(x) functions), and that we should consider switching to decimals.
This necessitate modifying the Gaussian-elimination procedure, to keep the round
off errors of the computation in check. Let us then take another detour, and look
at the corresponding issues.

Pivoting∗
Switching to decimals when solving a set of linear equations by Gaussian elimi-
nation makes the procedure more efficient (especially for computers), but our last
algorithm then poses some problems. One of them is quite obvious: an exact
zero may, due to the round-off error, ’masquerade’ as a small nonzero value (e.g.
−1.308×10−9). If this happens on the main diagonal, the procedure will not carry
out the required row interchange, and the results will immediately turn out to be
totally nonsensical. We may guard for this by checking whether the element (called
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pivot) is, in absolute value, smaller than say 3 × 10−9 (if yes, assume that it is
zero), but that will not totally eliminate the problem of round-off errors. These
will tend to erode the accuracy of our results, especially when a main diagonal
element (which, when performing the corresponding row subtraction, appears in
the denominator), is non-zero but small.
To alleviate this process (erosion of accuracy), we watch for small (not just

zero) diagonal elements, and trade them (by row interchange) for the largest (in
absolute value) possible element below. When done consistently (i.e. each main
diagonal element, small or nor, is checked against all elements of the same column.
downwards) the procedure is called partial pivoting).
Accuracy can be further improved (at a cost of more computation) by finding

the largest (in absolute value) element below and to the right (without crossing
the double line) of the diagonal element, and then swapping the two by the corre-
sponding row and column interchange (to get the solution straight, we have to keep
track of the latter). This is done at each step of the procedure, and constitutes the
so called Complete (maximal, full) pivoting.
Both partial and complete pivoting can further benefit from a procedure called

scaling, which replaces (when searching for the largest element) absolute magni-
tudes by scaled (i.e.e relative to the largest element of the same row) magnitudes.
To simplify the matter, our pivoting will always be of the complete type, with-

out any scaling (it is one of the best pivoting strategies and it has a rather simple
logic).

Example: We will re-do our previous example of Gaussian elimination, this time
using decimals:

a b c
1.46361̄ 2. 283̄ 55 4.86̄
2. 283̄ 5 225 10
55 225 20515 333

where 4.86̄ represents 4.866666667, etc. Note that now we need an extra
(first) row, to keep track of the unknowns. The largest element is clearly
20515, which becomes our first ’pivot’. We thus need to interchange rows 1
and 3, and columns 1 and 3:

c b a
20515 225 55 333
225 5 2. 283̄ 10
55 2. 283̄ 1.46361̄ 4.86̄

We then eliminate the last two elements of the first column (by the usual
subtraction):

c b a
20515 225 55 333

0.1×10−6 2.532293445 1.68016175 6.347794298
0.1×10−7 1.680116175 1.316158028 3.973905273

Note that, due to the round-off error, we are getting 0.1×10−6 and 0.1×10−7
(relatively ’large’ values) instead of true zeros. But, since we know better,
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we can simply take these to be zeros (which we will do, from now on) - a
good computer program would not even bother to compute them.

Now, we are lucky, and the largest element of the bottom right 2 by 2 cor-
ner is 2.543261029, sitting already in its proper position (no interchanges
necessary). We can thus easily complete the elimination step:

c b a
20515 225 55 333
0 2.532293445 1.680116175 6.347794298
0 0 0.201441103 −0.237704521

Moving on to the backward substitution, we start with the last unknown,
which is a (due to our interchanges):

a = −0.237704521
0.201441103

= −1.18001 9954

b =
6.347794298− 1.680116175 a

2.532293445
= 3.28965 2282

c =
333− 55 a− 225 b

20515
= −0.0166839 2228

Note that, in spite of pivoting, some accuracy has been lost over the exact a =
−8891100
7534703

= −1.18001 9969, b = 2253323
684973

= 3.28965 2293 and c = − 628542
37673515

=
−0.0166839 2238.

Matrix Inverse∗
Inverting square matrices follows a similar pattern, so we may as well discuss it
now. Hopefully we all remember that an inverse of a square matrix A is a matrix
(of the same size) usually denoted A−1 such that

AA−1 = A−1A = I

where I is the unit matrix (1 on the main diagonal, 0 otherwise). A square matrix
which does (not) have an inverse is called regular (singular) respectively.
The basic algorithm for constructing a matrix inverse works as follows:
The matrix to be inverted is appended (the corresponding Maple’s command is

augment) by a unit matrix of the same size (so now we have a matrix with twice
as many columns). Using the first three elementary operations, the original matrix
is converted to a unit matrix, while the appended matrix becomes the desired
inverse. This can be achieved by

1. making the diagonal elements, one by one, equal to 1 (dividing the whole row
by the diagonal element’s original value) - if the diagonal element is equal to
0, we look for the first nonzero element directly below, and interchange the
corresponding two rows first,

2. subtracting a multiple of this row (whose main diagonal element was just
made equal to 1) from all other rows, to make the elements above and below
this 1 equal to 0.
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This will work nicely when using exact (fractional) numbers. The only difficulty
we may encounter is finding 0 on the main diagonal, trying to exchange it with a
nonzero element of the same column going down, and discovering that all of these
are also equal to zero. This simply means that the matrix is singular (does not
have an inverse), and the procedure thus terminates.

Example: To invert  0 3 −4
3 2 −1
4 −2 1


we first append a 3 by 3 unit matrix 0 3 −4 1 0 0

3 2 −1 0 1 0
4 −2 1 0 0 1


then interchange the first two rows 3 2 −1 0 1 0

0 3 −4 1 0 0
4 −2 1 0 0 1


multiply the first row by 1

3 1 2
3
−1
3
0 1

3
0

0 3 −4 1 0 0
4 −2 1 0 0 1


and subtract the first row, multiplied by 4, form the last row 1 2

3
−1
3
0 1

3
0

0 3 −4 1 0 0
0 −14

3
7
3
0 −4

3
1


Then, we multiply the second row by 1

3
, and subtract the resulting row,

multiplied by 2
3
(−14

3
) from Row 1 (3): 1 0 5

9
−2
9

1
3
0

0 1 −4
3

1
3

0 0
0 0 −35

9
14
9
−4
3
1


Finally, we multiply the last row by − 9

35
, and subtract the result, multiplied

by 5
9
(−4

3
) from Row 1 (2): 1 0 0 0 1

7
1
7

0 1 0 −1
5

16
35
−12
35

0 0 1 −2
5

12
35
− 9
35


The resulting inverse is thus  0 1

7
1
7−1

5
16
35
−12
35−2

5
12
35
− 9
35


which can be easily verified by direct matrix multiplication.
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Incorporating pivoting
When working with decimals, to maintain good accuracy of the procedure (for
matrix inversion), we have to do the same kind of pivoting as when solving sets of
linear equations. To keep things simple, we will use only complete pivoting without
scaling. Since this involves column interchange, we have to keep track of these and
’undo’ their effect when reaching the final answer. This is best explained by an

Example: Let us now invert 
−53 85 49 78
17 72 −99 −85
−86 30 80 72
66 −29 −91 −53


using decimal arithmetic. First we append a 4 by 4 unit matrix, then we
identify −99 as our first pivot. This means that we have to interchange rows
1 and 2, and columns 1 and 3 (using Maple, by swaprow and swapcolumn):

3 2 1 4
−99 72 17 −85 0 1 0 0
49 85 −53 78 1 0 0 0
80 30 −86 72 0 0 1 0
−91 −29 66 −53 0 0 0 1


Note how we are keeping track of column interchanges. We then go over one
step of the procedure, reducing the first column to 1 and three 0’s (the actual
print out shows 0.999999999, 0, .1e—7 and —.1e—7, but we know better):

3 2 1 4
1 −0.72 −0.17 85 0 −0.01 0 0
0 120.63 −44.58 35.92 1 0.49 0 0
0 88.18 −72.26 3.31 0 0.80 1 0
0 −95.18 50.37 25.13 0 −0.91 0 1


Now, we have been lucky, the largest (in absolute value) element in the
remaining 3 by 3 corner is 120.63 itself, so no interchanges are necessary.
The next reduction step yields:

3 2 1 4
1 0 −0.4405.. 1.0751.. 0.0060.. −0.0071.. 0 0
0 1 −0.3695.. 0.2978.. 0.0082.. 0.0041.. 0 0
0 0 −39.6716.. −22.9501.. −0.7309.. 0.4462.. 1 0
0 0 15.1955.. 53.4794.. 0.7889.. −0.5286.. 0 1


Now, the largest element in the remaining 2 by 2 block is 53.4794.. This
means we have to carry out one more interchange:

3 2 4 1
1 0 1.0751.. −0.4405.. 0.0060.. −0.0071.. 0 0
0 1 0.2978.. −0.3695.. 0.0082.. 0.0041.. 0 0
0 0 53.4794.. 15.1955.. 0.7889.. −0.5286.. 0 1
0 0 −22.9501.. −39.6716.. −0.7309.. 0.4462.. 1 0
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The next step yields:
3 2 4 1
1 0 0 −0.7460.. −0.0098.. 0.0035.. 0 −0.0201..
0 1 0 −0.4542.. 0.0038.. 0.0070.. 0 −0.0055..
0 0 1 0.2841.. 0.0147.. −0.0098.. 0 0.0186..
0 0 0 −33.1505.. −0.3923.. 0.2194.. 1 0.4291..


At this point we have reached the last main diagonal element (no more in-
terchanges possible), so we just carry out the last reduction:

3 2 4 1
1 0 0 0 −0.0010.. −0.0014.. −0.0225.. −0.0297..
0 1 0 0 0.0092.. 0.0040.. −0.0137.. −0.0114..
0 0 1 0 0.0113.. −0.0080.. 0.0085.. 0.0223..
0 0 0 1 0.0118.. −0.0066.. −0.0301.. −0.0129..


And now comes the essential last step: We drop the leading unit matrix
and attach the corresponding column labels to rows of the remaining matrix,
thus: 

3 −0.0010.. −0.0014.. −0.0225.. −0.0297..
2 0.0092.. 0.0040.. −0.0137.. −0.0114..
4 0.0113.. −0.0080.. 0.0085.. 0.0223..
1 0.0118.. −0.0066.. −0.0301.. −0.0129..


The result needs to be rearranged (by row interchanges) to bring back the
natural sequence of labels:

1 0.01183634283 −0.006618577468 −0.03016539786 −0.01294518528
2 0.009271619264 0.004040818703 −0.0137015577 −0.01144897059
3 −0.001003899605 −0.001425749021 −0.02250376794 −0.02976201497
4 0.01139012326 −0.008005031964 0.00857116598 0.0223770053

This is then the resulting inverse, as can be easily verified.
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Chapter 6 APPROXIMATING
FUNCTIONS

Suppose that we would like to find the ’best’ way of approximating the sinx func-
tion by a polynomial. We will do this only for 0 < x < π

2
, since we know that, due to

the sinx’s periodicity, this would be sufficient to evaluate the function everywhere.
One way to do this would be to evaluate sinx at x = 0, 10, 20, ... 90 degrees,

and fit the best (least-square) polynomial using techniques of the previous section.
But of course this leaves the question of what would be the accuracy of our fit
between the points thus chosen, and should not we really need to go to x = 0, 5,
10, 15, ...90 degrees, etc.
To avoid the problem of how finely do we have to subdivide the original interval,

why don’t we try to cover it all, to letting each of its points contribute to the
’sum’ of residuals. To be able to do that, we must of course replace ’sum’ by the
corresponding integral, as follows:

S =

π/2Z
0

¡
sinx− a− b x− c x2

¢2
dx

(assuming we want to fit the best quadratic polynomial), and

S =

BZ
A

¡
y(x)− a− b x− c x2

¢2
dx

in general (fitting a quadratic polynomial to a function y(x), in the [A,B] interval
of x values).
It is a simple exercise to minimize S, getting the following set of normal equa-

tions for a, b and c

BR
A

dx
BR
A

x dx
BR
A

x2dx
BR
A

y(x)dx

BR
A

x dx
BR
A

x2dx
BR
A

x3dx
BR
A

x y(x) dx

BR
A

x2dx
BR
A

x3dx
BR
A

x4dx
BR
A

x2y(x) dx

We can substantially simplify solving this set of equations (of any size) by
assuming that A = −1 and B = 1. This is not really a big restriction, since we can
always go from y(x) to Y (X) ≡ y

¡
A+B
2
+ B−A

2
X
¢
, where Y (X), when X varies

from −1 to 1, has exactly the same values as y(x), when x varies from A to B.
Once we have found a polynomial fit to Y (X), we can easily convert it to that of
y(x) by the following replacement: X → 2x−(A+B)

B−A (resulting in a polynomial of
the same degree).



42

We can thus concentrate on solving

1R
−1

dX
1R
−1

X dX
1R
−1

X2dX
1R
−1

Y (X)dX

1R
−1

X dX
1R
−1

X2dX
1R
−1

X3dX
1R
−1

X · Y (X) dX
1R
−1

X2dX
1R
−1

X3dX
1R
−1

X4dX
1R
−1

X2 · Y (X) dX

(or an equivalent). The question is: can we find an equivalent formulation of the
problem at hand, which would be easier to solve?
Well, one thing should be obvious: Y = a+ bX + cX2 and

Y = â φ0(X) + b̂ φ1(X) + ĉ φ2(X) (6.1)

where φ0(X), φ1(X) and φ2(X) are, at this point arbitrary, polynomials of degree
zero, one and two (respectively), are equivalent models (they both represent a gen-
eral quadratic polynomial). Furthermore, we can choose these φi(X) polynomials
to be orthogonal in the (−1, 1) interval, meaning that

1Z
−1

φi(X) · φj(X) dX = 0

whenever i 6= j (this will be verified shortly, by actually constructing them, one by
one, to meet this property).
We already know (analogically with the discrete case) that, using (6.1) as our

model, the normal equations are

1R
−1

φ0(X)
2dX

1R
−1

φ0(X)φ1(X) dX
1R
−1

φ0(X)φ1(X) dX
1R
−1

φ0(X)Y (X)dX

1R
−1

φ1(X)φ0(X) dX
1R
−1

φ1(X)
2dX

1R
−1

φ1(X)φ2(X) dX
1R
−1

φ1(X)Y (X) dX

1R
−1

φ2(X)φ0(X) dX
1R
−1

φ2(X)φ1(X) dX
1R
−1

φ2(X)
2dX

1R
−1

φ2(X)Y (X) dX

Now, choosing the φi(X) polynomials to be orthogonal makes all off-diagonal ele-
ments of the coefficient matrix equal to zero, and the corresponding set of equations
trivial to solve:

â =

R 1
−1 φ0(X)Y (X)dX

α0

b̂ =

R 1
−1 φ1(X)Y (X)dX

α1

ĉ =

R 1
−1 φ2(X)Y (X)dX

α2

where α0 ≡
R 1
−1 φ0(X)

2dX, α1 ≡
R 1
−1 φ1(X)

2dX, etc.
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Furthermore, if we decide to extend our fit to a cubic polynomial, we don’t
have to solve the normal equations from scratch, we can simply add

d̂ =

R 1
−1 φ3(X)Y (X)dX

α3

to the previously obtained â, b̂ and ĉ (they remain unchanged).
Similarly to the discrete case, typical error of the resulting fit is computed as

the square root of the average value of
³
Y (X)− â φ0(X)− b̂ φ1(X)− ĉ φ2(X)

´2
,

namely r
Smin
2

=

sR 1
−1 Y (X)

2dX − α0 â2 − α1 b̂2 − α2 ĉ2

2

Orthogonal (Legendgre) Polynomials
We now construct polynomials which are orthogonal over the (−1, 1) interval.
We start with

φ0(X) = 1

(any non-zero constant would do, we choose the simplest one); the corresponding
α0 is equal to

R 1
−1 1

2 dX = 2.
The next, linear polynomial must be orthogonal to φ0(X); this means we have

one condition to meet. Its leading coefficient can be chosen arbitrarily, and we make
it equal to 1 (this will be our choice throughout the procedure - such polynomials
are called monic, but we don’t have to remember that). Its absolute term will
be, at this point, arbitrary, thus: φ1(X) = X + C. Making it orthogonal to φ0(X)
requires

1Z
−1

1 · (X + C) dX = 2C = 0

which implies that C = 0. We thus have

φ1(X) = X

with α1 =
R 1
−1X

2 dX = 2
3
.

