
MATH 3P82
REGRESSION ANALYSIS

Lecture Notes

c° Jan Vrbik



2



3

Contents

1 PREVIEW 5

2 USING MAPLE 7
Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Lists and Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Variables and Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Other useful commands: . . . . . . . . . . . . . . . . . . . . . . . . 11
Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 SIMPLE REGRESSION 13
Maximum Likelihood Method . . . . . . . . . . . . . . . . . . . . . . . . 13
Least-Squares Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Normal equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Statistical Properties of the three Estimators . . . . . . . . . . . . . . . . 15
Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Regression coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 18
Residual variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Expected-value estimator . . . . . . . . . . . . . . . . . . . . . . . . 19
New y value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Hypotheses Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Model Adequacy (Lack-of-Fit Test) . . . . . . . . . . . . . . . . . . . . . 20
Weighted Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Large -Sample Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Confidence interval for the correlation coefficient . . . . . . . . . . . 27

4 MULTIVARIATE (LINEAR) REGRESSION 29
Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . 29

Partial correlation coefficient . . . . . . . . . . . . . . . . . . . . . . 30
Multiple Regression - Main Results . . . . . . . . . . . . . . . . . . . . . 31

Various standard errors . . . . . . . . . . . . . . . . . . . . . . . . . 33
Weighted-case modifications . . . . . . . . . . . . . . . . . . . . . . 34

Redundancy Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Searching for Optimal Model . . . . . . . . . . . . . . . . . . . . . . . . 37
Coefficient of Correlation (Determination) . . . . . . . . . . . . . . . . . 38



4

Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Dummy (Indicator) Variables . . . . . . . . . . . . . . . . . . . . . . . . 40
Linear Versus Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . 42

5 NONLINEAR REGRESSION 43

6 ROBUST REGRESSION 47
Laplace distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Cauchy Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 TIME SERIES 53
Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Yule Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



5

Chapter 1 PREVIEW
Regression is a procedure which selects, from a certain class of functions, the one
which best fits a given set of empirical data (usually presented as a table of x and y
values with, inevitably, some random component). The ’independent’ variable x is
usually called the regressor (there may be one or more of these), the ’dependent’
variable y is the response variable.. The random components (called residuals)
are usually assumed normally distributed, with the same σ and independent of each
other.
The class from which the functions are selected (the model) is usually one of

the following types:

1. a linear function of x (i.e. y = a+ b x) - simple (univariate) linear regression,

2. a linear function of x1, x2, ... xk - multiple (multivariate) linear regression,

3. a polynomial function of x - polynomial regression,

4. any other type of function, with one or more parameters (e.g. y = a ebx) -
nonlinear regression.

The coefficients (parameters) of these models are called regression coeffi-
cients (parameters). Our main task is going to be to find good estimators of
the regression coefficients (they should have correct expected values and variances
as small as possible), to be used for predicting values of y when new observations
are taken.
Some of the related issues are:

1. How do know (can we test) whether the relationship (between y and x)
is truly linear? What if it is not (we have switch to either polynomial or
nonlinear model).

2. Similarly, are the residuals truly normal and independent of each other? How
do we fix the procedure if the answer is NO.

3. Even when they are normal and independent, what if their variance changes
with x (here, we have to do the so called weighted regression).

4. Even when all the assumptions are properly met: In the multivariate case
with many independent variables, do we really need them all to make a good
prediction about y ? And, if it is possible to reduce them (usually substan-
tially) to a smaller subset, how do we do it (i.e. selecting the best five,
say).?



6



7

Chapter 2 USING MAPLE
Basics
Typing an expression (following Maple’s > prompt) results in evaluating it.
When the expression contains only integers (no decimal point), one gets the exact
(rational) answer, as soon as at least one number in the expression is real (with a
decimal point), the result is real (rounded off to 10 significant digits). The symbols
∗, / and ˆ facilitate multiplication, division and exponentiation, respectively. Note
that each line of your input has to end with a semicolon:

> 4 ∗ 5− 3 / (5 + 2) + 2 ˆ (−3) ;
1103
56

The result of any computation can be stored under a name (which you make up,
rather arbitrarily), and used in any subsequent expression. Maple then remembers
the value, until the end of your session, or till you deliberately replace it with a
new value. Note that this (giving a name to a result) is achieved by typing the
name, followed by a colon and the equal sign (a group of two symbols, representing
a single operation), followed by the actual expression to be stored:

> a := (3.0 + 4) ∗ (2− 6) + 2 / 3− 4 / 5 ;
a := −28. 13333 333

> a/ 7 + 9 ;

4. 98095 238

> a := 14 / 6 ;

a := 7
3
;

> a/ 7 + 9 ;

a := 28
3
;

(from now on, we will omit the > prompt from our examples, showing only
what we have to type).
Maple can also handle the usual functions such as sin, cos, tan, arcsin,

arccos, arctan, exp, ln, sqrt, etc. All angles are always measured in radians.

sin(3.) ; sqrt(8) ;

.14112 00081

2
√
2

We can also define our own functions by:

f := x− > x ˆ 2 ;



8

f := x→ x2

f(3);

9

where f is an arbitrary name.

Lists and Loops
Maple can store, under a single name, a whole list of values, thus:

a := [3 / 2, 5, sqrt (3), 7] ;

a := [3
2
, 5,
√
3, 7]

The individual elements of a list can be referenced by indexing (and used in
computing another expression):

a[2] ∗ 4 ;
20

One can add elements of a list by the following command (as Maple calls
them):

sum(’a[i]’,’i’= 1..4) ;
27
2
+
√
3

One can convert the last answer to its decimal form by:

evalf(%) ;

15.23205 081

Note that the % symbol always refers to the previous expression.
Similarly to sum, one can also compute product of elements of a list.
To subtract say 3 from each element of the list a, redefining a correspondingly,

can be achieved by:

for i from 1 to 4 do a[i] := a[i]− 3 end do :
Note that terminating a statement by : instead of the usual ; will prevent

Maple from printing the four results computed in the process (we may not need
to see them individually). Also note that, upon completion of this statement, i
will have the value of 5 (any information i had contained previously will have been
destroyed)!
We can easily verify that the individual elements of our a list have been updated

accordingly:

a[2] ;

2

We may also create a list using the following approach:

b := [ seq (2 ˆ i, i = 1..6)] ;

b := [2, 4, 8, 16, 32, 64 ] ;



9

Variables and Polynomials
If a symbol, such as for example x, has not been assigned a specific value, Maple
considers it a variable. We may then define a to be a polynomial in x, thus:

a := 3− 2 ∗ x+ 4 ∗ xˆ2 ;

a := 3− 2x+ 4x2

A polynomial can be differentiated

diff(a, x);

−2 + 8x

integrated from, say, 0 to 3

int(a, x = 0..3) ;

36

or plotted, for a certain range of x values

plot(a, x = 0..3) ;

We can also evaluate it, substituting a specific number for x (there are actually
two ways of doing this):

subs(x = 3, a) ; eval(a, x = 3);

33

33

We can also multiply two polynomials (in our example, we will multiply a by
itself), but to convert to a regular polynomial form, we nee to expand the answer:

a ∗ a ; expand(%) ;

(3− 2x+ 4x2)2

9− 12x+ 28x2 − 16x3 + 16x4



10

Procedures
If some specific computation (consisting, potentially, of several steps) is to be done,
more than once (e.g. we would like to be able to raise each element of a list of
values to a given power), we need first to design the corresponding procedure
(effectively a simple computer program), for example:

RAISETO := proc(L, N) ; local K, n, i ; K := L ; n := nops(L) ;

for i from 1 to n do K[i] := K[i] ˆN end do ; K end proc :

where RAISETO is an arbitrary name of the procedure, L and N are arbitrary
names of its arguments (also called parameters), the first for the list and the
second for the exponent, K, n and i are auxiliary names to be used in the actual
computation (since they are local, they will not interfere with any such names
used outside the procedure). First we copy L into K (Maple does not like it if we
try to modify L directly) and find its length n (by the nops command). Then,
we raise each element K to the power of N, and return (the last expression of the
procedure) the modified list. We can organize the procedure into several lines by
using Shift-Enter (to move to the next line).
We can then use the procedure as follows:

SV FL([2, 5, 7, 1], 2); SV FL([3, 8, 4], −1) ;
[4, 25, 49, 1]

[1
3
, 1
8
, 1
4
]

Matrix Algebra
We can define a matrix by:

a := matrix(2, 2, [1, 2, 3, 4]) :

where 2, 2 specifies its dimensions (number of rows and columns, respectively),
followed by the list of its elements (row-wise).
We can multiply two matrices (here, we multiply a by itself) by

evalm(a &∗ a) :

Note that we have to replace the usual ∗ by &∗. Similarly, we can add and
subtract (using + and −), and raise a to any positive integer power (using ˆ).
We can also multiply a by a vector (of matching length), which can be entered

as a list:

evalm(a &∗ [2, 5]) :

Note that reversing the order of a and [2, 5] yields a different answer.
We can also compute the transpose and inverse of a, but first we must ask

Maple to make these commands available by:

with(linalg) :



11

We can then perform the required operation by

transpose(a) :

etc.
Similarly, to solve a set of linear equation with a being the matrix of coefficients

and [2, 3] the right hand side vector, we do:

linsolve(a, [2, 3]) :

Other useful commands:
a := randmatrix (5, 5) :

creates a matrix of specified dimensions with random elements,

augument(a, [6, 2, 7, 1, 0]) :

attaches the list, making it an extra (last) column of a,

submatrix(a, 2..4, 1..2) :

reduces a to a 3 by 2 submatrix, keeping only rows 2, 3 and 4, and columns 1
and 2,

swaprow(a, 2, 5) :

interchanges rows 2 and 5 of a,

addrow(a, 2, 4, 2/3) :

adds row 2 multiplied by 2
3
to row 4 of a.

To recall the proper syntax of a command, one can always type:

?addrow

to get its whole-page description, usually with examples.

Plots
Plotting a specific function (or several functions) is easy (as we have already seen):

plot( {sin(x), x− xˆ3/6}, x = 0..P i/2) :
One can also plot a scattergram of individual points (it is first necessary to ask

Maple to make to corresponding routine available, as follows:

with(plots) :

pointplot( [[0, 2], [1,−3], [3, 0], [4, 1], [7,−2]]);
Note that the argument was a list of pairs of x-y values (each pair itself enclosed

in brackets).
We can combine any two such plots (usually a scattergram of points together

with a fitted polynomial) by:

pic1 := pointplot( [seq( [i/5, sin(i/5)], i = 1..7)] ) :

pic2 :=plot(sin(x), x = 0..1.5) :

display(pic1, pic2) :



12



13

Chapter 3 SIMPLE REGRESSION
The model is

yi = β0 + β1xi + εi (3.1)

where i = 1, 2, ..., n, making the following assumptions:

1. The values of x are measured ’exactly’, with no random error. This is usually
so when we can choose them at will.

2. The εi are normally distributed, independent of each other (uncorrelated),
having the expected value of 0 and variance equal to σ2 (the same for each of
them, regardless of the value of xi). Note that the actual value of σ is usually
not known.

The two regression coefficients are called the slope and intercept. Their
actual values are also unknown, and need to be estimated using the empirical data
at hand.
To find such estimators, we use the

Maximum Likelihood Method
which is almost always the best tool for this kind of task. It guarantees to yield
estimators which are asymptotically unbiased, having the smallest possible
variance. It works as follows:

1. We write down the joint probability density function of the yi’s (note that
these are random variables).

2. Considering it a function of the parameters (β0, β1 and σ in this case) only
(i.e. ’freezing’ the yi’s at their observed values), we maximize it, using the
usual techniques. The values of β0, β1 and σ to yield the maximum value of
this so called Likelihood function (usually denoted by bβ0, bβ1 and bσ) are
the actual estimators (note that they will be functions of xi and yi).

Note that instead of maximizing the likelihood function itself, we may choose
to maximize its logarithm (which must yield the same bβ0, bβ1 and bσ).
Least-Squares Technique
In our case, the Likelihood function is:

L =
1

(
√
2πσ)n

nY
i=1

exp

·
−(yi − β0 − β1xi)

2

2σ2

¸
and its logarithm:

lnL = −n
2
log(2π)− n lnσ − 1

2σ2

nX
i=1

(yi − β0 − β1xi)
2



14

To maximize this expression, we first differentiate it with respect to σ, and make
the result equal to zero. This yields:

bσm =
vuut nP

i=1

(yi − bβ0 − bβ1xi)2
n

where bβ0 and bβ1 are the values of β0 and β1 which minimize

SS ≡
nX
i=1

(yi − β0 − β1xi)
2

namely the sum of squares of the vertical deviations of the yi values from the fitted
straight line (this gives the technique its name).
To find bβ0 and bβ1, we have to differentiate SS, separately, with respect to β0

and β1, and set each of the two answers to zero. This yields:

nX
i=1

(yi − β0 − β1xi) =
nX
i=1

yi − nβ0 − β1

nX
i=1

xi = 0

and
nX
i=1

xi(yi − β0 − β1xi) =
nX
i=1

xi yi − β0

nX
i=1

xi − β1

nX
i=1

x2i = 0

or equivalently, the following so called

Normal equations

nβ0 + β1

nX
i=1

xi =
nX
i=1

yi

β0

nX
i=1

xi + β1

nX
i=1

x2i =
nX
i=1

xi yi

They can be solved easily for β0 and β1 (at this point we can start calling thembβ0 and bβ1):
bβ1 = n

nP
i=1

xi yi −
nP
i=1

xi ·
nP
i=1

yi

n
nP
i=1

x2i −
µ

nP
i=1

xi

¶2 =

nP
i=1

(xi − x)(yi − y)

nP
i=1

(xi − x)2
≡ Sxy

Sxx

and bβ0 = y − bβ1x (3.2)

meaning that the regression line passes through the (x, y) point, where

x ≡

nP
i=1

xi

n



15

and

y ≡

nP
i=1

yi

n

Each bβ0 and bβ1 is clearly a linear combination of normally distributed random
variables, their joint distribution is thus of the bivariate normal type.