At this point we may realize that polynomials containing only odd powers of X
are automatically orthogonal (in this sense) to polynomials with only even powers.
And, this will thus be the general pattern of the φ0, φ1, φ2,... sequence (each
polynomial will consist of either odd or even powers of X only, depending on its
degree). We will now continue with our construction, utilizing this ’shortcut’.
The next polynomial thus have to have the following form: φ2(X) = X2 + C

(not the same C as before). It is automatically orthogonal to φ1(X), we must also
make it orthogonal to φ0(X) by

1Z
−1

1 · (X2 + C) dX =
2

3
+ 2C = 0⇒ C = −1

3
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This results in

φ2(X) = X2 − 1
3

with α2 =
R 1
−1(X

2 − 1
3
)2 dX = 2

5
− 4

9
+ 2

9
= 8

45
(the

R 1
−1X

2n dX = 2
2n+1

formula
comes handy).
Similarly, φ3(X) = X3 + C X. Making it orthogonal to φ1(X):

1Z
−1

X · (X3 + C X) dX =
2

5
+
2

3
C = 0⇒ C = −3

5

Thus

φ3(X) = X3 − 3
5
X

and α3 =
R 1
−1(X

3 − 3
5
X)2 dX = 2

7
− 6

5
· 2
5
+ 9

25
· 2
3
= 8

175
.

To construct φ4(X) we can use X4 + C2X
2 + C0, but it is more convenient

(why?) to use φ4(X) = X4 + C2φ2(X) + C0φ0(X) instead. We have to make it
orthogonal to φ0(x):

1Z
−1

φ0(X) ·
¡
X4 + C2φ2(X) + C0φ0(X)

¢
dX =

2

5
+ 2C0 = 0⇒ C0 = −1

5

and to φ2(X):

1Z
−1

φ2(X) ·
¡
X4 + C2φ2(X) + C0φ0(X)

¢
dX =

2

7
− 1
3
· 2
5
+
8

45
C1 = 0⇒ C1 = −6

7

implying that

φ4(X) = X4 − 6
7

µ
X2 − 1

3

¶
− 1
5
= X4 − 6

7
X2 +

3

35

(note that, in the final answer, the coefficient signs always alternate), with α4 =R 1
−1(X

4 − 6
7
X2 + 3

35
)2 dX = 128

11025
(at this point we may as well let Maple do the

dirty work).
It should be obvious, how to continue this process (called Gram-Schmidt

orthogonalization). The resulting polynomials are called Legendre, and are
quite useful in many other areas of Mathematics and Physics (their usual definition
differs from ours - the leading coefficient is not equal to 1).

Example: We will fit the sinx function by a cubic polynomial, in the (1, π
2
) in-

terval. Replacing x by A+B
2
+ B−A

2
X = π

4
(1 +X), this is the same as fitting
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sin[π
4
(1 +X)] over (−1, 1). The previous formulas enable us to find

â =

R 1
−1 sin[

π
4
(1 +X)] dX

2
=
2

π

b̂ =

R 1
−1X sin[

π
4
(1 +X)] dX
2
3

= 6 · 4− π

π2

ĉ =

R 1
−1(X

2 − 1
3
) sin[π

4
(1 +X)] dX

8
45

= −15 · 48− 12π − π2

π3

d̂ =

R 1
−1(X

3 − 3
5
X) sin[π

4
(1 +X)] dX

8
175

= −35 · 960− 240π − 24π
2 + π3

π4

almost immediately (with a bit of help from Maple, concerning the integra-
tion). The corresponding least-squares polynomial is thus

2

π
+ 6 · 4− π

π2
X − 15 · 48− 12π − π2

π3
(X2 − 1

3
)

−35 · 960− 240π − 24π
2 + π3

π4
(X3 − 3

5
X)

having the following typical errorsR 1
−1 sin[

π
4
(1 +X)]2 dX − 2â2 − 2

3
b̂2 − 8

45
ĉ2 − 8

175
d̂2

2
= 0.000833

(as an approximation, the polynomial will be correct to three digits). The
final answer must of course be given in terms of x. This is achieved by the
following replacement: X → 4

π
· x − 1 (Maple can do this, quite efficiently,

using the subs command). The result was also expanded and converted to
decimal form.

−2.25846 244× 10−3 + 1.02716 9553x− 0.069943 7654x2 − 0.11386 84594x3

One can plot this cubic, together with the original sinx, for x from 0 to
π
2
, to see that the fit is quite good (the two curves will appear identical).
Note that, as soon as go beyond π

2
, the disagreement becomes clearly visible

(no extrapolation possible). Furthermore, when displaying the difference
between the two functions, we can see (in Figure 1) that the error is clearly
the largest at each end of the original range (more than double of what it
would be otherwise).

Chebyshev Polynomials
In our last example, we noticed that the error of our polynomial fit increases toward
the interval’s ends. This is undesirable when the objective is to minimize the largest
(rather than typical) error. Developing a procedure to find the best (in the new
sense) solution would is quite difficult, but there exists a compromise approach
which is capable of getting quite close to it. The idea is to use weights (or, in this
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0.25 0.5 0.75 1 1.25 1.5

-0.002

-0.001

0.001

Figure 1

case, a weight function), chosen so that the least-square procedure is forced to
work harder at the interval’s ends. The usual choice (which works quite well) is

W (X) =
1√

1−X2

which increases (actually, it goes to infinity) as X → 1 and X →−1.
We now have to modify the procedure to minimize

S ≡
1Z

−1

(Y (X)−âΦ0(X)−b̂Φ1(X)−ĉΦ2(X))2√
1−X2 dX

where Φ0(X), Φ1(X) and Φ2(X) are polynomials of degree zero, one and two. This
leads to the following normal equations:

1R
−1

Φ0(X)2dX√
1−X2

1R
−1

Φ0(X)Φ1(X) dX√
1−X2

1R
−1

Φ0(X)Φ1(X) dX√
1−X2

1R
−1

Φ0(X)Y (X)dX√
1−X2

1R
−1

Φ1(X)Φ0(X) dX√
1−X2

1R
−1

Φ1(X)2dX√
1−X2

1R
−1

Φ1(X)Φ2(X) dX√
1−X2

1R
−1

Φ1(X)Y (X) dX√
1−X2

1R
−1

Φ2(X)Φ0(X) dX√
1−X2

1R
−1

Φ2(X)Φ1(X) dX√
1−X2

1R
−1

Φ2(X)2dX√
1−X2

1R
−1

Φ2(X)Y (X) dX√
1−X2

Assuming that Φ0(X), Φ1(X) and Φ2(X) are orthogonal in the following new sense
1Z

−1

Φi(X)Φj(X) dX√
1−X2

= 0
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whenever i 6= j, the best coefficients are clearly

â =

R 1
−1

φ0(X)Y (X)dX√
1−X2

α0

b̂ =

R 1
−1

φ1(X)Y (X)dX√
1−X2

α1

ĉ =

R 1
−1

φ2(X)Y (X)dX√
1−X2

α2

where α0 ≡
R 1
−1

φ0(X)
2dX√

1−X2 , α1 ≡
R 1
−1

φ1(X)
2dX√

1−X2 , etc.
The typical-error formula needs to be modified tosR 1

−1
Y (X)2dX√
1−X2 − α0 â2 − α1 b̂2 − α2 ĉ2

π

where the denominator π equals to total weight, i.e.
R 1
−1

dX√
1−X2 .

Using the Gram-Schmidt procedure, we now proceed to construct this new set
of orthogonal polynomials. Since our weight function is symmetric, i.e. W (X) =
W (−X), the polynomials will also consist of either even or odd powers of X only.
We may also need

1Z
−1

XndX√
1−X2

=
(n− 1)!!

n!!
π

when n is even (equal to zero for n odd).
The first polynomial is always

Φ0(X) = 1

with α0 =
R 1
−1

dX√
1−X2 = π.

Similarly, the next one is
Φ1(X) = X

with α1 =
R 1
−1

X2dX√
1−X2 =

π
2
.

To construct Φ2(X) = X2 + C, we have to establish the value of C, based on

1Z
−1

(X2 + C) dX√
1−X2

= πC +
π

2
= 0⇒ C = −1

2

so
Φ2(X) = X2 − 1

2

with α2 =
R 1
−1

(X2− 1
2
)2dX√

1−X2 = π
8
.

Similarly

1Z
−1

(X3 + CX) ·X dX√
1−X2

=
3π

8
+

π

2
C = 0⇒ C = −3

4
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which yields

Φ3(X) = X3 − 3
4
X

and α3 =
R 1
−1

(X3− 3
4
X)2dX√

1−X2 = π
32
.

Now, Φ2(X) = X4 + C2Φ2(X) + C0Φ0(X), where

1Z
−1

(X4 + C2Φ2(X) + C0Φ0(X)) · Φ2(X) dX√
1−X2

=
π

8
+

π

8
C2 = 0⇒ C2 = −1

1Z
−1

(X4 + C2Φ2(X) + C0Φ0(X)) · Φ0(X) dX√
1−X2

=
3π

8
+ πC0 = 0⇒ C0 = −3

8

resulting in

Φ4(X) = X4 − (X2 − 1
2
)− 3

8
= X4 −X2 +

1

8

and α4 =
R 1
−1

(X4−X2+ 1
8
)2dX√

1−X2 = π
128

.
Etc.
The resulting polynomials are called Chebyshev, they also have a variety of

other applications.

Example: Repeating the previous example using Chebyshev’s polynomials (rather
than Legendre’s) yields

â =

Z 1

−1

sin[π
4
(1 +X)] dX√
1−X2

÷ π = 0.60219 4701

b̂ =

Z 1

−1

X sin[π
4
(1 +X)] dX√
1−X2

÷ π

2
= 0.51362 51666

ĉ =

Z 1

−1

(X2 − 1
2
) sin[π

4
(1 +X)] dX√

1−X2
÷ π

8
= −0.20709 26885

d̂ =

Z 1

−1

(X3 − 3
4
X) sin[π

4
(1 +X)] dX√

1−X2
÷ π

32
= −5.49281 3693× 10−2

resulting in

0.60219 4701 + 0.51362 51666X − 0.20709 26885(X2 − 1
2
)

−5.49281 3693× 10−2(X3 − 3
4
X)

having the typical error ofsR 1
−1

sin[π
4
(1+X)] 2dX√
1−X2 − π · â2 − π

2
· b̂2 − π

8
· ĉ2 − π

32
· d̂2

π
= 0.000964

Even though this is larger than what we got with Legendre polynomials, the
overall fit (in terms of its maximum error) is much better, as we will see
shortly.
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Replacing X by 4
π
· x− 1 (this part is the same as before) and expanding the

answer, yields

−1.24477 557× 10−3 + 1.02396 7553x− 0.068587 5963x2 − 0.11337 70686x3

Plotting the difference between this approximation and sinx clearly shows
that the largest error has now been reduced to what appears to leave little
room for improvement:

Laguerre and Hermite Polynomials
As long as the weight function (always non-negative) can be multiplied by any inte-
ger power of X and integrated over the chosen interval (yielding a finite value), one
can construct the corresponding orthogonal set of polynomials. This is true even
when the interval itself is infinite. We will go over two interesting and important
examples:

Laguerre
The interval is [0,∞) and W (x) = e−x. The polynomials (we will call them L0(x),
L1(x), etc.), are to be orthogonal in the following sense:

∞Z
0

e−xLi(x)Lj(x) dx = 0

whenever i 6= j.Using Gram-Schmidt (and the following helpful formula:
R∞
0

e−xxndx =
n! ), we get:
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L0(x) = 1 with α0 = 1, L1(x) = x + c (there is no symmetry now, we have to
use all possible powers of x) where

∞Z
0

e−x(x+ c) dx = 1 + c = 0⇒ c = −1⇒ L1(x) = x− 1

with α1 =
∞R
0

e−x(x− 1)2 dx = 1.
Similarly, L2(x) = x2 + c1L1(x) + c0L0(x), so that

∞Z
0

e−x
¡
x2 + c1L1(x) + c0L0(x)

¢
L0(x) dx = 2 + c0 ⇒ c0 = −2

∞Z
0

e−x
¡
x2 + c1L1(x) + c0L0(x)

¢
L1(x) dx = 6− 2 + c1 ⇒ c1 = −4

implying that
L2(x) = x2 − 4(x− 1)− 2 = x2 − 4x+ 2

with α2 =
∞R
0

e−x(x2 − 4x+ 2)2 dx = 4.
And, one more: L3(x) = x3 + c2L2(x) + c1L1(x) + c0L0(x), where

∞Z
0

e−x
¡
x3 + c2L2(x) + c1L1(x) + c0L0(x)

¢
L0(x) dx = 6 + c0 ⇒ c0 = −6

∞Z
0

e−x
¡
x3 + c2L2(x) + c1L1(x) + c0L0(x)

¢
L1(x) dx = 24− 6 + c1 ⇒ c1 = −18

∞Z
0

e−x
¡
x3 + c2L2(x) + c1L1(x) + c0L0(x)

¢
L2(x) dx = 120− 96 + 12 + 4c2 ⇒ c2 = −9

resulting in

L3(x) = x3 − 9(x2 − 4x+ 2)− 18(x− 1)− 6 = x3 − 9x2 + 18x− 6

and α3 =
∞R
0

e−x(x3 − 9x2 + 18x− 6)2 dx = 36.
These are the so called Laguerre polynomials.

Hermite
Finally, we will consider the interval of all real numbers, with W (x) = e−x

2
. Uti-

lizing the W (x) =W (−x) symmetry, we get:
H0(x) = 1 with α0 =

R∞
−∞ e−x

2
dx =

√
π, H1(x) = x and α1 =

R∞
−∞ x2e−x

2
dx =√

π
2
, H2(x) = x2 + c whereZ ∞

−∞
(x2 + c) e−x

2

dx =

√
π

2
+ c
√
π = 0⇒ c = −1

2
⇒ H2(x) = x2 − 1

2
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and α2 =
R∞
−∞(x

2 − 1
2
)2e−x

2
dx =

√
π
2
, H3(x) = x3 + c x so thatZ ∞

−∞
(x3 + c x) x e−x

2

dx =
3
√
π

4
+ c

√
π

2
= 0⇒ c = −3

2
⇒ H3(x) = x3 − 3

2
x

with α3 =
R∞
−∞(x

3 − 3
2
x)2e−x

2
dx = 3

4

√
π, etc. These polynomials are called Her-

mite.
For our purpose (of approximating functions), neither set of these orthogonal

polynomials is as important as the previous two (Legendre and Chebyshev), but
they are very useful when studying Differential Equations, etc. To us, deriving
them was just an exercise in Gram-Schmidt - given an interval and a suitable
weight function, we have to be able to construct the first few correspondingly
orthogonal polynomials.
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Chapter 7 NUMERICAL INTEGRATION
As we all know, integrating a given function may often be impossible analytically;
one can always (assuming that the answer is finite - something we can tell in
advance) carry out the corresponding integration numerically, to any desired ac-
curacy. There are several techniques for doing this, in this chapter we will study
most of them.
The basic idea is to replace the function to be integrated (the integrand)

by a ’closely fitting’ polynomial, integrating the polynomial instead (always quite
trivial). The main thing to decide is: how to construct a ’closely fitting’ polynomial,
to a given function.
We have spent the previous chapter doing exactly that, so we may fee that we

have the answer. WRONG, that approach is not going to work now. The reason
is that, to fit the ’best’ polynomial, we first had to compute a whole bunch of
integrals, including the integral whose value we are now trying to approximate. So
that would amount to circular reasoning.
We now have to go back to the simpler approach of an earlier chapter, where

we would first evaluate a function at a few values of x (the so called nodes), and
then do Lagrange (not Legendre) -type interpolation. So now the only choice to
make is: How many nodes, and where?

Trapezoidal rule
We will start ’easy’, with only two nodes, chosen (rather arbitrarily, but sensibly)
at each end of the integration interval, where the function will be evaluated. The
corresponding interpolating polynomial will be a simple straight line connecting
the two points thus obtained.
Specifically, to approximate

R B
A
y(x) dx, we evaluate y(x) at A and B, fit the

interpolating straight line

y(A)
x−B

A−B
+ y(B)

x−A

B −A

and integrate it instead

y(A)

A−B

BZ
A

(x−B) dx+
y(B)

B −A

BZ
A

(x−A) dx

=
y(A)

A−B

µ
x2

2
−Bx

¶B

x=A

+
y(B)

B −A

µ
x2

2
−Ax

¶B

x=A

=
y(A)

A−B

µ
B2 −A2

2
−B(B −A)

¶
+

y(B)

B −A

µ
B2 −A2

2
−A(B −A)

¶
= − y(A)

µ
B +A

2
−B

¶
+ y(B)

µ
B +A

2
−A

¶
=

y(A) + y(B)

2
· (B −A)

(this can be easily verified geometrically to be the area of the resulting trapezoid).
The resulting ’trapezoidal’ rule is thusZ B

A

y(x) dx ' y(A) + y(B)

2
· (B −A)
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To estimate the error of the last formula, we (Taylor) expand y(x) at x ≡ xc =
A+B
2

, thus

y(x) = y(xc)+y
0(xc)(x−xc)+y00(xc)

2
(x−xc)2+y000(xc)

6
(x−xc)3+yiv(xc)

24
(x−xc)4+...

(7.1)
Integrating the right hand side exactly yields

y(xc) · (B −A) + y0(xc)
(x− xc)

2

2

¯̄̄̄B
x=A

+
y00(xc)
2

(x− xc)
3

3

¯̄̄̄B
x=A

(7.2)

+
y000(xc)
6

(x− xc)
4

4

¯̄̄̄B
x=A

+
yiv(xc)

24

(x− xc)
5

5

¯̄̄̄B
x=A

...

= y(xc)h+
y00(xc)
24

h3 +
yiv(xc)

1920
h5 + ... (7.3)

(where h ≡ B −A is the length of the integration interval), whereas, applying the
trapezoidal rule to it results in

y(xc)h+
y00(xc)
8

h3 +
yiv(xc)

384
h5 + ...

The difference between the approximate and the exact result is clearly the error of
the latter, equal to

y00(xc)
12

h3 +
yiv(xc)

480
h5 + ...

Note that the leading term is proportional to the third power h; also note that
only odd powers of h contribute (this is due to choosing the nodes symmetrically).
In its current form, the trapezoidal rule is clearly too primitive to yield accurate

results. For example, applying it to
R π/2
0

sinx dx (which has the exact value of 1)
we get 1

2
· π
2
= 0.785, off by 21.5%. How could we improve the accuracy of the

trapezoidal rule? Since its error is proportional to h3, we clearly need to reduce
that value of h. This can be done by subdividing the original (A,B) interval into
n (equal-length) subintervals, and apply the trapezoidal rule individually to each
subinterval, adding the results. This leads to the so called

Composite rule
The new value of h is now clearly equal to B−A

n
, with the nodes at x0 = A,

x1 = A + h, x2 = A + 2h, ...., xn = B (we will call the corresponding values of
the integrand y0, y1, ...., instead of the full y(x0), y(x1), ...., just to simplify our
notation). The complete formula will now read

y0 + y1
2

h+
y1 + y2
2

h+ ....+
yn−1 + yn

2
h =

y0 + 2y1 + 2y2 + ...+ 2yn−1 + yn
2n

· (B −A)

where the first term is a weighted average of the yi values, the endpoints taken
only half as ’seriously’ as the rest. This is called the composite trapezoidal
rule. The overall error of the result will be

h3

12

nX
i=1

y00(xi+xi−1
2

)
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which will tend (as n increases) to

h3

12
· n y00av + ... = h2

B −A

12
y00av + ...

where y00av is the average value of y
00(x) over the (A,B) interval. Since both y00av

and B−A
12

are fixed, we can see that the error will be proportional to h2 (the higher
order terms proportional to h4, h6, etc.). Later on this will give us an idea of how
to further improve the results.

Example: When we apply this composite rule to
R π/2
0

sinx dx using n = 1, 2, 4, 8,
16, 32 and 64 (it is convenient to double the value of n each step; this means
we can still utilize the previously computed values of the function). we get:

n

π
2

µ
1+2

n−1P
i=1

sin( π i
2n
)

¶
2n

error
1 0.78539 81635 0.2146
2 0.94805 9449 0.0519
4 0.98711 5801 0.0129
8 0.99678 5172 0.0032
16 0.99919 66805 0.0008
32 0.99979 91945 0.0002
64 0.99994 98 0.00005

Note that, with n = 64, we have achieved a 4 digit accuracy. Also note that
the error is reduced, in each step, roughly by a factor of four.

Romberg integration
Realizing that the error of the composite rule follows a regular pattern (i.e. is
reduced by 4 when doubling n), we can write I0 = I + c

40
, I1 = I + c

41
, I2 =

c
42
,

I3 =
c
43
, ...., where Ii is the result of the composite rule with n = 2i subintervals

and I is the exact answer. We can now eliminate the error term from any two such
consecutive results, i.e.

Ii = I +
c

4i

Ii+1 = I +
c

4i+1

and solve for I, by

I =
4Ii+1 − Ii

3
This will result in a substantially more accurate answer for I (still not exact though,
we know that there are additional error terms proportional to n4, n6, etc.).

Example: Using our previous example, we get

i Ji ≡ 4Ii+1−Ii
3

1 1. 00227 9878
2 1. 00013 4585
3 1. 00000 8296
4 1. 00000 0517
5 1. 00000 0033
6 1. 00000 0002
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The errors are now a lot smaller (we have reached nearly a 10 digit accuracy),
furthermore, they decrease, in each step, by roughly a factor of 16.

Getting the new column of more accurate answers (Ji), and realizing that their
errors are now reduced by a factor of 16 in each step, we can continue the idea of
eliminating them, by computing

Ki ≡ 16Ji+1 − Ji
15

The K’s errors will decrease by a factor of 64, so we can improve them further, by

Li ≡ 64Ki+1 −Ki

63

etc., until we end up with only one number (or the values no longer change, within
the computational accuracy).

Example: Continuing the previous example:

i Ji Ki =
16Ji+1−Ji

15
Li =

64Ki+1−Ki

63

1 1. 00227 9878 0.99999 15654 1. 00000 0009
2 1. 00013 4585 0.99999 98774 0.99999 99997
3 1. 00000 8296 0.99999 9998
4 1. 00000 0517

at which point we have clearly reached the 10-digit limit imposed by Maple
(which, by default, evaluates all results to this accuracy only - this can be
increased by setting Digits := 20 ;). Note that we have reached a nearly 10
digit accuracy with 16 evaluations of the function gone through two stages
of Romberg (K3), or 8 evaluations with three Romberg stages (L1).

Once we reach the limit of Maple’s accuracy, the results start to deteriorate
(whether we increase i, or go to the next stage of Romberg), so we should not overdo
it (ultimately, monitoring convergence, and imposing some sensible ’stopping’ rule,
should be incorporated into the procedure - we will not go into this).

Simpson Rule
Another idea to improve the basic trapezoidal rule is simply to increase the number
of nodes (from 2 to 3). The most logical choice for the extra (third) node is to put
it at the center of the (A,B) interval. The corresponding interpolating polynomial
is the following quadratic

(x− A+B
2
)(x−B)

A−B
2
(A−B)

y(A) +
(x−A)(x−B)

B−A
2
· A−B

2

y(A+B
2
) +

(x−A)(x− A+B
2
)

(B −A)B−A
2

y(B)
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To integrate over x from A to B, we first evaluate (using by-part integration)Z B

A

(x− A+B
2
)(x−B) dx = (x− A+B

2
) (x−B)

2

2

¯̄̄B
x=A
− 1

2

Z B

A

(x−B)2 dx

= (B−A)3
4

+ (A−B)3
6

= (B−A)3
12Z B

A

(x−A)(x−B) dx = (x−A) (x−B)
2

2

¯̄̄B
x=A
− 1

2

Z B

A

(x−B)2 dx

= − (B−A)3
6Z B

A

(x−A)(x− A+B
2
) dx = (x−A)2

2
(x− A+B

2
)
¯̄̄B
x=A
− 1

2

Z B

A

(x−A)2 dx

= (B−A)3
4
− (B−A)3

6
= (B−A)3

12

Putting it together, the interpolating quadratic integrates to

y(A) + 4y(A+B
2
) + y(B)

6
· (B −A)

which is our new approximation to
R B
A
y(x) dx called the Simpson rule. Note

that the first term represents a weighted average of the three computed values of
y(x), the mid point being 4 times as ’heavy’ as the two end points.
One can easily verify that the formula yields the exact answer whenever y(x)

is a polynomial of degree 2 or less (as ti must), it is actually also correct for all
cubics (due to its symmetry), but fails (resulting in a small error) as soon as quartic
terms are encountered (we will do this using A = 0 and B = 1, which proves to be
sufficient):

y(x): Simpson: Exact:
1 1+4+1

6
= 1

R 1
0
dx = 1

x
0+4· 1

2
+1

6
= 1

2

R 1
0
x dx = 1

2

x2
0+4· 1

4
+1

6
= 1

3

R 1
0
x2dx = 1

3

x3
0+4· 1

8
+1

6
= 1

4

R 1
0
x3dx = 1

4

x4
0+4· 1

16
+1

6
= 5

24

R 1
0
x4dx = 1

5

Note that the first four answers are correct, but the last one is off by about 4%.
This may actually give us an idea as to how to derive the Simpson-rule coeffi-

cients more efficiently: Knowing that the formula has to be exact for all quadratics,
and knowing that it will have to have the following form:£

cl y(A) + cc y(
A+B
2
) + cr y(B)

¤
(B −A)

we apply it to y(x) = 1, x and x2, using A = −1 and B = 1 (the most convenient
choice now), getting

y(x): Formula: Exact:
1 2(cl + cc + cr) 2
x 2(cr − cl) 0
x2 2(cr + cl)

2
3
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This implies that

cl + cc + cr = 1

cr − cl = 0

cr + cl = 1
3

which is solved by cl = cr =
1
6
, cc =

2
3
, resulting in the same rule as before (if one

remembers that a symmetric choice of nodes must result in symmetric c coefficients,
one can proceed even faster).

Error analysis
Applying the Simpson rule to (7.1) yields

y(xc)h+
y00(xc)
24

h3 +
yiv(xc)

1152
h5 + ...

which means that the error of the Simpson rule is

yiv(xc)

2880
h5 + ...

(only odd powers of h contributing). This is a substantial improvement over the
trapezoidal rule. And, true enough, applying Simpson to the old

R π/2
0

sinx dx yields
1.002279877, a fairly respectable answer (compare this to trapezoidal’s 0.785 - even
though we are not quite fair, since we now need an extra evaluation).

Composite rule
We can improve the accuracy of the Simpson rule by dividing (A,B) into n

2
subin-

tervals (where n is even - here we want to be fair to trapezoidal rule in terms of
the total number of function evaluations, which should equal to n+ 1). Applying
the Simpson rule individually to each subinterval, and adding the answers, yields

y0 + 4y1 + y2
6

h+
y2 + 4y3 + y4

6
h+ ....+

yn−2 + 4yn−1 + yn
6

h =

y0 + 4y1 + 2y2 + 4y3 + 2y4 + ...+ 2yn−2 + 4yn−1 + yn
3n

· (B −A)

since now h = B−A
n
2
= 2

n
(B −A). The error of this composite rule is qual to

h5

2800

n/2X
i=1

yiv(x2i−1) + ... ' h5

2800
· n
2
yivav + ... =

h4

2800
(B −A) yivav + ...

where the next term would be proportional to h6, h8, etc. This should give us a
clear idea as to how to apply Romberg algorithm to improve consecutive results of
the composite rule.

Example: Applying the Simpson composite rule to
R 1
0
sinx dx yields

n

π
2

Ã
1+4

n/2P
i=1

sin π (2i−1)
2n

+2
n/2−1P
i=1

sin π (2i)
2n

!
3n

Ki =
16Ii+1−Ii

15
Li =

64Ki+1−Ki

63

2 1. 00227 9878 0.99999 15654 1. 00000 0009
4 1. 00013 4585 0.99999 98774 0.99999 99997
8 1. 00000 8296 0.99999 9998
16 1. 00000 0517
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Note that:

1. the error of the composite rule decreased, in each step, roughly by a
factor of 16,

2. we skipped (as we must) the Ji stage of Romberg.