> x := [77, 76, 75, 24, 1, 20, 2, 50, 48, 14, 66, 45, 12, 37]:
> y := [338, 313, 333, 121, 41, 95, 44, 212, 232, 68, 283, 209, 102, 159]:
> xbar := sum(’x[i]’,’i = 1..14’)/14.:
> ybar := sum(’y[i]’,’i = 1..14’)/14.:
> Sxx := sum(’(x[i]− xbar)ˆ2’,’i = 1..14’):
> Sxy := sum(’(x[i]− xbar) ∗ (y[i]− ybar)’,’i = 1..14’):
> β1 := Sxy/Sxx;

β1 := 3.861296955;
> β0 := ybar − β1 ∗ xbar;

β0 := 31.2764689
> with(plots):
> pl1 := pointplot([seq([x[i], y[i]], i = 1..14)]):
> pl2 := plot(β0 + β1 ∗ x, x = 0..80):
>display(pl1, pl2);

Statistical Properties of the three Estimators
First, we should realize that it is the yi (not xi) which are random, due to the εi
term in (3.1) - both β0 and β1 are also fixed, albeit unknown parameters. Clearly
then

E (yi − y) = β0 + β1xi − (β0 + β1x) = β1 (xi − x)

which implies

E
³bβ1´ =

nP
i=1

(xi − x) · E(yi − y)

nP
i=1

(xi − x)2
= β1

Similarly, since E(y) = β0 + β1x, we get

E
³bβ0´ = β0 + β1x− β1x = β0

Both bβ0 and bβ1 are thus unbiased estimators of β0 and β1, respectively.
To find their respective variance, we first note that

bβ1 =
nP
i=1

(xi − x)(yi − y)

nP
i=1

(xi − x)2
≡

nP
i=1

(xi − x) yi

nP
i=1

(xi − x)2

(right?), based on which

Var
³bβ1´ =

nP
i=1

(xi − x)2 ·Var(yi)µ
nP
i=1

(xi − x)2
¶2 =

σ2Sxx
S2xx

=
σ2

Sxx



16

From (3.2) we get

Var
³bβ0´ = Var(y)− 2xCov(y, bβ1) + x2Var

³bβ1´
We already have a formula for Var

³bβ1´ , so now we need
Var(y) = Var(ε) =

σ2

n

and

Cov(y, bβ1) = Cov


nP
i=1

εi

n
,

nP
i=1

(xi − x) εi

Sxx

 =

σ2
nP
i=1

(xi − x)

Sxx
= 0

(uncorrelated). Putting these together yields:

Var
³bβ0´ = σ2

µ
1

n
+

x2

Sxx

¶
The covariance between bβ0 and bβ1 is thus equals to −xVar(bβ1), and their correla-
tion coefficient is −1r

1 +
1

n
· Sxx
x2

Both variance formulas contain σ2, which, in most situations, must be replaced
by its ML estimator

bσ2m =
nP
i=1

(yi − bβ0 − bβ1xi)2
n

≡ SSE
n

where the numerator defines the so called residual (error) sum of squares.
It can be rewritten in the following form (replacing bβ0 by y − bβ1x ):

SSE =
nX
i=1

(yi − y + bβ1x− bβ1xi)2 = nX
i=1

h
yi − y + bβ1(x− xi)

i2
= Syy − 2bβ1Sxy + bβ21Sxx = Syy − 2Sxy

Sxx
Sxy +

µ
Sxy
Sxx

¶2
Sxx

= Syy − Sxy
Sxx

Sxy = Syy − bβ1Sxy ≡ Syy − bβ21Sxx
Based on (3.1) and y = β0 + β1x+ ε (from now on, we have to be very careful to
differentiate between β0 and bβ0, etc.), we get

E(Syy) = E

(
nX
i=1

[β1(xi − x) + (εi − ε)]2
)
= β21 Sxx + σ2(n− 1)



17

(the last term was derived in MATH 2F96). Furthermore,

E
³bβ21´ = Var(bβ1)− E(bβ1)2 = σ2

Sxx
− β21

Combining the two, we get

E(SSE) = σ2(n− 2)

Later on, we will be able to prove that
SSE
σ2

has the χ2 distribution with n − 2
degrees of freedom. It is also independent of each bβ0 and bβ1.
This means that there is a slight bias in the bσ2m estimator of σ2 (even though the

bias disappears in the n→∞ limit - such estimators are called asymptotically
unbiased). We can easily fix this by defining a new, fully unbiased

bσ2 = SSE
n− 2 ≡MSE

(the so called mean square) to be used instead of bσ2m from now on.
All of this implies that both

bβ0 − β0s
MSE

µ
1

n
+

x2

Sxx

¶
and bβ1 − β1r

MSE
Sxx

(3.3)

have the Student t distribution with n − 2 degrees of freedom. This can be used
either to construct the so called confidence interval for either β0 or β1, or to
test any hypothesis concerning β0 or β1.
The corresponding Maple commands (to compute SSE, MSE, and the two

standard errors - denominators of the last two formulas) are:
> Syy :=sum((y[i]− ybar)ˆ2, i = 1..14):
> SSE := Syy − β1ˆ2 ∗ Sxx:
> MSE := SSE/12:
> se1 :=sqrt(MSE/Sxx):
> se2 :=sqrt(MSE/(1/14 + xbarˆ2/Sxx)):

Confidence Intervals
To construct a confidence interval for an unknown parameter, we first choose a so
called confidence level 1 − α (the usual choice is to make it equal to 95%,
with α = 0.05). This will be the probability of constructing an interval which does
contain the true value of the parameter.



18

Regression coefficients
Knowing that (3.3) has the tn−2 distribution, we must then find two values (called
critical) such that the probability of (3.3) falling inside the corresponding in-
terval (between the two values) is 1− α. At the same time, we would like to have
the interval as short as possible. This means that we will be choosing the critical
values symmetrically around 0; the positive one will equal to tα

2
,n−2, the negative

one to −tα
2
,n−2 (the first index now refers to the area of the remaining tail of the

distribution) - these critical values are widely tabulated. We can also find them
with the help of Maple, by:

>with(stats):
> statevalf [icdf,studentst[12]](0.975);

where icdf stands for ’inverse cumulative density function’ (’cumulative density
function’ being a peculiar name for ’distribution function’), and 0.975 is the value
of 1− α

2
(leaving α

2
for the tail).

The statement that (3.3) falls in the interval between the two critical values
of tn−2 is equivalent (solve the corresponding equation for β1) to saying that the
value of β1 is in the following range

bβ1 ± tα2 ,n−2
r

MSE
Sxx

which is our (1− α) · 100% confidence interval.
The only trouble is that, when we make that claim, we are either 100% right

or 100% wrong, since β1 is not a random variable. The probability of ’hitting’ the
correct value was in constructing the interval (which each of us will do differently,
if we use independent samples). This is why we use the word confidence instead
of probability (we claim, with the (1− α) · 100% confidence, that the exact value
of β1 is somewhere inside the constructed interval).
Similarly, we can construct a 1− α level-of-confidence interval for bβ0, thus:

bβ0 ± tα2 ,n−2
s
MSE

µ
1

n
+

x2

Sxx

¶

Note that, since bβ0 and bβ1 are not independent, making a joint statement about the
two (with a specific level of confidence) is more complicated (one has to construct
a confidence ellipse, to make it correct).

Residual variance
Constructing a 1−α confidence interval for σ2 is a touch more complicated. Since
SSE
σ2

has the χ2n−2 distribution, we must first find the corresponding two critical

values. Unfortunately, the χ2 distribution is not symmetric, so for these two we
have to take χ2α

2
,n−2 and χ

2
1−α

2
,n−2. Clearly, the probability of a χ

2
n−2 random variable

falling between the two values equals 1 − α. The resulting interval may not be
the shortest of all these, but we are obviously quite close to the right solution;
furthermore, the choice of how to divide α between the two tails remains simple
and logical.



19

Solving for σ2 yields Ã
SSE

χ21−α
2
,n−2

,
SSE
χ2α

2
,n−2

!
as the corresponding (1− α) · 100% confidence interval.
Maple can supply the critical values:
> statevalf [icdf,chisquare[12]](.975);

Expected-value estimator
Sometimes we want to estimate the expected value of y obtained with a new choice
of x (let us call it x0) which should not be outside the original range of x values
(no extrapolation)! This effectively means that we want a good estimator for
E(y0) ≡ β0 + β1x0. Not surprisingly, we use

by0 ≡ bβ0 + bβ1x0 = y + bβ1(x0 − x)

which is clearly unbiased, normally distributed, with the variance of

σ2

n
+

σ2

Sxx
(x0 − x)2

since y and bβ1 are uncorrelated. This implies thatby0 − E(y0)s
MSE

µ
1

n
+
(x0 − x)2

Sxx

¶
must also have the tn−2 distribution.. It should now be quite obvious as to how to
construct a confidence interval for E(y0).