Other Rules
Going beyond trapezoidal (two-node) and Simpson (three-node) rule, we now learn
to design our own rules, using any number of nodes.

Example: The most ’natural’ choice of 4 nodes is at A, A + B−A
3

, B − B−A
3

, B
(equidistant). Incorporating the symmetry of this choice, the corresponding
rule will have the form of£

ce y(A) + ci y(A+
B−A
3
) + ci y(B − B−A

3
) + ce y(B)

¤
(B −A)

So, it now boils down to finding the value of ce and ci. We can do this most
efficiently by taking A = −1 and B = 1 (A+ B−A

3
= −1

3
, B− B−A

3
= 1

3
), and

making the rule correct with y(x) = and y(x) = x2 (odd powers integrate to
zero automatically), namely:

(2ce + 2ci) · 2 = 2

(2ce + 2
ci
9
) · 2 = 2

3

which yields ce = 1
2
− ci, 1 − 2ci + 2

9
ci =

1
3
⇒ ci =

3
8
, ce =

1
8
. The resulting

rule is thus:

BZ
A

y(x) dx ' y(A) + 3 y(A+ B−A
3
) + 3 y(B − B−A

3
) + y(B)

8
(B −A)

Dividing (A,B) into n
4
subintervals, we can now construct the corresponding

composite rule. ....

In our next example, we try a different (yet sensible) choice of nodes.

Example: Going back to 3 nodes, we divide (A,B) into three equal subintervals
and place a node in the middle of each, thus: x1 = A + B−A

6
, x2 =

A+B
2

,
x3 = B − B−A

6
. The resulting formula has to read

(cs y1 + ccy2 + csy3)(B −A)

where y1 ≡ y(x1), y2 ≡ y(x2), ... Using the same approach as before (now
x1 = −23 , x2 = 0, x3 = 2

3
) we get

(2cs + cc) · 2 = 2

2 · 4
9
cs · 2 = 2

3
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implying that cs = 3
8
and cc =

2
8
, i.e.

BZ
A

y(x) dx ' 3 y1 + 2 y2 + 3 y3
8

(B −A)

Based on (??) and (7.2), the error of this rule isµ
y(xc)h+

y00(xc)
24

h3 +
yiv(xc)

2592
h5 + ...

¶
−
µ
y(xc)h+

y00(xc)
24

h3 +
yiv(xc)

1920
h5 + ...

¶
= −7 y

iv(xc)

51840
h5 + ...

i.e. smaller (in terms of its leading term) than that of the Simpson rule, and
of the opposite sign. This makes us think: Is there a way of eliminating the
leading term entirely, by yet another choice of nodes (which seem very likely
now), and how would we do it? We will take up this issue in a subsequent
section.

We will go over one more example of constructing our own rule, based on a
choice of nodes which is no longer symmetrical. Under the circumstances, such a
choice would be rather unusual and inconvenient, but we need to learn how to deal
with that possibility as well (what we lose is the symmetry of the corresponding
weights, i.e. the c coefficients).

Example: Rather than deriving a general rule applicable to any A to B integral,
we derive a formula to approximate

3Z
0

y(x) dx

assuming that only three values of y(x) are known, y(0), y(1) and y(3). The
formula will have the form of

c0 y(0) + c1 y(1) + c3 y(3)

where the values of the c coefficients will be computed by making the formula
exact for y(x) = 1, y(x) = x and y(x) = x2 (now, we cannot skip odd
powers!), namely:

c0 + c1 + c3 =

3Z
0

dx = 3

c1 + 3 c3 =

3Z
0

x dx =
9

2

c1 + 9 c3 =

3Z
0

x2 dx = 9
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The last two equations can be solved for c1 and c3 by·
9 −3
−1 1

¸ ·
9
2

9

¸
÷ 6 =

·
9
4
3
4

¸
implying (based on the first equation) that c0 = 0. The final rule is thus

3Z
0

y(x) dx ' 9

4
y(1) +

3

4
y(3)

Incidentally, this example also demonstrates that is possible to get a three-
point formula for the price of two function evaluations!

Being able to design our own formulas is important for the following reason:

Singular and improper integrals
All the formulas we derived so far will fail miserably when evaluating an integral
like

1Z
0

exp(x2)√
x

dx

which exists, having a finite value. The reason is that the integrand, when evalu-
ated at x = 0, has an infinite value, so most of our approximate formulas would
simply ’blow up’. Even those formulas which do not use the left end point would
perform rather badly, their errors would be quite large and would not follow the
usual pattern (Romberg integration would not work). The old formulas implicitly
assumed that the integrand is not just continuous (and therefore finite) throughout
the [A,B] interval, but also that all of its derivative are (this means, we would have
difficulty not only when dividing by

√
x at x = 0, but also when multiplying by√

x, since its derivatives become singular).
There are two ways of resolving this, one is analytical (not always available,

and not of the main interest to us in any case), which removes the singularity by
some smart change of variable (such as z =

√
x in the above case). The other one

would ’remove’ the singularity by redesigning our formulas of numerical integration
along the following lines:
The actual singularity (in the original example) is due to the 1√

x
part of the

integrand. Even though creating such a havoc numerically, the 1√
x
function is quite

trivial to integrate analytically (right?), so we will separate it from the rest of the
integrand, thus:

1Z
0

y(x)√
x
dx

where y(x) can now be arbitrary. We can now derive an approximate formula
for this kind of integral in the usual fashion: select a few nodes in (0, 1), fit the
corresponding interpolating polynomial to y(x) - leaving the 1√

x
part out of it, and

the integrate'
1Z
0

p(x)√
x
dx
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instead (quite trivial now), where p(x) is the interpolating polynomial.

Example: Using x = 0, 1
2
and 1 as our nodes, we get

p(x) =
(x− 1

2
)(x− 1)
1
2

y(0) +
x (x− 1)
−1
4

y(1
2
) +

x (x− 1
2
)

1
2

y(1)

Since
1Z
0

(x− 1
2
)(x− 1)√
x

dx =
2

5

1Z
0

x (x− 1)√
x

dx = − 4
15

1Z
0

x (x− 1
2
)√

x
dx =

1

15

our integration rule reads:

1Z
0

y(x)√
x
dx ' 12

15
y(0) +

16

15
y(1
2
) +

2

15
y(1)

The rule is exact whenever y(x) is a polynomial of degree two or less.

This gives us yet another (more expedient) way of finding the coefficients:
Writing the rule as

1Z
0

y(x)√
x
dx ' c0 y(0) + c 1

2
y(1
2
) + c1 y(1)

(note that c0 no longer equals c1, 1√
x
’breaks’ the symmetry), we make it

correct using y(x) = 1, x and x2:

c0 + c 1
2
+ c1 =

1Z
0

1√
x
dx = 2

1

2
c 1
2
+ c1 =

1Z
0

x√
x
dx =

2

3

1

4
c 1
2
+ c1 =

1Z
0

x2√
x
dx =

2

5

resulting in c 1
2
= 4(2

3
− 2

5
) = 16

15
, c1 =

2
3
− 8

15
= 2

15
, and c0 = 2− 16

15
− 2

15
= 12

15

(check). Applying this rule to the original
R 1
0
exp(x2)√

x
dx results in 12

15
+ 16
15
e
1
4 +

2
15
e = 2.532. This compares favorably (0.4% error) with the exact answer of

2.543.
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To extend the formula to
R A
0

y(x)√
x
dx, we introduce z = Ax and write

AZ
0

y(x)√
x
dx =

1Z
0

y( z
A
)p
z
A

dz

A
'
·
12

15
y(0) +

16

15
y(A

2
) +

2

15
y(A)

¸
·
√
A

This can be used to develop the corresponding composite rule: Divide the original
interval into several subintervals, apply the last formula to the first of these subin-
tervals, the usual Simpson rule to the rest (no singularity there). We don’t have
time to go into details.
Similarly, our standard rule would not work with an integral like

R∞
0

exp(−x)
x+2

dx,
where the length of the interval is infinite. Again, we can fix this either analyti-
cally (change of variable), or by selecting a few nodes in the (0,∞) interval and
approximating

∞Z
0

y(x) exp(−x) dx

by
R∞
0

p(x) exp(−x) dx, where p(x) is the interpolating polynomial to the y(x)
function (note that, similarly to the previous case, we separated exp(−x) from the
rest of the integrand, so that the actual integration becomes possible).

Example: We choose x = 0, 1, 2 and 3 as our four nodes. The interpolating
polynomial is thus

(x− 1)(x− 2)(x− 3)
−6 y(0) +

x (x− 2)(x− 3)
2

y(1) +

+
x (x− 1)(x− 3)

−2 y(2) +
x (x− 1)(x− 2)

6
y(3) =

x3 − 6x2 + 11x− 6
−6 y(0) +

x3 − 5x2 + 6x
2

y(1) +

+
x3 − 4x2 + 3x

−2 y(2) +
x3 − 3x2 + 2x

6
y(3)

Multiplying by e−x and integrating from 0 to ∞ yields (remember thatR∞
0

xke−xdx = k!):

6− 12 + 11− 6
−6 y(0) +

6− 10 + 6
2

y(1) +
6− 8 + 3
−2 y(2) +

6− 6 + 2
6

y(3) =

1
6
y(0) + y(1)− 1

2
y(2) + 1

3
y(3)

which is our final rule for approximating
R∞
0

y(x) exp(−x) dx. Note that, this
time, one of our coefficients is negative. This can happen, but it is usually
an indication of badly chosen nodes (we would like the coefficients to be
all positive, and of similar size). Applied to the original

R∞
0

exp(−x)
x+2

dx. our
formula yields: 1

6
· 1
2
+ 1
3
− 1

2
· 1
4
+ 1
3
· 1
5
= 0.3583̄, reasonably close (0.8% error)

to the exact answer of 0.3613.

The obvious questions to ask are: Is there a better way of selecting our four
nodes? Is there a best way of selecting them? ’Best’ in what sense?
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Gaussian Integration
We will first try to answer these questions in the context of approximating the
basic

1Z
−1

y(x) dx

We know that any three (four, five)-node formula will be exact for all quadratic
(cubic, quartic, ...) polynomials, but if we are lucky (e.g. Simpson’s rule), we can
go higher than this. How high can we go?
The answer is this: If we choose n nodes to be the roots of the n degree

Legendre polynomial (one can show that they all must be in the −1 to 1 range),
the corresponding rule (calledGaussian) will be exact for all polynomials of degree
≤ 2n − 1 (instead of the usual n − 1). This also pushes the order of the leading
error term from hn+1 to h2n+1 - a very substantial improvement!

Proof: We know that φn(x) is orthogonal to φ0(x), φ1(x), ....φn−1(x). Since any
polynomial, say q(x), of degree n − 1 (or less) can be written as a linear
combination of these, q(x) itself must be orthogonal to φn(x), i.e.

1Z
−1

q(x) · φn(x) dx = 0

Let p(x) be an arbitrary polynomial of degree smaller than 2n. Dividing it by
φn(x) (synthetic division!) will yield a quotient q(x) and a remainder r(x),
both of degree smaller than n (even though for different reasons). One can
thus write

p(x) = q(x) · φn(x) + r(x)

The exact integration of p(x) is thus equal to

1Z
−1

r(x) dx

since the first term integrates to 0, as we already know. Applying the corre-
sponding Gaussian rule to

R 1
−1 p(x) dx =

R 1
−1 q(x) ·φn(x) dx+

R 1
−1 r(x) dx will

also yield the exact answer of 0 for the first term (since φn(x) evaluates to 0
at all nodes!), and the exact answer for the second term (since the degree of
r(x) is less than n, and any n-node rule is exact in that case). ¤

Example: To derive a three-node formula we first find the roots of φ3(x) = x3− 3
5
x.

These are clearly: x1 = −
q

3
5
, x2 = 0 and x3 =

q
3
5
. The actual real will

read
2 · [c1 y(x1) + c2 y(x2) + c1 y(x3)]

(c3 = c1 due to symmetry). We make the rule exact with y = 1 and y = x2:

4c1 + 2c2 = 2

4c1 · 3
5
=

2

3
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implying that c1 = 5
18
and c2 =

8
18
. The final rule is thus

2 · 5 y(x1) + 8 y(x2) + 5 y(x3)
18

One can verify that it is also exact when y = x4: 2 · (5 · 9
25
+ 5 · 9

25
)÷ 18 = 2

5

(it is automatically correct for all odd powers of x). It can be extended to
approximate

BZ
A

y(x) dx ' (B−A) ·
5 y(A+B

2
−
q

3
5
B−A
2
) + 8 y(A+B

2
) + 5 y(A+B

2
+
q

3
5
B−A
2
)

18

Applying it to our usual benchmark of
R π/2
0

sinx dx yields:

π

36
·
µ
5 sin[π

4
(1−

q
3
5
)] + 8 sin(π

4
) + 5 sin[π

4
(1 +

q
3
5
)]

¶
= 1.00000 8122

a spectacular improvement over Simpson’s 1.0022. Furthermore, applying it
separately to the (0, π

4
) and (π

4
, π
2
) subintervals (the composite idea), results

in

π

72
·
µ
5 sin[π

8
(1−

q
3
5
)] + 8 sin(π

8
) + 5 sin[π

8
(1 +

q
3
5
)]

¶
+

π

72
·
µ
5 sin[π

8
(3−

q
3
5
)] + 8 sin(3π

8
) + 5 sin[π

8
(3 +

q
3
5
)]

¶
= 1.00000 0119

a 68 fold increase in accuracy (theory predicts 64). Romberg algorithm fur-
ther improves the two results to (64 × 1.00000 0119 − 1.00000 8122) ÷ 63 =
0.99999 9992 .

Similarly, we can now find the best (Gaussian) n-node formula to approximate
the

R∞
0

y(x) e−xdx integration. An almost identical approach leads to the following
prescription:

1. Using Gram-Schmidt, construct a sequence of polynomials (up to degree n)
orthogonal in the following senseZ ∞

0

Li(x)Lj(x) e
−xdx = 0

when i 6= j (we have already done this, these are the Laguerre polynomials).

2. Find the roots of Ln(x) = 0 - they are to be used as nodes.

3. Replace y(x) in the original integral by the corresponding interpolating poly-
nomial and carry out the integration (which is now quite trivial). This yields
the desired formula, which is exact when y(x) is a polynomial of order less
than 2n (rather than the usual n).
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Example: When n = 3, we first solve

x3 − 9x2 + 18x− 6 = 0
with the help of Maple’s fsolve command (we will learn how to solve non-
linear equations later on), getting

x1 = 0.4157745568

x2 = 2.294280360

x3 = 6.289945083

The corresponding interpolating polynomial is

p(x) = (x−x2)(x−x3)
(x1−x2)(x1−x3) y(x1) +

(x−x1)(x−x3)
(x2−x1)(x2−x3) y(x2) +

(x−x1)(x−x2)
(x3−x1)(x3−x2) y(x3)

which, when multiplied by e−x, integrates to

2−x2−x3+x2 x3
(x1−x2)(x1−x3) y(x1) +

2−x1−x3+x1 x3
(x2−x1)(x2−x3) y(x2) +

2−x1−x2+x1 x2
(x3−x1)(x3−x2) y(x3) =

0. 71109 30101 y(x1) + 0.27851 77336 y(x2) + 0.010389 2565 y(x3)

We can now check that the rule is exact not only for y(x) = 1, x and x2:

0. 71109 30101 + 0.27851 77336 + 0.010389 2565 = 1 ≡
∞R
0

e−xdx

0. 71109 30101x1 + 0.27851 77336x2 + 0.010389 2565x3 = 1 ≡
∞R
0

x e−xdx

0. 71109 30101x21 + 0.27851 77336x
2
2 + 0.010389 2565x

2
3 = 2 ≡

∞R
0

x2e−xdx

but also for y(x) = x3, x4 and x5:

0. 71109 30101x31 + 0.27851 77336x
3
2 + 0.010389 2565x

3
3 = 6 ≡

∞R
0

x3e−xdx

0. 71109 30101x41 + 0.27851 77336x
4
2 + 0.010389 2565x

4
3 = 24 ≡

∞R
0

x4 e−xdx

0. 71109 30101x51 + 0.27851 77336x
5
2 + 0.010389 2565x

5
3 = 120 ≡

∞R
0

x5e−xdx

whereas with y(x) = x6 we get

0. 71109 30101x61 + 0.27851 77336x
6
2 + 0.010389 2565x

6
3 = 684

which is 5% off the correct answer of 720.

Applying the formula to
R∞
0

exp(−x)
x+2

dx of one of our previous examples yields

0. 71109 30101

x1 + 2
+
0.27851 77336

x2 + 2
+
0.010389 2565

x3 + 2
= 0.3605

which is a lot closer (0.2% error) to the correct answer of 0.3613 than the
four-node rule derived earlier.
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To extend this three-node formula to
∞Z
0

y(x) e−β xdx

we introduce z ≡ β x, which enables us to write the integral as
∞Z
0

y( z
β
) e−z dz

β
'

1
β

h
0. 71109 30101 y(x1

β
) + 0.27851 77336 y(x21

β
) + 0.010389 2565 y(x3

β
)
i

Similarly, we could deal with
∞Z
A

y(x) e−xdx

where the lower limit is A instead of 0 (try it).

It should now be quite obvious how to construct a Gaussian formula with a
given number of nodes to approximate

1Z
−1

y(x)√
1− x2

dx

using the roots of the corresponding Hermite polynomial for nodes.

The situation is slightly more difficult in a case like
1Z
0

y(x)√
x
dx

where we don’t have the corresponding set of orthogonal polynomials as yet. This
means that the task of designing a Gaussian formula for approximating the above
integral will first require constructing these, using Gram-Schmidt.

Example: To design a modest two-node Gaussian formula to approximate the
previous integral, we need to find the first three polynomials orthogonal in
the following sense

1Z
0

φi(x)φj(x)√
x

dx = 0

when i 6= j. We have practiced this enough, so we skip the details, quoting
the results only:

φ0(x) = 1

φ1(x) = x− 1
3

φ2(x) = x2 − 6
7
x+

3

35
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But, to be on the save side, we do verify that they are correct:

1Z
0

φ0(x)φ1(x)√
x

dx =
1
3
2

−
1
3
1
2

= 0

1Z
0

φ0(x)φ2(x)√
x

dx =
1
5
2

−
6
7
3
2

+
3
35
1
2

= 0

1Z
0

φ1(x)φ2(x)√
x

dx =
1
7
2

−
6
7
5
2

+
3
35
3
2

− 1
3

µ
1
5
2

−
6
7
3
2

+
3
35
1
2

¶
= 0

Our two nodes will thus be

x1 =
3

7
−
r
9

49
− 3

35
=
3

7
− 2

35

√
30

x2 =
3

7
+

r
9

49
− 3

35
=
3

7
+
2

35

√
30

the interpolating polynomial is p(x) =
x− x2
x1 − x2

y(x1) +
x− x1
x2 − x1

y(x2) which,

when divided by
√
x, integrates to

2
3
− 2x2

x1 − x2
y(x1) +

2
3
− 2x1

x2 − x1
y(x2) =

³
1 +

√
30
18

´
y(x1) +

³
1−

√
30
18

´
y(x2)

This rule can be verified to be correct for y(x) = 1, x, x2 and x3:³
1 +

√
30
18

´
+
³
1−

√
30
18

´
= 2³

1 +
√
30
18

´
x1 +

³
1−

√
30
18

´
x2 =

2

3³
1 +

√
30
18

´
x21 +

³
1−

√
30
18

´
x22 =

2

5³
1 +

√
30
18

´
x31 +

³
1−

√
30
18

´
x32 =

2

7

but ³
1 +

√
30
18

´
x41 +

³
1−

√
30
18

´
x42 =

258

1225

no longer equal the correct answer of 2
9
(off by about 5%).

To approximate

1Z
0

exp(x2)√
x

dx '
³
1 +

√
30
18

´
exp(x21) +

³
1−

√
30
18

´
exp(x22) = 2. 528

which is reasonably close (0.6% error) to the exact answer of 2.543.
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We now modify the formula to approximate

AZ
0

y(x)√
x
dx = A

1Z
0

y(Az)√
Az

dz '
√
A
h³
1 +

√
30
18

´
y(Ax1) +

³
1−

√
30
18

´
y(Ax2)

i
This, applied to

1/2Z
0

exp(x2)√
x

dx

yields
1√
2

h³
1 +

√
30
18

´
exp(

x21
4
) +

³
1−

√
30
18

´
exp(

x22
4
)
i
= 1.4898

a fairly decent (0.02% error) approximation to the exact answer of 1.4901.
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Chapter 8 NUMERICAL
DIFFERENTIATION

In this chapter we learn how to design formulas to numerically approximate the
value of the first (second, third) derivative of a specific function at a given point.
There are some similarities with numerical integration, but also some major differ-
ences, namely:

1. The motivation: Unlike integration, differentiation is an easy, routine proce-
dure when done analytically, why bother with numerical estimation? True
enough, the main application of numerical differentiation is not to compute
derivatives, but to solve differential equations, both ordinary and partial.

2. Now, we will not fuss much about selecting nodes; we usual use simple,
equidistant spacing (no ’Gaussian’ differentiating).

3. In addition to reducing the so called truncation error any such formula
(the one expanded in powers of h), we will also have to fight the round-off
error which, for numerical differentiation (unlike integration), becomes a
major issue (that is why they sometimes say that numerically, integration is
easy and differentiation hard - the exact opposite of the analytic situation).

The main idea remains the same though, to approximate say y0(x0) we select
a few nodes (at and near x0), evaluate y(x) at these nodes, fit the corresponding
interpolating polynomial, and differentiate it, instead of the original function.

Example: We choose, as our nodes, x0 itself and then x0 − h and x0 + h, where
h is ’small’. The corresponding interpolating polynomial is

(x− x0)(x− x0 − h)

(−h) · (−2h) y(x0 − h) +
(x− x0 + h)(x− x0 − h)

h · (−h) y(x0) +(8.1)

(x− x0 + h)(x− x0)

2h · h y(x0 + h)

Differentiating with respect to x, and then substituting x = x0 yields

y0(x0) ' y(x0 − h)

−2h +
y(x0 + h)

2h
=

y(x0 + h)− y(x0 − h)

2h

which is clearly the slope computed based on the two end points. Using (7.1),
the right hand side reduces to

y0(x0) +
y000(x0)
6

h2 +
yv(x0)

120
h4 + ....

The truncation error of the formula is thus

y000(x0)
6

h2 +
yv(x0)

120
h4 + ....
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This formula may give us the impression that the error can be reduced, fast and
easily, by making h very small. Unfortunately, when h is very small, the round-off
error of the expression becomes huge, wiping out any accuracy gain achieved by
reducing the truncation error.

Example: Using the formula of the last example, we approximate y0(x0) where
y(x) = exp(x2) and x0 = 1. The exact value is easily computed to be 2e =
5.43656 3656 .

h exp[(1+h)2]−exp[(1−h)2]
2h

Error:
0.1 5. 52788 333 0.0913197
0.01 5. 43746 980 0.0009061
0.001 5. 43657 250 0.0000088
0.0001 5. 43656000 0.0000037
0.00001 5. 43655000 0.0000136
0.000001 5. 43650000 0.0000636

According our formula, the error should be reduced by a factor of 100 in
each step. This is clearly so up to h = 0.001, but the next improvement is
only by a factor of 2.4, and after that the results actually deteriorate! This
means that the formula should never be used with h much smaller than 0.001
(assuming a 10 digit computational accuracy).

Richardson Extrapolation
We can reduce the truncation error of the formula by a technique practically iden-
tical to the old Romberg algorithm which, in this context, is called Richardson
extrapolation. We just have to be careful not to reduce h beyond the value of
0.001 .

Example: Re-doing the previous example (this time, we will keep on reducing h
by a factor of 2):

Ri =

h exp[(1+h)2]−exp[(1−h)2]
2h

Si =
4Ri+1−Ri

3
Ti =

16Si+1−Si
15

64Ti+1−Ti
63

1
4

6. 03135 7050 5.42938 7349 5.43657 7469 5.436563669
1
8

5. 57987 9776 5.43612 8086 5.436563886 5.436563704
1
16

5.47206 6010 5.43653 6649 5.436563708
1
32

5.44541 8990 5.43656 2016
1
64

5.43877 6260

at which point we have clearly reached the limit of how much accuracy we
can squeeze out of this table (the correct digits are in bold). Note that now
it is short of impossible to get the full 10 digit accuracy (we will be lucky
to get 8 correct digits), due to the round off error (always looming in the
background).
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Higher-Degree Formulas
To obtain a more accurate and faster converging formula, one has to increase the
number of nodes. The most logical next step is to use x = x0, x0±h and x0±2h.We
may have noticed already (in our previous example) that the resulting coefficients
are antisymmetric (i.e. symmetric nodes have coefficients of opposite sign),
which effectively eliminated the y(x0) value (it had 0 coefficient). One can show
that this is the case in general, when approximating a derivative of an odd order
(even-order derivatives will still require symmetric formulas).
There are two ways of further simplifying the formula derivation:

1. We can derive the formula assuming that x0 = 0 and h = 1, and then
transform it to allow arbitrary values (similar to introducing X when fitting
functions - this time X ≡ x−x0

h
). In this new scale, the interpolating polyno-

mial (using only x0±h and x0±2h as nodes, not expecting x0 to contribute)
becomes

(X+1)(X−1)(X−2)
(−1)×(−3)×(−4) Y (−2) + (X+2)(X−1)(X−2)

1×(−2)×(−3) Y (−1) +
(X+2)(X+1)(X−2)

3×2×(−1) Y (1) + (X+2)(X+1)(X−1)
4×3×1 Y (2)

Differentiating this expression with respect to X, then setting X = 0 yields

(−1)×(−2)+1×(−2)+1×(−1)
−12 Y (−2) + (−1)×(−2)+2×(−2)+2×(−1)

6
Y (−1) +

1×(−2)+2×(−2)+2×1
−6 Y (1) + 1×(−1)+2×(−1)+2×1

12
Y (2) =

1

12
Y (−2)− 2

3
Y (−1) + 2

3
Y (1)− 1

12
Y (2)

Since dy(x)
dx

= dY (X)
dX

· dX
dx
= dY (X)

dX
· 1
h
, our final approximate formula reads:

y0(x0) ' y(x0 − 2h)− 8 y(x0 − h) + 8 y(x0 + h)− y(x0 + 2h)

12
(8.2)

2. Faster yet, knowing that the formula (due to antisymmetry) must have the
form of

−c2 Y (−2)− c1Y (−1) + c1Y (1) + c2Y (2)

and be exact when Y (X) = 1, X, X2, X3 and X4 (since it is, effectively, a
five node formula) we make it correct with Y (X) = X and X3 (it already is
correct with 1, X2 and X4, why?):

2c2 + c1 + c1 + 2c2 = 1

8c2 + c1 + 8c1 + c2 = 0

implying that c1 = −8c2 and c2 = − 1
12
.We thus get, much more quickly, the

same answer as before.
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With the help of (7.1), we get

y(x0 − 2h) = (8.3)

y(x0)− 2h y0(x0) + 4h
2

2
y00(x0)− 8h

3

6
y000(x0) +

16h4

24
yiv(x0)− 32h

5

120
yv(x0) + ...

y(x0 − h) = (8.4)

y(x0)− h y0(x0) +
h2

2
y00(x0)− h3

6
y000(x0) +

h4

24
yiv(x0)− h5

120
yv(x0) + ...

y(x0 + h) = (8.5)

y(x0) + h y0(x0) +
h2

2
y00(x0) +

h3

6
y000(x0) +

h4

24
yiv(x0) +

h5

120
yv(x0) + ...

y(x0 + 2h) = (8.6)

y(x0) + 2h y
0(x0) +

4h2

2
y00(x0) +

8h3

6
y000(x0) +

16h4

24
yiv(x0) +

32h5

120
yv(x0) + ...

The right hand side of (8.2) is thus equal to

y0(x0)− h4

30
yv(x0) + ...

where the second term represents the error of the formula.

Example: Estimating d exp(x2)
dx

at x = 1 yet one more time (using our last formula),
we get:

Ri =

h − exp[(1+2h)2]+8 exp[(1+h)2]−8 exp[(1−h)2]+exp[(1−2h)2]
12h

Ti =
16Ri+1−Ri

15
64Ti+1−Ti

63
1
4

5. 30723 9257 5.43753 0565 5.43656 2332
1
8

5.42938 7358 5.43657 7463 5.436563667
1
16

5.43612 8081 5.436563885
1
32

5.43653 6647

with a bit of Richardson extrapolation.

Nonsymmetric spacing
Sometimes we are restricted in our choice of nodes. For example, we may be
required to evaluate y(x) only at and to the right of x0.

Example: We would like to approximate y0(x0) by a formula with three nodes,
x0, x0 + h and x0 + 2h. We know that, in terms of X, the formula will have
the form of

c0Y (0) + c1Y (1) + c2Y (2)

(the coefficients will no longer have any symmetry). Making it exact for
Y (X) = 1, X and X2 yields:

c0 + c1 + c2 = 0

c1 + 2c2 = 1

c1 + 4c2 = 0
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which yields c2 = −12 , c1 = 2, c0 = −32 . The transformed formula is thus:

y0(x0) ' −3y(x0) + 4y(x0 + h)− y(x0 + 2h)

2h

Its right hand side, with the help of (8.5) and (8.6) evaluates to

y0(x0)− h2

3
y000(x0)− h3

4
yiv(x0)− ...