New y value
We should also realize that predicting an actual new value of y taken at x0 (let
us call it y0) is a different issue, since now an (independent) error ε0 is added to
β0 + β1x0. For the prediction itself we still have to use the same bβ0 + bβ1x0 (our
best prediction of ε0 is its expected value 0), but the variance of y0 is the variance
of by0 plus σ2 (the variance of ε0), i.e.

σ2 +
σ2

n
+

σ2

Sxx
(x0 − x)2

It thus follows that by0 − y0s
MSE

µ
1 +

1

n
+
(x0 − x)2

Sxx

¶
also has the tn−2 distribution.. We can then construct the corresponding (1− α) ·
100% prediction interval for y0. The reason why we use another name again
is that now we are combining the a priori error of a confidence interval with the
usual, yet-to-happen error of taking the y0 observation.



20

Hypotheses Testing
Rather than constructing a confidence interval for an unknown parameter, we
may like to test a specific hypothesis concerning the parameter (such as, for
example, that the exact slope is zero). The two procedures (hypotheses testing
and confidence-interval construction) are computationally quite similar (even if
the logic is different).
First we have to state the so called null hypothesis H0, such as, for example,

that β1 = 0 (meaning that x does not effect y, one way or the other). This is to
be tested against the alternate hypothesis HA (β1 6= 0 in our case).
To perform the test, we have compute the value of a so called test statistic

T. This is usually the corresponding estimator, ’normalized’ to have a simple dis-
tribution, free from unknown parameters, when H0 is true - in our case, we would
use (3.3) with β1 = 0, i.e.

T ≡
bβ1r
MSE
Sxx

Under H0, its distribution is tn−2, otherwise (under HA) it has a more complicated
non-central distribution (the non-centricity parameter equal to the actual value
of β1).
Now, based on the value of T, we have to make a decision as to whether to

go with H0 or HA. Sure enough, if H0 is true, the value of T must be relatively
small, but how small is small? To settle that, we allow ourselves the probability
of α (usually 5%) to make a so called Type I error (rejecting H0 when true).
Out critical values will then be the same as those of the corresponding confidence
interval (±tα

2
,n−2). We reject H0 whenever the value of T enters the critical

region (outside the interval), and don’t reject (accept) H0 otherwise. Note that
the latter is a weaker statement - it is not a proof of H0, it is more of an inability
to disprove it! When accepting H0, we can of course be making a Type II error
(accepting H0 when wrong), the probability of which now depends on the actual
(non-zero) value of β1 (being, effectively, a function of these). To compute these
errors, one would have to work with the non-central tn−2 distributions (we will not
go into that).

Model Adequacy (Lack-of-Fit Test)
Let us summarize the assumptions on which the formulas of the previous sections
are based.
The first of them (called model adequacy) stipulates that the relationship

between x and y is linear. There are two ways of checking it out. One (rather
superficial, but reasonably accurate) is to plot the resulting residuals against the
xi values, and see whether there is any systematic oscillation. The other one
(more ’scientific’ and quantitative) is available only when several independent y
observations are taken at each xi value. This yields and ’independent’ estimate of
our σ, which should be consistent with the size of the computed residuals (a precise
test for doing this is the topic of this section, and will be described shortly).
The other three assumptions all relate to the εi’s

1. being normally distributed,



21

2. having the same (constant) standard deviation σ,

3. being independent, i.e. uncorrelated.

We would usually be able to (superficially) establish their validity by scrutiniz-
ing the same ei-xi graph. In subsequent sections and chapters, we will also deal
with the corresponding remedies, should we find any of them violated.
For the time being, we will assume that the last three assumptions hold, but

we are not so sure about the straight-line relationship between x and y. We have
also collected, at each xi, several independent values of y (these will be denoted
yij, where j = 1, 2, ...ni).
In this case, our old residual (error) sum of squares can be partitioned into two

components, thus:

SSE =
mX
i=1

niX
j=1

(yij − byi)2 = mX
i=1

niX
j=1

(yij − yi)
2 +

mX
i=1

ni(yi − byi)2 ≡ SSPE + SSLOF

due to pure error and lack of fit, respectively. Here, m is the number of
distinct xi values, and

yi ≡
Pni

j=1 yij

ni
is the ’group’ mean of the y observations taken with xi. Note that the overall
mean (we used to call it y, but now we switch - just for emphasis - to y, and call
it the grand mean) can be computed by

y =

Pm
i=1

Pni
j=1 yijPm

i=1 ni
≡
Pm

i=1 ni yiPm
i=1 ni

The old formulas for computing bβ0 and bβ1 (and their standard errors) remain
correct, but one has to redefine

x ≡
Pm

i=1 ni xiPm
i=1 ni

Sxx ≡
mX
i=1

ni(xi − x)2

Sxy ≡
mX
i=1

(xi − x)
niX
j=1

(yij − y) =
mX
i=1

ni(xi − x) yi

But the primary issue now is to verify that the model is adequate.
To construct the appropriate test, we first have to prove that, under the null

hypothesis (linear model correct), SSPE
σ2

and SSLOF
σ2

are independent, and have the
χ2n−m and χ

2
m−2 distribution, respectively (where n ≡

Pm
i=1 ni, the total number of

y observations).

Proof: The statements about SSPE
σ2

is a MATH 2F96 result. Proving that SSLOF
σ2

has the χ2m−2 distribution is the result of the next section. Finally, sincePni
j=1(yij−yi)

2 is independent of yi (another MATH 2F96 result), and SSPE
is a sum of the former, and SSLOF is computed based on the latter (sincebyi = bβ0+ bβ1xi, and both bβ0 and bβ1 are computed using the ’group’ means yi
only). ¤



22

To test the null hypothesis that the x-y relationship is linear (against all possible
alternatives), we can then use the following test statistic:

SSLOF
m− 2
SSPE
n−m

which (underH0) has the Fm−2,n−m distribution. WhenH0 is false, SSLOF (but not
SSPE) will tend to be ’noticeably’ larger than what could be ascribed to a purely
random variation. We will then reject H0 in favor of HA as soon as the value of
the test statistics enters the critical (right-hand tail) region of the corresponding
F distribution.

> x := [1, 3, 6, 8.]:
> y := [[2.4, 3.2, 2.9, 3.1], [3.9, 4], [4.2], [4.1, 4.7, 5.6, 5.1, 4.9]]:
> ng := [seq(nops(y[i]), i = 1..4)]:
> n := sum(ng[i], i = 1..4):
> ybar := [seq(sum(y[i][j], j = 1..ng[i])/ng[i], i = 1..4)]:
> SSpe := sum(sum((y[i][j]− ybar[i])ˆ2, j = 1..ng[i]), i = 1..4):
> xmean := sum(ng[i] ∗ x[i], i = 1..4)/n:
> ymean := sum(ng[i] ∗ ybar[i], i = 1..4)/n:
> Sxx := sum(ng[i] ∗ (x[i]− xmean)ˆ2, i = 1..4):
> Sxy := sum(ng[i] ∗ (x[i]− xmean) ∗ ybar[i], i = 1..4):
> beta1 := Sxy/Sxx:
> beta0 := ymean− xmean ∗ beta1:
> SSlof := sum(ng[i] ∗ (ybar[i]− beta0− beta1 ∗ x[i])ˆ2, i = 1..4):
> (SSlof/2)/(SSpe/8);

0.9907272888
> with(stats):
> statevalf [icdf,fratio[2, 8]](0.95);

4.458970108
> with(plots):
> pl1 :=pointplot([seq(seq([x[i], y[i][j]], j = 1..ng[i]), i = 1..4)]):
> pl2 :=plot(beta0 + beta1 ∗ z, z = 0.5..8.5):
> display(pl1, pl2);

Weighted Regression
In this section, we modify the procedure to accommodate the possibility that the
variance of the error terms is not constant, but it is proportional to a given function
of x, i.e.