Note that the main error term is now proportional to h2 (since we have three
nodes), after which both odd and even powers of h contribute.

Applied to our benchmark problem, this yields:

Ri =

h −3 exp(1)+4 exp[(1+h)2]−exp[(1+2h)2]
2h

Si =
4Ri+1−Ri

3
8Si+1−Si

7
1
16

5. 35149 250 5.43909 0859 5.43653 1527
1
32

5.41719 127 5.43685 1443
1
64

5.43193 640

Note the formula’s poor performance (due to being nonsymmetric). Due to all
orders of h now contributing to the error term, Richardson extrapolation now
follows a different pattern (for the same reason, the resulting improvement is
not as impressive as before).

Higher derivatives
To approximate y00(x0), we first derive a basic three-node (symmetric) formula.
The interpolating polynomial is of course the same (8.1), differentiating it twice
yields the following result:

y(x0 − h)− 2y(x0) + y(x0 + h)

h2

Utilizing (8.5) and (8.4), this equals to

y00(x0) +
yiv(x0)

12
h2 + ....

where the second term represents the truncation error. The round-off error is
now substantially bigger than in the y0(x0) case (a reflection of having h2 in the
denominator, instead of h).

Example: We will use the previous formula to approximate the second derivative
of exp(x2) at x = 1 (analytically, the second derivative equals to (4x2 +
2) exp(x2), and evaluates, at x = 1, to 6e = 16. 30969 097):

Ri =

h exp[(1−h)2]−2 exp(1)+exp[(1+h)2]
h2

Si =
4Ri+1−Ri

3
16Si+1−Si

15
1
16

16.377100 16.309653 16.309712
1
32

16.326515 16.309708
1
64

16.313910
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Clearly, the second stage of Richardson extrapolation can no longer improve
the accuracy (due to the extra random error). Things would look different if
the computation is carried out using a 15-digit accuracy:

Ri =

h exp[(1−h)2]−2 exp(1)+exp[(1+h)2]
h2

Si =
4Ri+1−Ri

3
16Si+1−Si

15
1
16

16.37709 985 16.30965 102 16.30969098
1
32

16.32651 323 16.30968 848
1
64

16.31389 467

Finally, we derive a formula to approximate y000(x0). Here, the minimum of four
nodes is needed (always the order of the derivative plus one), we will choose them
at x0 ± h and x0 ± 2h. This time, we use the X trick; in the ’capital’ scale, the
formula must read (utilizing its antisymmetry):

−c2 Y (−2)− c1 Y (−1) + c1 Y (1) + c2 Y (2)

Furthermore, it has to yield the exact answer with Y (X) = X and X3:

2c2 + c1 + c1 + 2c2 = 0

8c2 + c1 + c1 + 8c2 = 6

which implies c1 = −2c2 and c2 =
1
2
. We thus obtain

Y 000(0) ' Y (2)− 2Y (1) + 2Y (−1)− Y (−2)
2

or, going back to y(x):

y000(x0) ' y(x0 + 2h)− 2y(x0 + h) + 2y(x0 − h)− y(x0 − 2h)
2h3

With the help of (8.3) to (8.6), the right hand side reduces to

y000(x0) +
yv(x0)

4
h2 + ....

Example: We use this formula to approximate the third derivative of exp(x2) at
x = 1 (the exact answer is 20e = 54. 36563 657). Based on our previous ex-
perience, we carry out the computation using 20-digit accuracy (to eliminate
the round-off error, which would otherwise ’steal’ from us another two digits).

Ri =

h exp[(1+2h)2]−2 exp[(1+h)2]+2 exp[(1−h)2]−exp[(1−2h)2]
2h3

Si =
4Ri+1−Ri

3
16Si+1−Si

15
1
32

54. 57311 583 54.36553 087 54.36563659
1
64

54.41742 711 54.36562 998
1
128

54.37857 926

As mentioned earlier, the main application of these formulas is to solve, numer-
ically, several types of ordinary and partial differential equations. Before we can
do that, we have to first study yet another important issue, that of solving
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Chapter 9 NONLINEAR EQUATIONS
We will start with the case of one equation with one unknown, which can be always
written as

f(x) = 0

Finding all solutions graphically is easy: we plot f(x) against x (using a wide
enough range of x values, to make sure we have not missed anything); then each
time the graph crosses (or touches) the x axis, the corresponding x coordinate
provides a solution to the equation. The only difficulty with this approach is the
accuracy - we will be lucky to get the first two digits of the correct answer. But,
this will be enough to give a good estimate of the solution, which can ten be refined
(to any accuracy) by the so called

Newton’s Method
Expanding the graph of f(x) around the point of intersect and observing only a
small segment of it, the result will look almost like a straight line (with only slight
curvature). We will also assume that the graph crosses the x axis at a non-zero
angle (rather then just touching it). It is then obvious (draw the corresponding
picture) that our initial estimate of the root (say x0) can be improved by fitting
a straight line with a slope of f 0(x0) trough the point [x0, f(x0)], and finding its
intercept with the x axis. Since

y − f(x0) = f 0(x0) · (x− x0)

is the equation of this straight line, solving

−f(x0) = f 0(x0) · (x− x0)

for x yields the desired improved solution, namely:

x1 = x0 − f(x0)

f 0(x0)

This yields a better, but not necessarily 10-digit accurate solution. But clearly, we
can now apply the same idea again, using x1 in place of x0. This will result in

x2 = x1 − f(x1)

f 0(x1)

And again:

x3 = x2 − f(x2)

f 0(x2)

etc., until the answers no longer change (within our usual, 10-digit accuracy).
One can show that this procedure is quadratically convergent, which

means that the number of correct digits roughly doubles in each iteration (one
step of the procedure).
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Example: To solve
ex = 2− x

we plot the two functions (ex and 2−x) and note that they intersect in a point
whose x coordinate is roughly equal to 1 (this is an alternate way of doing it
- one does not even need Maple). Our x0 is thus set to 1, f(x) = ex − 2 + x
and f 0(x) = ex + 1. And we are ready to iterate:

x1 = 1− e− 2 + 1
e+ 1

= 0.53788 28428

x2 = x1 − ex1 − 2 + x1
ex1 + 1

= 0.44561 67486

x3 = x2 − ex2 − 2 + x2
ex2 + 1

= 0.44285 67246

x4 = x3 − ex3 − 2 + x3
ex3 + 1

= 0.4428544011

x5 = x4 − ex4 − 2 + x4
ex4 + 1

= 0.4428544011

at which point the value no longer changes. Quadratic convergence is be
clearly observed.

The method fails (convergence becomes extremely slow) when f(x) only touches
the x axis, without crossing it (this is an indication that both f(x) and f 0(x) have
a root at that point), or crosses it at 0 angle (an indication that f 00(x) is also equal
to zero at that point). The best way to overcome this problem is: As soon as we
notice it (from graph, or slow convergence of the standard technique), we switch
to solving f 0(x) = 0 instead. If that is still giving trouble, solve f 00(x) = 0, etc. In
the end (to be on the save side), we should verify that the final answer does meet
f(x) = 0.

Example: We know that f(x) = 1 + sinx has a root at x = 3
2
π = 4. 71238 8981

(≡ 270o). If we try to find it by the regular technique (starting at x0 = 5),
we get

x1 = x0 − 1 + sinx0
cosx0

= 4. 85519 4921

x2 = x1 − 1 + sinx1
cosx1

= 4.78367 0356

x3 = x2 − 1 + sinx2
cosx2

= 4.74801 457

x4 = x3 − 1 + sinx3
cosx3

= 4.73019 9891

x5 = x4 − 1 + sinx4
cosx4

= 4.72129 4199

x6 = x5 − 1 + sinx5
cosx5

= 4.71684 156

x7 = x6 − 1 + sinx6
cosx6

= 4.71461 527

...
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Even though the procedure seems to converge to the correct answer, the
process would obviously take forever.

If instead we solve (1 + sinx)0 = cosx = 0, we get

x1 = x0 +
cosx0
sinx0

= 4.70418 7084

x2 = x1 +
cosx1
sinx1

= 4.71238 9164

x3 = x2 +
cosx2
sinx2

= 4.71238898

x4 = x3 +
cosx3
sinx3

= 4.71238898

we get the exact answer in 3 iterations (even though an extra iteration is
needed to confirm that). One can now easily verify that

1 + sin 4. 71238 898 = 0

We now have a technique for finding roots of our orthogonal polynomials which,
luckily, all must have simple real roots spreading over the original (A,B) interval
(otherwise, polynomial roots require special consideration - we will not go into
that).

Example: When dealing with the third-degree Laguerre polynomial, we had to
rely on Maple to get its three roots. Now, we can do this on our own. Plotting

x3 − 9x2 + 18x− 6 = 0
indicates that there is a root near x0 = 6. We thus get

x1 = x0 − x30 − 9x20 + 18x0 − 6
3x20 − 18x0 + 18

= 6. 33333 3333

x2 = x1 − x31 − 9x21 + 18x1 − 6
3x21 − 18x1 + 18

= 6.29071 5373

x3 = x2 − x32 − 9x22 + 18x2 − 6
3x22 − 18x2 + 18

= 6.289945332

x4 = x3 − x33 − 9x23 + 18x3 − 6
3x23 − 18x3 + 18

= 6.289945083

Based on our experience with quadratic convergence, we don’t have to verify
that the last answer is correct.

Once we have a root of a cubic equation, we can deflate the polynomial
by carrying out the following synthetic division:

(x3 − 9x2 + 18x− 6)÷ (x− 6. 28994 5083) =
x2 − 2.710054917x+ 0.9539034002

The remaining two roots can then be found easily to be:

2.710054917
2

+
q
(2.710054917

2
)2 − 0.9539034002 = 2. 29428 0362

2.710054917
2

−
q
(2.710054917

2
)2 − 0.9539034002 = 0.41577 45565

in agreement with our previous example.
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We will now extend this technique to solve the case of

Several Unknowns
We will start by trying to solve two nonlinear equations with two unknowns, which
we will call x1 and x2 (collectively x, using a vector notation). The two equations
can be always written in the following form:

F1(x1, x2) = 0

F2(x1, x2) = 0

where each F is now a function of two variables (our unknowns). The issue of
finding a reasonably accurate starting (initial) solution is now a lot more difficult
- plotting the two functions is still possible (even though now we need two 3D
plots), but extracting the information we need is a lot more difficult (and even
this approach will ultimately fail, when we have 3 or more unknowns). There are
various techniques capable of a global search (in n dimensional space, where
n is the number of unknowns) for a good staring point; due to a lack of time, we
have to bypass this step and simply assume that a reasonably good estimate is
provided to us.
All we need to do then is to adapt the Newton’s technique to two and more

variables. Assuming that we have a pair of initial values x10 and x20, each of the
F functions can be (Taylor) expanded, around this point, as follows:

F1(x1, x2) = F1(x10, x20) +
∂F1(x10, x20)

∂x1
(x1 − x10) +

∂F1(x10 , x20)

∂x2
(x2 − x20) + ...

F2(x1, x2) = F2(x10, x20) +
∂F2(x10, x20)

∂x1
(x1 − x10) +

∂F2(x10 , x20)

∂x2
(x2 − x20) + ...

or, using a matrix notation,

F(x) = F(x(0)) +
∂F

∂x

¯̄̄̄
x(0)

(x− x(0)) + ... (9.1)

where x(0) is a column vector with components x10 and x20, and
∂F
∂x
denotes, rather

symbolically, the following matrix of partial derivatives (called the Jacobian)

∂F

∂x
≡

 ∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2


of each equation (one per row) differentiated with respect of each variable (one per
column). Making the left hand side of (9.1) equal to a zero vector, and solving for
x yields:

x(1) = x(0) −
"
∂F

∂x

¯̄̄̄
x(0)

#−1
F(x(0))

which constitutes one iteration. In this spirit we can continue:

x(2) = x(1) −
"
∂F

∂x

¯̄̄̄
x(1)

#−1
F(x(1))

etc., until convergence is reached.
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Example: Solve

x1 cosx2 + 0.716 = 0

x2 sinx1 − x21 − 1.305 = 0

starting with x10 = 1 and x20 = 3. The Jacobian is clearly·
cosx2 −x1 sinx2

x2 cosx1 − 2x1 sinx1

¸
Evaluating the left hand side of each of our equations (using the initial values
of x1 and x2) yields

F(0) =

· −0.27399 24966
0.21941 29540

¸
similarly evaluating the Jacobian results in

J(0) =
· −0.98999 24966 −0.14112 00081
−0.37909 3082 0.84147 09848

¸
We can now compute the values of x11 and x21 as the two components of

x(1) = x(0) − [J(0)]−1F(0) =
·
0.77486 46744
2. 63782 4472

¸
where x(0) is the initial vector (with components 1 and 3). This completes
the first iteration. We can now repeat the process, until the two values no
longer change.

Even though we can still manage to do this with a calculator, we have clearly
reached the point at which it may be better to delegate the routine but tedious
computation to Maple. This can be done as follows:

F := [ x[1]∗cos(x[2]) + 0.716, x[2]∗sin(x[1])− x[1]ˆ2− 1.305 ];
J := matrix(2, 2):

for i to 2 do for j to 2 do J [i, j] := diff(F [i], x[j]) end do end do:

x := [1., 3.]:

with(linalg):

x := evalm(x− linsolve(J, F ) );

The last line computes the x(1) vector (instead of J−1F, we solve the equiva-
lent set of equations). We find it convenient not to introduce a new name, but
call both x(0) and x(1) simply x. This has the advantage that, by re-executing
the last line, we will automatically get x(2) etc. In our case, executing the
last line five times yields:

[0.7748646744, 2.637824472]

[0.7825429930, 2,719825617]
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[0.7854682773, 2.717842406]

[0.7854606220, 2.717875728]

[0.7854606228, 2.717875728]

at which point the procedure has clearly converged (note that, due to the
round off error, the last digit of either component may keep on changing,
sometimes indefinitely).

It should be clear how the formulas extend to the case of three or more un-
knowns. Let us do an example which was in the last year’s exam.

Example: We need to solve the following three equations (the algebraic, geometric
and harmonic mean of three numbers is given, respectively, as):

x1 + x2 + x3
3

= 7

3
√
x1x2x3 = 4
3

1

x1
+
1

x2
+
1

x3

=
16

7

For the initial values we will take x1 = 1.5, x2 = 5 and x3 = 10. All we need
to modify in our previous computer ’program’ is the definition of F, thus (it
does not hurt to simplify the equations):

F := [ x[1]+x[2]+x[3]−21, x[1]∗x[2]∗x[3]−64, 1/x[1]+1/x[2]+1/x[3]−21/16
];

the dimensions (i.e. 3 instead of 2 in the next two lines), and the initial
values. We will also need to rewrite the last line (to fix one of Maple’s many
quirks) as follows:

x := evalm(x− inverse(J)&∗F );
As result, we get:

[.6989495801, 3.572619045, 16.72843138]

[.8746180084, 4.895879953, 15.22950204]

[.9791494539, 3.948814285, 16.07203626]

[.9992737556, 4.004281052, 15.99644519]

[.9999992176, 3.999999364, 16.00000142]

[.9999999991, 4.000000005, 16.00000000]

The exact answer thus seems to be x1 = 1, x2 = 4 and x3 = 16 (this can be
easily verified against the original equations).

If we used the equations in their original form, it would have taken us 9
iterations to reach the same conclusion.

The choice of the initial values is quite critical, see what would happen if we
change x10 to 2.0 .
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Chapter 10 ODE, BOUNDARY-VALUE
PROBLEM

We will consider only the case of 2nd order differential equations, which can usually
be written as

y00 = f(x, y, y0) (10.1)

As we all know, there is normally an infinite set of solutions (i.e. y(x) functions
which meet the equation) - to narrow it down to a single, unique solution, we have
to impose two extra conditions. These are of two basic types:

1. Initial values, where both y(x) and y0(x) are specified at the same, ’initial’
value of x0 (often equal to 0). To solve this kind of problem requires techniques
which we don’t have time to discuss in this course.

2. Boundary values of y(x) are given at x = A and x = B. This is the
situation we will study in detail now.

We will make our task easier by first considering a special case of (10.1), namely
that of a

Linear Differential Equation
which can be written as follows

y00(x) + p(x) y0(x) + q(x) y(x) = r(x) (10.2)

where p(x), q(x) and r(x) are specific (given) functions of x. The equation is linear
in y(x) and its derivatives (but not in x). It is now more convenient to combine all
y related terms on the left hand side of the equation. The two boundary conditions
will be written as y(A) = α and y(B) = β.
The equation is quite often impossible to solve analytically, so we need a nu-

merical technique for doing the job. The idea is quite simple: we subdivide the
(A,B) interval into n equal-length subintervals (the nodes will be denoted x0, x1,
x2, .... xn−1, xn, where x0 = A and xn = B), and try to solve for the corresponding
y0, y1, y2, ... yn−1 and yn (the first and last of these are simply equal to A and
B respectively, but how about the rest?). This is done by replacing y00 and y0 in
(10.2) by a suitable numerical approximation (we know how to compute these), at
each of the inside nodes, thus getting n− 1 ordinary, linear equations for y1, y2, ...
yn−1. Solving these will give us a good approximation of the desired solution (we of
course get only a set of x-y points, instead of a function, but we know how to extend
this to a smooth curve). This is sometimes referred to as the finite-difference
technique.
The simplest (and reasonably adequate) way of approximating y00 at xi is to

take
yi−1 − 2yi + yi+1

h2

Similarly, we can approximate y0 at xi by

yi+1 − yi−1
2h
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where h = B−A
n

. Note that both formulas have error terms proportional to h2 (in
terms of the leading term). The same can then be expected of our final solution.
When substituting these into (10.2), point by point, we get

y0 − 2y1 + y2
h2

+
y2 − y0
2h

p1 + y1q1 = r1

y1 − 2y2 + y3
h2

+
y3 − y2
2h

p2 + y2q2 = r2

...
yn−2 − 2yn−1 + yn

h2
+

yn − yn−2
2h

pn−1 + yn−1qn−1 = rn−1

where p1 ≡ p(x1), p2 ≡ p(x2), .... (similarly for q1, q2, ... and r1, r2, ....).
This can be expressed in the following matrix form:

−2 + h2q1 1 +
hp1
2

0 · · · 0

1− hp2
2

−2 + h2q2 1 +
hp2
2

· · · ...

0 1− hp3
2

−2 + h2q3 · · · 0

...
...

...
. . . 1− hpn−2

2

0 · · · 0 1− hpn−1
2

−2 + h2qn−1





y1

y2

y3
...

yn−1


=



r1h
2 − y0

µ
1− hp1

2

¶
r2h

2

r3h
2

...

rn−1h2 − yn

µ
1 +

hpn−1
2

¶


The fact that the resulting matrix of coefficients is tri-diagonal greatly simplifies
the task of solving the equations.

Example: Using the technique, we will solve the following differential equation

y00 =
3

1 + x
y0 +

4

(1 + x)2
y = 1 + x

with boundary conditions: y(1) = 0 and y(2) = 9. Coincidentally (the equa-
tion is of a very special form), this problem has the following analytic solution:

y(x) = x3 + x2 − x− 1

which will enable us to compare our results with the exact answer.
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First we choose n = 4 (h = 1
4
), and fill out the following table:

xi
h pi
2

h2qi h2ri
1.25 − 3

18
4
81

9
64

1.50 − 3
20

4
100

10
64

1.75 − 3
22

4
121

11
64

This means, to get the corresponding set of yi values, we have to solve the
following linear (tri-diagonal) set of equations:

−158
81

15
18

0 9
64
− 0× 21

18
23
20

−196
100

17
20

10
64

0 25
22

−238
121

11
64
− 9× 19

22

Bypassing the details (we have nothing new to learn here), the answers are:

y1 ≡ y(1.25) =
1935711

1537792
= 1.25876 (1.265625)

y2 ≡ y(1.50) =
1197625

384448
= 3.11518 (3.125)

y3 ≡ y(1.75) =
148071847

26142464
= 5.66404 (5.671875)

Comparing them with the exact values (in parentheses), we can see that their
relative errors are about 0.5, 0.3 and 0.1% respectively.

We can improve the value of y2 by Richardson extrapolation by redoing the
problem using n = 2 (h = 1

2
). the new table of hpi

2
, h2qi and h2ri values now

has only one row:
xi

h pi
2

h2qi h2ri
1.50 − 3

10
4
25

10
16

and the corresponding set of equations is reduced to only one:

−46
25

10
16
− 0× 13

10
− 9× 7

10

Note that now we are using a different system of indexing (the new y1 is the
old y2, etc.); also note that the right hand side has been computed based on

r1h
2 − y0(1− hp1

2
)− y2(1 +

hp1
2
)

(this obviously happens only with n = 2). The solution is y1 ≡ y(1.5) =
3.08424, having a 1.3% error. Richardson extrapolation can now improve the
value of y(1.5) by computing

4× 3.11518− 3.08424
3

= 3.12549

having the error of only 0.015% (a twenty-fold improvement over the n = 4
answer). We get a substantially improved accuracy, but at fewer points.

In our next example, we like to achieve a better accuracy by simply increasing
the value of n. That of course makes the computation rather tedious, so we abandon
the ’by-hand’ approach and write the corresponding Maple ’program’ instead.
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Example: We now solve

y00 − exp(x
2
) y0 + ln(1 + x) y = sinx

with y(0) = 2 and y(3) = 5, by typing:

n := 6: h := 3./n :

x := [seq(h ∗ i, i = 1..n− 1)] :
MC :=matrix(n− 1, n− 1, 0) :
for i to n− 1 do MC[i, i] := −2 + hˆ2∗ ln(1 + x[i]) end do :

for i to n− 2 do MC[i, i+ 1] := 1− h/2∗ exp(x[i]/2) ;

MC[i+ 1, i] := 1 + h/2∗ exp(x[i+ 1]/2) end do :
r := [seq(hˆ2∗ sin(x[i]), i = 1..n− 1)] :
r[1] := r[1]− 2 ∗ (1 + h/2∗ exp(x[1]/2)) :
r[n− 1] := r[n− 1]− 5 ∗ (1− h/2∗ exp(x[n− 1]/2)) :
with(linalg) :

y := linsolve(MC, r) ;

y := [2.284400610, 2.673196903, 3.177073356, 3.797670488, 4.504905834]

with(plots) :

poinplot( [ [0, 2], seq( [ [x[i], y[i] ], i = 1..n− 1), [3, 5] ] ) ;
the last line plotting the results. We can now re-run the program with n = 12,
getting a better approximation to the solution. We can then also substan-
tially improve the values of y(0.5), y(1.0), y(1.5), .... y(2.5) by Richardson
extrapolation.

Nonlinear Case
We will now go back to the general (nonlinear) case of

y00 − f(x, y, y0) = 0

where f(x, y, y0) can be any expression involving x, y and y0.We can discretize this
equation (subject to some boundary conditions) in the same manner as before, this
time getting a nonlinear set of ordinary equations for y1, y2, .... yn−1.

Example: To solve

y00 +
y0 · y
1 + x2

− x = 0
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subject to y(0) = 2 and y(3) = −1, we use n = 3 (h = 1). At x1 = 1 and
x2 = 2, our approximation yields:

y0 − 2y1 + y2 +
y2 − y0
2

· y1
2
− 1 = 0

y1 − 2y2 + y3 +
y3 − y1
2

· y2
5
− 2 = 0

where y0 = 1 and y3 = 0. These are then two nonlinear equations for y1 and
y2. They will be solved by finding the Jacobian· −2 + y2− 1

4
1 + y1

4

1− y2
10

−2− y1
10

¸
and a sensible set of initial values, which in these circumstances can be ob-
tained from a simple straight line connecting the boundary values (y1 = 2

3

and y2 =
1
3
in our case). And we are ready to iterate, i.e. replace y1 and y2

by the two components of·
y1
y2

¸
−
· −2 + y2− 1

4
1 + y1

4

1− y2
10

−2− y1
10

¸−1 · −2y1 + y2 +
y2−1
2
· y1
2

y1 − 2y2 − y1
2
· y2
5
− 2

¸
evaluated using the current (starting with the initial) values of y1 and y2.
The iterations yield:

y1: y2:
−0.7230514093 −1.295190714
−0.4987596596 −1.281172478
−0.4984471907 −1.281152950
−0.4984471901 −1.281152950

The Newton’s technique thus converged in three iterations. This of course
does not mean that we have a 10-digit accurate solution to the original dif-
ferential equation!

To build a more accurate solution, we use n = 6 (h = 1
2
). This can be done,

with the help of Maple, as follows:

n := 6 : h := 3/n : y[0] := 2 : y[n] := −1 :
x := [seq(h ∗ i, i = 1..n− 1)] :
F := [seq( (y[i+ 1]− 2 ∗ y[i] + y[i− 1])/hˆ2+

(y[i+ 1]− y[i− 1])/2/h ∗ y[i]/(1 + x[i]ˆ2)− x[i], i = 1..n− 1)] :
J :=matrix(n− 1, n− 1) :
for i to n− 1 do for j to n− 1 do J [i, j] :=diff(F [i], y[j]) end do end do:

y := [seq(2.− 3 ∗ h ∗ i, i = 1..n− 1)] :
with(linalg) :
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for i to 5 do y :=evalm(y−inverse(J) &∗ F ) end do ;
y := [0.5386935342, —0.5221789195, —1.395663039, —1.905281418, —1.651949253]

y := [0.6283620082, —0.3227896441, —1.087744374, —1.579900666, —1.618444037]

y := [0.6329774788, —0.3158610669, —1.082427720, —1.579185984, —1.618252806]

y := [0.6329807695, —0.3158595491, —1.082428414, —1.579186594, —1.618253133]

y := [0.6329807697, —0.3158595490, —1.082428414, —1.579186594, —1.618253134]

Comparing the second and fourth value with y1 and y2 of our previous (n = 3)
solution, we can see that the solution is not yet very accurate. We can im-
prove the accuracy of the y(1) and y(2) values by Richardson extrapolation,
but now (having a general program) it is a lot easier to simply keep on dou-
bling the value of n, until a sufficiently close agreement between consecutive
solutions is reached. Note that to re-run the program using a new value of
n, we first have to type:

restart:
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Chapter 11 MATRIX’ EIGENVALUES
Here we assume a rudimentary knowledge of matrix algebra (adding, subtracting
and multiplying two matrices; we have already learned how to invert a square
matrix). Let us go over the other basic matrix properties and related definitions:
Making rows of a matrix A to be columns of a new matrix AT (for a square

matrix, this means flipping the matrix around its main diagonal) create the so
called matrix transpose. On can easily show that

(AB)T = BTAT

A matrix which equals its own transpose (it must be square) is called symmet-
ric. Note that a product of two symmetric matrices is not necessarily symmetric:
(AB)T = BTAT = BA which is not equal to AB in general (matrix multiplication
is usually not commutative).
For an important class of matrices, AT is equal to A−1 (matrix inversion then

becomes trivial). Such matrices are called orthogonal. One can show that a
product of two orthogonal matrices remains orthogonal:

(P1P2)−1 = P−12 P−11 = PT2 PT1 = (P1P2)T

For a square matrix A, a vector x such that

Ax = λx

(i.e. when pre-multiplied by A, x changes its length by a factor of λ, but not
its direction) is called the matrix’ eigenvector (λ is the corresponding eigen-
value). Eigenvectors and eigenvalues of real matrices may be complex in general.
But, for symmetric matrices, they must be all real. To simplify our task (and
avoid dealing with complex numbers), we will learn how to construct eigenvalues
and eigenvectors of symmetric matrices only.
It is very easy to find eigenvalues (with their eigenvectors) of diagonal ma-

trices, right?
One can show that, when S is regular (and, of matching size), the new matrix

S−1AS

has the same eigenvalues (not eigenvectors) as A (modifying A in this manner is
called similarity transformation).

Proof: S−1ASy = λy implies ASy = λSy. Thus, λ is and eigenvalue of A, with
the corresponding eigenvector x = Sy. ¤

Thus, if we can find a similarity transformation to result in a diagonal matrix
D (= S−1AS), we have effectively found the eigenvalues (and eigenvectors - the
columns of S) of the original matrix (and this is how it is usually done). Working
with symmetric matrices only actually gives us a further advantage: one can show
that, when A is symmetric, it will be diagonalized by a similarity transformation
with S not just regular, but also orthogonal.
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Constructing the corresponding orthogonal matrix (let us call it P instead of
S, to emphasize the fact) will be a long and tedious process, consisting of a whole
sequence of similarity transformations (each trying to get us a bit closer to a fully
diagonal matrix), thus:

...PT2 PT2 PT1AP1P2P3...

As we already know, a product of orthogonal matrices will remain orthogonal
throughout this process.
First, we describe a procedre for making A (by an orthogonal similarity trans-

formation) tri-diagonal (clearly a major step towards full diagonalization).

Householder’s Method
Let us assume that w is a (column) vector whose norm (defined as

√
wTw, i.e.

the square root of the sum of squares of all its elements) is equal to 1. Then

P ≡ I− 2wwT

is clearly both symmetric and orthogonal, since P2 = (I−2wwT)2 = I−4wwT+
4wwTwwT = −4wwT + 4wwT = I.
Suppose now that we have a symmetric matrix A,and would like to make it tri-

diagonal by an orthogonal similarity transformation. We first construct a vector
u1 by::

1. Take the first column of A and replace its first element by zero.

2. Compute the norm (say h1) of the remaining elements, and subtract it from
the second element, when this element is positive (add otherwise). Note that
the norm of the new vector is H1 = 2h1(h1 − |a21|).