Var(εi) = σ2 · g(xi) ≡ σ2

wi

The same modification of the variance is also encountered in a different context:
When, at xi, ni observations are taken (instead of the usual one) and the resulting
mean of the y observations is recorded (we will still call it yi), then (even with
the constant-σ assumption for the individual observations), we have the previous
situation with wi = ni. The wi values are calledweights (observations with higher
weights are to be taken that much more seriously).



23

It is quite obvious that maximizing the likelihood function will now require to
minimize the weighted sum of squares of the residuals, namely

nX
i=1

wi (yi − β0 − β1xi)
2

The resulting estimators of the regression coefficients are the old

bβ1 = Sxy
Sxx

and bβ0 = y − bβ1x
where

x ≡
Pn

i=1wixiPn
i=1wi

y ≡
Pn

i=1wiyiPn
i=1wi

Sxx ≡
nX
i=1

wi(xi − x)2

Sxy ≡
nX
i=1

wi(xi − x)(yi − y)

One can easily show that all related formulas remain the same, except for:

Var(y) = Var(ε) =
σ2Pn
i=1wi

Var(bβ0) = σ2
µ

1Pn
i=1wi

+
x2

Sxx

¶
Corr(bβ0, bβ1) =

−1s
1 +

1Pn
i=1wi

· Sxx
x2

which require replacing n by the total weight.
Similarly, for the maximum-likelihood estimator of σ2 we get

bσ2m =
nP
i=1

wi (yi − bβ0 − bβ1xi)2
n

=
Syy − bβ21Sxx

n

Since

E(Syy) = E

(
nX
i=1

wi [β1(xi − x) + (εi − ε)]2
)
= β21 Sxx + σ2(n− 1)



24

remains unchanged (note that his time we did not replace n by the total weight) -
this can be seen from

E

"
nX
i=1

wi(εi − ε)2

#
= E

"
nX
i=1

wi(ε
2
i − 2εiε+ ε2)

#
=

nX
i=1

wiVar(εi)− 2
nX
i=1

w2i
Var(εi)Pn

i=1wi
+Var(ε)

nX
i=1

wi = σ2(n− 1)

and so does

E
³bβ21´ = Var(bβ1)− E(bβ1)2 = σ2

Sxx
− β21

we still get the same
E(SSE) = σ2(n− 2)

This implies that

bσ2 = Syy − bβ21Sxx
n− 2

is an unbiased estimator of σ2. Late on, we will prove that it is still independent
of bβ0 and bβ1, and has the χ2n−2 distribution.
Correlation
Suppose now that both x and y are random, normally distributed with (bivariate)
parameters µx, µy, σx, σy and ρ. We know that the conditional distribution of
y given x is also (univariate) normal, with the following conditional mean and
variance:

µy + ρ σy
x− µx
σx

≡ β0 + β1 x (3.4)

σ2y (1− ρ2)

Our regular regression would estimates the regression coefficients by the usual bβ0
and bβ1. They are still the ’best’ (maximum-likelihood) estimators (as we will see
shortly), but their statistical properties are now substantially more complicated.

Historical comment: Note that by reversing the rôle of x and y (which is now
quite legitimate - the two variables are treated as ’equals’ by this model), we
get the following regression line:

x = µx + ρ σx
y − µy
σy

One can easily see that this line is inconsistent with (3.4) - it is a lot steeper
when plotted on the same graph. Ordinary regression thus tends, in this case,
to distort the true relationship between x and y, making it either more flat
or more steep, depending on which variable is taken to be the ’independent’
one.

Thus, for example, if x is the height of fathers and y that of sons, the regres-
sion line will have a slope less than 45 degrees, implying a false averaging
trend (regression towards the mean, as it was originally called - and the name,



25

even though ultimately incorrect, stuck). The fallacy of this argument was
discovered as soon as someone got the bright idea to fit y against x, which
would then, still falsely, imply a tendency towards increasing diversity.

One can show that the ML technique would use the usual x and y to estimate

µx and µy,
q

Sxx
n−1 and

q
Syy
n−1 to estimate σx and σy, and

r ≡ Sxyp
Sxx · Syy

(3.5)

as an estimator of ρ (for some strange reason, they like calling the estimator r
rather than the usual bρ). This relates to the fact that

Sxy
n− 1

is an unbiased estimator of Cov(X,Y ).

Proof:

E

(
nX
i=1

[xi − µx − (x− µx)]
£
yi − µy − (y − µy)

¤)
=

nX
i=1

·
Cov(X,Y )− Cov(X,Y )

n
− Cov(X,Y )

n
+
Cov(X,Y )

n

¸
=

nCov(X,Y ) (1− 1
n
) = Cov(X,Y ) (n− 1)

One can easily verify that these estimators agree with bβ0 and bβ1 of the previous
sections. Investigating their statistical properties now becomes a lot more difficult
(mainly because of dividing by

√
Sxx, which is random). We have to use large-

sample approach to derive asymptotic formulas only (i.e. expanded in powers of
1
n
), something we will take up shortly.
The only exact result we can derive is that

r
√
n− 1√
1− r2

=

Sxyp
S2xx

(n− 2)s
SxxSyy − S2xy

S2xx

=
bβ1r
MSE
Sxx

which we know has the tn−2 distribution, assuming that β1 = 0. We can thus use
it for testing the corresponding hypothesis (the test will be effectively identical to
testing H0: β1 = 0 against an alternate, using the simple model).
Squaring the r estimator yields the so called coefficient of determination

r2 =
Syy − Syy +

S2xy
Sxx

Syy
= 1− SSE

Syy

which tells us how much of the original y variance has been removed by fitting the
best straight line.



26

Large -Sample Theory
Large sample theory tells us that practically all estimators are approximately nor-
mal. Some of them of course approach normality a lot faster than others, and we
will discuss a way of helping to ’speed up’ this process below.
To be more precise, we assume that an estimator has the form of f(X,Y , ...)

where X, Y , ... are themselves functions of individual observations, and f is
another function of their sample means (most estimators are like this), say

r =
(x− x)(y − y)q

(x− x)2 ·
q
(y − y)2

=
xy − x · yp

x2 − x2 ·
q
y2 − y2

To a good approximation we can (Taylor) expand f(X,Y , ...) around the corre-
sponding expected values, as follows

f(X,Y , ...) ∼= f(µX , µY , ...) + ∂X f(...)(X − µX) + ∂Y f(...)(Y − µY ) + ...
1
2
∂2
X,X

f(...)(X − µX)
2 + 1

2
∂2
Y ,Y

f(...)(Y − µY )
2 + ∂2

X,Y
f(...)(X − µX)(Y − µY ) + ...