The matrix

P1 ≡ I− 2u1 u
T
1

H1

is clearly symmetric and orthogonal (by the previous argument), and

P1AP1

is a similarity transformation of A, which makes all but the first two elements in
the first column (and row, due to symmetry) equal to 0 (we will skip the proof,
but we will clearly see this ’at work’ in our subsequent example).
We will then construct u2 by relacing the first two elements of the second row

(of the resulting matrix) by 0, computing the (remaining element) norm h2 and
subtracting (adding) it from (to) the third element. Based on this, we compute

P2 ≡ I− 2u2 u
T
2

H2

and carry out the corresponding similarity transformation.
Continuing in this manner, we will transform the orginal matrix to its similar,

tri-diagonal form in n− 2 steps (n is the matrix dimension).
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Example: To tri-diagonalize 
4 1 −2 2
1 2 0 1
−2 0 3 −2
2 1 −2 −1


we have h1 =

p
12 = (−2)2 + 22 = 3,

u1 =


0

1− 3
−2
2


H1 = 2 · 3 · (3− 1) = 12, and

P1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

0 0 0 0
0 2

3
2
3
−2
3

0 2
3

2
3
−2
3

0 −2
3
−2
3

2
3

 =

1 0 0 0
0 1

3
−2
3

2
3

0 −2
3

1
3

2
3

0 2
3

2
3

1
3


There are various ’shortcuts’ for computing P1AP1, but we will concentrate
on the logic of the algorithm, rather than its efficient implementation. So we
will let Maple do the evaluation, efficient or not:

1 0 0 0
0 1

3
−2
3

2
3

0 −2
3

1
3

2
3

0 2
3

2
3

1
3




4 1 −2 2
1 2 0 1
−2 0 3 −2
2 1 −2 −1



1 0 0 0
0 1

3
−2
3

2
3

0 −2
3

1
3

2
3

0 2
3

2
3

1
3



=


4 3 0 0
3 10

3
−4
3
−1

0 −4
3
−1 −4

3

0 −1 −4
3

5
3


Continuing to similarly reduce the second column (row), we get h2 =

q
(−4

3
)2 + (−1)2 =

5
3

u1 =


0
0

−4
3
+ 5

3−1


H2 = 2 · 53 · (53 − 4

3
) = 10

9
, and

P2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

0 0 0 0
0 0 0 0
0 0 1

5
−3
5

0 0 −3
5

9
5

 =

1 0 0 0
0 1 0 0
0 0 4

5
3
5

0 0 3
5
−4
5
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So, finally, P2P1AP1P2 equals to
1 0 0 0
0 1 0 0
0 0 4

5
3
5

0 0 3
5
−4
5



4 3 0 0
3 10

3
−4
3
−1

0 −4
3
−1 −4

3

0 −1 −4
3

5
3



1 0 0 0
0 1 0 0
0 0 4

5
3
5

0 0 3
5
−4
5



=


4 3 0 0
3 10

3
−5
3

0
0 −5

3
−33
25
−68
75

0 0 −68
75

149
75


which has the desired tri-diagonal form. We know that this matrix (let us
call it A0) has the same eigenvalues as the original one.

Making a symmetric matrix tri-diagonal is the easy part. Making a tri-diagonal
matrix fully diagonal is a lot more difficult, and can be achieved only approximately
(even though, to an arbitrary accuracy) by iterating (until the off diagonal elements
’nearly’ disappear). This is what we will discuss now.

QR Decomposition
Any matrix can be written as a product of an orthogonal matrix, say Q, and an
upper triangular matrix R. We need to learn how to do this with our tri-diagonal
matrices only. Once we have achieved that, i.e. found Q and R such that

A0 = QR

it should be clear that
A1 ≡ RQ = QTA0Q

is a similarity transformation of A0. Not only that, A1 remains symmetrical (quite
obvious) and tri-diagonal (not so obvious, but we will see it in our examples).
Finally (and this is the most important part), its off diagonal elements decrease
in magnitude (which means that we can do this repeatedly until they practically
disappear). At that point, we are done: we have found the eigenvalues of the
original matrix to be the main diagonal elements of the resulting one.
So the only missing part of the algorithm is carrying out the QR decomposion.

For this purpose we must define a special kind of orthogonal 2 by 2 matrix called
rotation, which has the follwing general form·

c s
−s c

¸
where s2 + c2 = 1. One can easily verify that the matrix is orthogonal, thus:·

c s
−s c

¸ ·
c −s
s c

¸
=

·
c2 + s2 −c s+ s c

−s c+ c s s2 + c2

¸
=

·
1 0
0 1

¸
Note that is we replace, in a unit matrix of any size, one of the main-diagonal 2
by 2 submatrices by the previous matrix, e.g.

1 0 0 0
0 c s 0
0 −s c 0
0 0 0 1
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the resulting matrix is still orthogonal.
TheQR decomposition is performed as follows: we premultiply A0 by a rotation

constructed to make the first below-diagonal element equal to zero. This is achieved
by using the following two numbers for c and s, respectively:

1. take the first two elements of column 1,

2. change the sign of the second one,

3. and ’normalize’ them (divide each by the sqaure root of their sum of squares).

Then, similarly, construct and apply another rotation to eliminate the second
below-diagonal element, etc., until you eliminate all below-diagonal elements.

Example: Suppose we want to construct the QR decomposition of the following
tridiagonal matrix:

A0 ≡


2 −1 0 0
−1 3 2 0
0 2 −3 4
0 0 4 1


First we premultiply by

P1 =


2√
5
− 1√

5
0 0

1√
5

2√
5

0 0

0 0 1 0
0 0 0 1


to obtain 

√
5 −√5 −2

5

√
5 0

0
√
5 4

5

√
5 0

0 2 −3 4
0 0 4 1


then by

P2 =


1 0 0 0

0
√
5
3

2
3

0

0 −2
3

√
5
3

0
0 0 0 1


(note that now c and s have been computed based on the second and third
elements of row 2), to get

√
5 −√5 −2

5

√
5 0

0 3 −2
3

8
3

0 0 −23
15

√
5 4

3

√
5

0 0 4 1


and finally by

P3 =


1 0 0 0
0 1 0 0
0 0 − 23√

1249
60√
6245

0 0 − 60√
6245

− 23√
1249
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(based on the last two elements of column 3), to get the resulting R matrix
√
5 −√5 −2

5

√
5 0

0 3 −2
3

8
3

0 0 1
15

√
6245 − 56

3747

√
6245

0 0 0 − 103
1249

√
1249


Note that that the correspondingQ = PT1 PT2 PT3 (this follows from P3P2P1A0 =
R).
So we have just constructed the QR decomposition of A0. What we really
want in the end is A1 = RPT1 PT2 PT3 , which should turn out to be symmetric
and tri-diagonal. This takes only some extra matrix multiplication (note that
in each step, only two columns of R change - an efficient program would take
that into consideration, since full-matrix multiplication is very ’expensive’),
yielding

A1 =


3 −3

5

√
5 0 0

−3
5

√
5 14

9
2
45

√
6245 0

0 2
45

√
6245 −38807

11241
−1236
1249

√
5

0 0 −1236
1249

√
5 2369

1249

 =


3.0 −1. 34164 0787 0 0
−1. 34164 0787 1. 55555 5556 3. 51223 6106 0

0 3. 51223 6106 −3. 45227 2929 −2. 21279 4252
0 0 −2. 21279 4252 1. 89671 7374


This procedure can then be repeated to build A2, A3, etc. To make it easier, we

will use the following Maple procedure called step, which takes Ai as its argument,
and returns Ai+1:

step :=proc(A) local n, a, i, j, p; n := rowdim(A):

for i to n− 1 do a := submatrix(A, i..i+ 1, 1..n):

p[i] := matrix(2, 2, [a[1, i], a[2, i],−a[2, i], a[1, i]]) / sqrt(a[1, i]ˆ2 + a[2, i]ˆ2):

a := evalm(p[i] &∗ a):
for j to n do A[i, j] := a[1, j]: A[i+ 1, j] := a[2, j] end do: end do:

for i to n− 1 do a := submatrix(A, 1..n, i..i+ 1):

a := evalm(a &∗ transpose(p[i]) ):
for j to n do A[j, i] := a[j, 1]: A[j, i+ 1] := a[j, 2] end do: end do:

A end:

To get A2 (assuming that we have already computed A1), all we have to do is
type:
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A2 := step(A1);

and getting
3.759259259 −1.477425003 0 0
−1.477425003 −1.705370807 4.388847474 0

0 4.388847474 −0.7240742723 0.9371079120
0 0 0.9371079120 1.670185820


In this form, the procedure converges rather slowly (eventually, we will have to

do something about that!), so we quote the result of every thent iteration only:

A10 =


−0.0778492650 −5.192390056 0 0
−5.192390056 −1.106701279 0.0320364388 0

0 0.0320364388 2.830526381 0.0021280394
0 0 0.0021280394 1.354024164



A20 =


−5.726428187 −.9309776898 0 0
−.9309776898 4.542070063 0.00009717882 0

0 0.00009717882 2.830337028 −0.0000006391
0 0 −0.0000006391 1.354021096



A30 =


−5.809267571 −0.09602590019 0 0
−0.09602590019 4.624909454 0.0000007118 0

0 0.0000007118 2.830337023 −0.0000000004
0 0 −0.0000000004 1.354021096



A40 =


−5.810141972 −0.0098268078 0 0
−0.0098268078 4.625783856 0.0000000052 0

0 0.0000000052 2.830337023 0
0 0 0 1.354021096



A50 =


−5.810151128 −0.0010055427 0 0
−0.0010055427 4.625793015 0 0

0 0 2.830337025 0
0 0 0 1.354021096



A60 =


−5.810151219 −0.00010289358 0 0
−0.00010289358 4.625793111 0 0

0 0 2.830337017 0
0 0 0 1.354021096



A70 =


−5.810151211 −0.0000105287 0 0
−0.0000105287 4.625793102 0 0

0 0 2.830337011 0
0 0 0 1.354021096



A80 =


−5.810151211 −0.00000107738 0 0
−0.00000107738 4.625793102 0 0

0 0 2.830337011 0
0 0 0 1.354021096
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at which point the main diagonal elements no longer change (even though we still
have not reached a full convergence - the off-diagonal elements have not quite
disappeared yet).
Based on this example, we can make a few general observations:

1. The procedure converges much too slowly!

2. The convergence is the fastest at the lower right corner, and slowly drifts up
the main diagonal.

3. The eigenvalues are extracted from the smallest (in magnitude) - the lower
right corner, to the largest (upper left corner).

The main issue is now: how to speed up the convergence? This is achieved
by the so called shift, which works as follows: If, at any stage of the process,
we subtract from Ai a multiple of the unit matrix, say s I, all its eigenvalues are
reduced by s (the eigenvectors are not affected). The closer we can bring the
smallest (in magnitude) eignevalue to zero, the faster the procedure will converge.
So it all hinges on how to estimate the smallest eigenvalue. This we do as folows:
We compute the two eignavalues of the lower right 2 by 2 ’corner’ (submatrix)

of Ai, say ·
a b
b c

¸
by using the following formula

a+ c

2
±
sµ

a− c

2

¶2
+ b2

and take the one smaller in magnitude to be our s. Then we subtract s I from Ai,
before we carry out the next RQ step. Then, we repeat the whole procedure (find
the eigenvalues of the lower right corner, subtract the new s I, etc.) until conver-
gence is reached (this will now happen a lot faster: each iteration will triple the
number of correct digits in the last eignenvalue - the so called cubic convergence).
We of course have to keep track of all the s values, and make the corresponding
adjustment in the resulting eigenvalues.
There is one more trick which will speed up the computation: once we reduce

the off-diagonal element in the last row (and column) to zero, the corresponding
main diagonal element is one of the eigenvalues. We may then delete the last row
and column (the so called deflation) and continue the process with a matrix
of a smaller size. We continue this till we reach a 2 by 2 matrix, for which the
eigenvales can be computed analytically.

Example: Starting with the same

A0 ≡


2 −1 0 0
−1 3 2 0
0 2 −3 4
0 0 4 1
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as before, we first find the eigenvalues of the lower right corner:

−1±
√
20

so s = −1 +√20. Our step procedure is then applied to
3−√20 −1 0 0

−1 4−√20 2 0

0 2 −2−√20 4

0 0 4 2−√20


resulting in

−2.086016217 −1.127928288 0 0
−1.127928288 −6.142517389 4.548831156 0

0 4.548831156 −2.229740719 −0.7820049124
0 0 −0.7820049124 −0.4302694951


Similarly, the next s is −0.1379246338, which needs to be subtracted from
the main diagonal. Used as the argument of step, we obtain:

−3.944739819 −3.252698362 0 0
−3.252698362 −7.003053686 1.042796325 0

0 1.042796325 1.071996644 0.2847589388
0 0 0.2847589388 −0.4610484219


And, two more times: s = −0.5122327109

−8.127461129 −1.846776024 0 0
−1.846776024 −1.827792430 .6901018070 0

0 .6901018070 1.658979780 0.0013572467
0 0 0.0013572467 0.0083593393


s = 0.008358223295

−8.624456904 −0.3419015412 0 0
−0.3419015412 −1.287002968 0.7941414393 0

0 0.7941414393 1.590112347 0.0000000003
0 0 0.0000000003 0.0000001888


So, after four iterations, we found the first eigenvalue, equal to

0.0000001888 + 0.008358223295− 0.5122327109− 0.1379246338− 1 +
√
20

= 2. 83033 7023

Note that, without shift, we needed someting like twenty iterations to get
this value. Also note that, when we use shift, we don’t necesarily extract the
smallest eigenvalue first.

Deflating the matrix to −8.624456904 −0.3419015412 0
−0.3419015412 −1.287002968 0.7941414393

0 0.7941414393 1.590112347
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we find that the next s equals to −1.491646077. Subtracting it from the main
diagonal elements of the previous matrix, and applying step, results in: −7.148692727 −0.03946443807 0

−0.03946443807 3.285889993 −0.0589673574
0 −0.0589673574 0.01639343608


Repeating one more time: s = 0.0153302697 −7.164141138 −0.01802010583 0

−0.01802010583 3.271740963 0.00000000127
0 0.00000000127 0.00000007064


which is sufficient to get the next eigenvalue, thus:

0.00000007064 + 0.0153302697− 1.491646077 +
+0.008358223295− 0.5122327109− 0.1379246338− 1 +

√
20

= 1. 35402 1097

Note that we had to adjust the eigenvalue by adding cumulative sum of all
the s values so far.

Deflating the last matrix yields· −7.164141138 −0.01802010583
−0.01802010583 3.271740963

¸
whose eigenvalues are −7.164172254 and 3.271772079. Adjusted by the same
cumulative sum, these yield −5.81015 1227 and 4. 62579 3106 for the last two
eigenvalues of the original matrix. Using shift and deflation, we have thus
been able to extract all four eigenvalues in six iterations. This is a substancial
improvement over 80 iterations of the previous example.