The corresponding expected value is

f(µX , µY , ...) +
σ2X
2n

∂2
X,X

f(...) +
σ2Y
2n

∂2
Y ,Y

f(...) +
σXσY ρXY

n
∂2
X,Y

f(...) + ... (3.6)

and the variance (based on the linear terms only):

σ2X
n
[∂X f(...)]2 +

σ2Y
n
[∂Y f(...)]2 +

2σXσY ρXY

n
[∂X f(...)] [∂Y f(...)] + ... (3.7)

For example, one can show that

bβ1 = (x− x)(y − y)

(x− x)2

is approximately normal, with the mean of

σyρ

σx
+

2σ4x ·
2σxσyρ

σ6x
+ 4σ3xσyρ ·

−1
σ4x

2n
+ ... =

β1 [1 + ...]

(to derive this result, we borrowed some formulas of the next section). Similarly,
one can compute that the corresponding variance equals

(σ2xσ
2
y + σ2xσ

2
yρ
2) · 1

σ4x
+ 2σ4x ·

σ2xσ
2
yρ
2

σ8x
+ 4σ3xσyρ ·

−σxσyρ
σ6x

=

σ2y
σ2x
(1− ρ2) + ...

divided by n.
We will not investigate the statistical behavior of bβ1 and bβ0 any further, instead,

we concentrate on the issue which is usually consider primary for this kind of model,
namely constructing a



27

Confidence interval for the correlation coefficient
To apply (3.6) and (3.7) to r, we first realize that the three means are

E [(xi − x)(yi − y)] = (1− 1
n
)σxσyρ

E
£
(xi − x)2

¤
= (1− 1

n
)σ2x

E
£
(yi − y)2

¤
= (1− 1

n
)σ2y

The corresponding variances (where, to our level of accuracy, we can already replace
x by µx and y by µy) are easy to get from the following bivariate moment generating
function

M(tx, ty) = exp

·
σ2xt

2
x + σ2yt

2
y + 2σxσyρtxty

2

¸
They are, respectively

σ2xσ
2
y + 2σ

2
xσ

2
yρ
2 − σ2xσ

2
yρ
2 = σ2xσ

2
y + σ2xσ

2
yρ
2

3σ4x − σ4x = 2σ4x
3σ4y − σ4y = 2σ4y

We will also need the three covariances, which are

3σ3xσyρ− σ3xσyρ = 2σ3xσyρ

3σxσ
3
yρ− σxσ

3
yρ = 2σxσ

3
yρ

σ2xσ
2
y + 2σ

2
xσ

2
yρ
2 − σ2xσ

2
y = 2σ2xσ

2
yρ
2

This means that the expected value of r equals, to a good approximation, to

ρ+

2σ4x ·
3ρ

4σ4x
+ 2σ4y ·

3ρ

4σ4y
+ 4σ3xσyρ ·

−ρ
2σ3xσyρ

+ 4σxσ
3
yρ ·

−ρ
2σxσ3yρ

+ 4σ2xσ
2
yρ
2 · ρ

4σ2xσ
2
y

2n

= ρ− 1− ρ2

2n
+ ...

Similarly, the variance of r is

(σ2xσ
2
y + σ2xσ

2
yρ
2)

µ
ρ

σxσyρ

¶2
+ 2σ4x

µ−ρ
2σ2x

¶2
+ 2σ4y

µ−ρ
2σ2y

¶2
+ 4σ3xσyρ

µ
ρ

σxσyρ

¶µ−ρ
2σ2x

¶
+4σxσ

3
yρ

µ
ρ

σxσyρ

¶µ−ρ
2σ2y

¶
+ 4σ2xσ

2
yρ
2

µ−ρ
2σ2x

¶µ−ρ
2σ2y

¶
= 1− 2ρ2 + ρ4 = (1− ρ2)2 + ...

divided by n.
Similarly, one could compute the third central moment of r and the corre-

sponding skewness (which would turn out to be − 6ρ√
n
, i.e. fairly substantial even

for relatively large samples).

One can show that integrating
1p

(1− ρ2)2
(in terms of ρ) results in a new

quantity whose variance (to this approximation) is constant (to understand the



28

logic, we realize that F (r) has a variance given by F 0(ρ)2·Var(r); now try to make
this a constant). The integration yields

1

2
ln
1 + ρ

1− ρ
= arctanhρ

and, sure enough, similar analysis shows that the variance of the corresponding
estimator, namely

z ≡ 1
2
ln
1 + r

1− r

is simply
1

n
+ ... (carrying the computation to 1

n2
terms shows that 1

n−3 is a better

approximation). Its expected value is similarly

1

2
ln
1 + ρ

1− ρ
+

ρ

2n
+ ... (3.8)

and the skewness is, to this approximation equal to 0. The estimator z is therefore
becoming normal a lot faster (with increasing n) than r itself, and can be thus used
for constructing approximate confidence intervals for ρ. This is done by adding the
critical values ofN (0, 1√

n−3) to z,making the two resulting limits equal to (3.8), and
solving for ρ (using a calculator, we usually neglect the ρ

2n
term and use tanh(...);

when Maple is available, we get the more accurate solutions).



29

Chapter 4 MULTIVARIATE (LINEAR)
REGRESSION

First a little insert on

Multivariate Normal Distribution
Consider n independent, standardized, Normally distributed random variables.
Their joint probability density function is clearly

f(z1, z2, ..., zn) = (2π)
−n/2 · exp

−
nP
i=1

z2i

2

 ≡ (2π)−n/2 · expµ−zTz2
¶

(a product of the individual pdf’s). Similarly, the corresponding moment generat-
ing function is

exp


nP
i=1

t2i

2

 ≡ expµtT t2
¶

The following linear transformation of these n random variables, namely

X = AZ+ µ

where A is an arbitrary (regular) n by n matrix, defines a new set of n random
variables having a general Normal distribution. The corresponding PDF is clearly

1p
(2π)n |det(A)| · exp

Ã
−(x− µ)

T (A−1)TA−1(x− µ)
2

!
≡

1p
(2π)n det(V)

· exp
Ã
−(x− µ)

TV−1(x− µ)
2

!

and the MGF

E
©
exp

£
tT (AZ+ µ)

¤ª
= exp

¡
tTµ

¢ · expµtTAAT t

2

¶
≡

exp
¡
tTµ

¢ · expµtTV t
2

¶
where V ≡ AAT is the corresponding variance-covariance matrix (this can
be verified directly). Note that there are many different A’s resulting in the same
V. Also note that Z = A−1(X− µ), which further implies that

(X−µ)T (A−1)TA−1(X−µ) = (X−µ)T (AAT )−1(X−µ) = (X−µ)TV−1(X−µ)

has the χ2n distribution.



30

The previous formulas hold even when A is a matrix with fewer rows than
columns.
To generate a set of normally distributed random variables having a given

variance-covariance matrix V requires us to solve for the corresponding A (Maple
provides us with Z only, when typing: stats[random,normald](20) ). There is
infinitely many such Amatrices, one of them (easy to construct) is lower triangular.

Partial correlation coefficient
The variance-covariance matrix can be converted into the correlation matrix, whose
elements are defined by:

Cij ≡ Vijp
Vii · Vjj

Clearly, the main diagonal elements of C are all equal to 1 (the correlation of Xi

with itself).
Suppose we have three normally distributed random variables with a given

variance-covariance matrix. The conditional distribution of X2 and X3 given that
X1 = x1 has a correlation coefficient independent of the value of x1. It is called the
partial correlation coefficient, and denoted ρ23 |1. Let us find its value in
terms of the ordinary correlation coefficients..
Any correlation coefficient is independent of scaling. We can thus choose the

three X’s to be standardized (but not independent), having the following tree-
dimensional PDF:

1p
(2π)3 det(C−1)

· exp
µ
−x

TC−1x
2

¶
where

C =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1


Since the marginal PDF of X1 is

1√
2π
· exp

µ
−x

2
1

2

¶
the conditional PDF we need is

1p
(2π)2 det(C−1)

· exp
µ
−x

TC−1x− x21
2

¶
The information about the five parameters of the corresponding bi-variate distri-
bution is in

xTC−1x− x21 =Ã
x2 − ρ12x1p
1− ρ212

!2
+

Ã
x3 − ρ13x1p
1− ρ213

!2
− 2 ρ23 − ρ12ρ13p

1− ρ212
p
1− ρ213

Ã
x2 − ρ12x1p
1− ρ212

!Ã
x3 − ρ13x1p
1− ρ213

!

1−
Ã

ρ23 − ρ12ρ13p
1− ρ212

p
1− ρ213

!2



31

which, in terms of the two conditional means and standard deviations agrees with
what we know from MATH 2F96. The extra parameter is our partial correlation
coefficient

ρ23 |1 =
ρ23 − ρ12ρ13p
1− ρ212

p
1− ρ213

Multiple Regression - Main Results
This time, we have k independent (regressor) variables x1, x2,..., xk; still only one
dependent (response) variable y. The model is

yi = β0 + β1x1,i + β2x2,i + ...+ βkxk,i + εi

with i = 1, 2, ..., n, where the first index labels the variable, and the second the
observation. It is more convenient now to switch to using the following matrix
notation

y = Xβ + ε

where y and ε are (column) vectors of length n, β is a (column) vector of length
k+1, and X is a n by k+1 matrix of observations (with its first column having all
elements equal to 1, the second column being filled by the observed values of x1,
etc.). Note that the exact values of β and ε are, and will always remain, unknown
to us (thus, they must not appear in any of our computational formulas).
Also note that your textbook calls these β’s partial correlation coefficients,

as opposed to a total correlation coefficient of a simple regression (ignoring all
but one of the independent variables).
To minimize the sum of squares of the residuals (a scalar quantity), namely

(y−Xβ)T (y−Xβ) =
yTy− yTXβ − βTXTy + βTXTXβ

(note that the second and third terms are identical - why?), we differentiate it with
respect to each element of β. This yields the following vector:

−2XTy+ 2XTXβ

Making these equal to zero provides the following maximum likelihood (least
square) estimators of the regression parameters:

bβ = (XTX)−1XTy ≡ β + (XTX)−1XTε

The last form makes it clear that bβ are unbiased estimators of β, normally dis-
tributed with the variance-covariance matrix of

σ2(XTX)−1XTX(XTX)−1 = σ2(XTX)−1

The ’fitted’ values of y (let us call them by), are computed by
by = X bβ = X β +X(XTX)−1XTε ≡ X β +H ε

where H is clearly symmetric and idempotent (i.e. H2 = H). Note that HX = X.



32

This means that the residuals ei are computed by

e = y− by = (I−H )ε
(I − H is also idempotent). Furthermore, the covariance (matrix) between the
elements of bβ − β and those of e is:

E
h
(bβ − β)eTi = E £(XTX)−1XTεεT (I−H )¤ =

(XTX)−1XTE
£
εεT

¤
(I−H ) = O

which means that the variables are uncorrelated and therefore independent (i.e.
each of the regression-coefficient estimators is independent of each of the residuals
— slightly counter-intuitive but correct nevertheless).
The sum of squares of the residuals, namely eTe, is equal to

εT (I−H )T (I−H )ε = εT (I−H )ε

Divided by σ2:
εT (I−H )ε

σ2
≡ ZT (I−H )Z

where Z are standardized, independent and normal.
We know (frommatrix theory) that any symmetric matrix (including our I−H )

can be written as RTDR, where D is diagonal and R is orthogonal (implying
RT ≡ R−1). We can then rewrite the previous expression as

ZTRTDRZ = eZTD eZ
where eZ ≡ RZ is still a set of standardized, independent Normal random variables
(since its variance-covariance matrix equals I). Its distribution is thus χ2 if and
only if the diagonal elements of D are all equal either to 0 or 1 (the number of
degrees being equal to the trace of D).
How can we tell whether this is true for our I−H matrix (when expressed in

the RTDR form) without actually performing the diagonalization (a fairly tricky
process). Well, such a test is not difficult to design, once we notice that (I−H)2 =
RTDRRTDR = RTD2R. Clearly, D has the proper form (only 0 or 1 on the main
diagonal) if and only if D2 = D, which is the same as saying that (I−H)2 = I−H
(which we already know is true). This then implies that the sum of squares of the
residuals has χ2 distribution. Now, how about its degrees of freedom? Well, since
the trace of D is the same as the trace of RTDR (a well known property of trace),
we just have to find the trace of I−H, by

Tr [I−H] = Tr (In×n )−Tr (H) = n− Tr ¡X(XTX)−1XT
¢
=

n−Tr ¡(XTX)−1XTX
¢
= n−Tr ¡I(k+1)×(k+1)¢ = n− (k + 1)

i.e. the number of observations minus the number of regression coefficients.
The sum of squares of the residuals is usually denoted SSE (for ’error’ sum

of squares, even though it is usually called residual sum of squares) and



33

computed by

(y−Xbβ)T (y−Xbβ) = yTy− yTX bβ − bβT
XTy+bβT

XTX bβ =
= yTy− yTXbβ − bβT

XTy+bβT
XTy = yTy− yTX bβ ≡

yTy− bβT
XTy

We have just proved that it has the χ2 distribution with n − (k + 1) degrees of
freedom, and is independent of bβ. A related definition is that of a residual (error)
mean square

MSE ≡ SSE
n− (k + 1)

This would clearly be our unbiased estimator of σ2.
> with(linalg): with(stats): with(plots):
> x1 := [2, 1, 8, 4, 7, 9, 6, 9, 2, 10, 6, 4, 8, 1, 5, 6, 7]:
> x2 := [62, 8, 50, 87, 99, 67, 10, 74, 82, 75, 67, 74, 43, 92, 94, 1, 12]:
> x3 := [539, 914, 221, 845, 566, 392, 796, 475, 310, 361, 383, 593, 614, 278, 750, 336, 262]:
> y := [334, 64, 502, 385, 537, 542, 222, 532, 450, 594, 484, 392, 392, 455, 473, 283, 344]:
> X := matrix(17, 1, 1.):
> X := augment(X,x1, x2, x3):
> C := evalm(inverse(transpose(X)&*X)):
> beta := evalm(C&* transpose(X)&*y);

β := [215.2355338, 22.41975192, 3.030186331, —0.2113464404]
> e := evalm(X&*beta− y):
> MSe := sum(e[’i’]ˆ2,’i’= 1..17)/13;

MSe := 101.9978001
> for i to 4 do sqrt(C[i, i] ∗MSe) od;

10.83823625
0.9193559350
0.07784126745
0.01214698750

Various standard errors
We would thus construct a confidence interval for any one of the β coefficients, say
βj, by bβj ± tα2 , n−k−1 ·pCjj ·MSE

where C ≡ (XTX)−1.
Similarly, to test a hypothesis concerning a single βj, we would use

bβj − βi0p
Cjj ·MSE

as the test statistic.
Since the variance-covariance matrix of bβ is σ2(XTX)−1, we know that

(bβ − β)TXTX(bβ − β)
σ2



34

has the χ2k+1 distribution. Furthermore, since the β’s are independent of the resid-
uals,

(bβ − β)TXTX(bβ − β)
k + 1
SSE

n− k − 1
must have the Fk+1,n−k−1 distribution. This enables us to construct confidence
ellipses (ellipsoids) simultaneously for all parameters or, correspondingly, perform
a single test of H0: bβ = β0.
To estimate E(y0), where y0 is the value of the response variable when we choose

a brand new set of x values (let us call them x0), we will of course use

bβT
x0

which yields an unbiased estimator, with the variance of

σ2 xT0 (XTX)−1x0

(recall the general formula for a variance a linear combination of random variables).
To construct a corresponding confidence interval, we need to replace σ2 by MSE:

bβT
x0 ± tα

2
, n−k−1 ·

q
xT0 Cx0 ·MSE

Predicting the actual value of y0, one has to include the ε variance (as in the
univariate case).:

bβT
x0 ± tα

2
, n−k−1 ·

q
(1 + xT0 Cx0) ·MSE

Weighted-case modifications
When the variance of εi equals σ2

wi
or, equivalently, when the variance-covariance

matrix of ε is given by
σ2W−1

where W is a matrix with the wi’s on the main diagonal and 0 everywhere else,
since the εi’s remain independent (we could actually have them correlated, if that
was the case).
The maximum likelihood technique now leads to minimizing the weighted sum

of squares of the residuals, namely

SSE ≡ (y−Xβ)T W(y−Xβ)
yielding bβ = (XT WX)−1XT Wy ≡ β + (XT WX)−1XT Wε

This implies that the corresponding variance-covariance matrix is now equal to

(XT WX)−1XT W(σ2W−1)WX(XT WX)−1 = σ2(XT WX)−1

The H matrix is defined by

H ≡ X(XT WX)−1XT W



35

(idempotent but no longer symmetric). One can then show that β and e remain
uncorrelated (thus independent) since

(XT WX)−1XT WE
£
εεT

¤
(I−H T ) = O

Furthermore, SSE can be now reduced to

εT (I−H )T W(I−H )ε=
σ2 · ZT W−1/2(I−H )T W(I−H )W−1/2Z

Since

W−1/2(I−H )T W(I−H )W−1/2 = I−W1/2X(XT WX)−1XT W1/2

is symmetric, idempotent, and has the trace equal to n − (k + 1), SSE
σ2

still has

the χ2n−(k+1) distribution (and is independent of β).

Redundancy Test
Having more than one independent variable, we may start wondering whether
some of them (especially in combination with the rest) are redundant and can be
eliminated without a loss of the model’s predictive powers. In this section, we
design a way of testing this. We will start with the full (unrestricted) model,
then select one or more independent variables which we believe can be eliminated
(by setting the corresponding β equal to 0). The latter (the so called restricted
or reduced model) constitutes our null hypothesis. The corresponding alternate
hypothesis is the usual ”not so” set of alternatives, meaning that at least one of
the β (i.e. not necessarily all) of the null hypothesis is nonzero.
The way to carry out the test is to first compute SSE for both the full and

restricted model. (let us call the answers SSfull
E and SSrest

E respectively). Clearly,
SSfull

E must be smaller that SSrest
E (with more independent variables, the fit can

only improve). Furthermore, one can show that SSfull
E /σ2 and (SSrest

E −SSfull
E )/σ2

are, under the assumptions of the null hypothesis, independent, χ2 distributed,
with n− (k+1) and k− c degrees of freedom respectively (where k is the number
of independent variables in the full model, and c tell us how many of them are left
in the restricted model).

Proof: Let us recall the definition of H ≡ X(XTX)−1XT (symmetric and idem-
potent). We can now compute two of these (for the full and restricted
model), say Hfull and Hrest. Clearly, SS

full
E = yT (I −Hfull)y and SSrest

E =
yT (I−Hrest)y. Also,

Xrest = Xfull↓

where ↓ implies dropping the last k − c columns. Now

Xfull(XT
fullXfull)

−1XT
fullXrest = Xfull(XT

fullXfull)
−1XT

fullXfull↓ = Xfull↓ = Xrest

since AB↓ = (AB)↓. We thus have

Xfull(XT
fullXfull)

−1XT
fullXrest(XT

restXrest)
−1XT

rest = Xrest(XT
restXrest)

−1XT
rest



36

or
HfullHrest = Hrest

Taking the transpose immediately shows that, also

Hrest = HfullHrest

We already know why SSfull
E /σ2 has the χ2n−k−1 distribution: because I−Hfull

is idempotent, with trace of n− k − 1, and (I−Hfull)y = (I−Hfull) ε. We
will now show that (SSrest

E − SSfull
E )/σ2 has the χ2k−c distribution:

The null hypothesis
y = Xrest βrest + ε

implies that

(Hfull −Hrest)y = (HfullXrest −HrestXrest)βrest + (Hfull −Hrest) ε =

(Xrest −Xrest)βrest + (Hfull −Hrest) ε = (Hfull −Hrest) ε

Hfull −Hrest is idempotent, as

(Hfull −Hrest)(Hfull −Hrest) = Hfull −Hrest −Hrest +Hrest = Hfull −Hrest

and

Trace(Hfull −Hrest) = Trace(Hfull)−Trace(Hrest) =

Trace(Ifull)−Trace(Irest) = (k + 1)− (c+ 1) = k − c

Finally, we need to show that εT (I − Hfull)ε and εT (Hfull − Hrest)ε are
independent. Since the two matrices are symmetric and commute, i.e.

(I−Hfull)(Hfull −Hrest) = (Hfull −Hrest)(I−Hfull) = O

they can be diagonalized by the same orthogonal transformation. This im-
plies that SSfull

E /σ2 and (SSrest
E − SSfull

E )/σ2 can be expressed as eZTD1 eZ
and eZTD2 eZ respectively (using the same eZ). Furthermore, since D1 and D2
remain idempotent, the issue of independence of the two quadratic forms (as
they are called) is reduced to asking whether D1 eZ and D2 eZ are independent
or not. Since their covariance matrix is D1D2, independence is guaranteed
by D1D2 = O. This is equivalent to (I−Hfull)(Hfull −Hrest) = O, which we
already know to by true. ¤

Knowing all this enables us to test the null hypothesis, based on the following
test statistic:

SSrest
E − SSfull

E

k − c

SSfull
E

n− (k + 1)
whose distribution (under the null hypothesis) is Fk−c,n−k−1.When the null hypoth-
esis is wrong (i.e. at least one of the independent variables we are trying to delete



37

is effecting the outcome of y), the numerator of the test statistic becomes unusually
’large’. The corresponding test will thus always have only one (right-hand) ’tail’
(rejection region). The actual critical value (deciding how large is ’large’) can be
looked up in tables of the F distribution (or we can ask Maple).
At one extreme. we can try deleting all independent variables, to see whether

any of them are relevant, at the other extreme we can test whether a specific single
xj can be removed from the model without effecting its predictive powers. In the
latter case, our last test is equivalent to the usual (two-tail) t-test of βj = 0.
Later on, we will tackle the issue of removing, one by one, all irrelevant inde-

pendent variables from the model.

Searching for Optimal Model
Realizing that some of the independent variables may be irrelevant for y (by ei-
ther being totally unrelated to y, or duplicating the information contained in the
remaining x’s), we would normally (especially when the original number of x’s is
large) like to eliminate them from our model. But that is a very tricky issue, even
when we want to properly define what the ’best’ simplest model should look like.
Deciding to make SSE as small as possible will not do any good - we know that

including a new x (however phoney) will always achieve some small reduction in
SSE. Trying to keep only the statistically significant x’s is also quite difficult, as
the significance of a specific independent variable depends (often quite strongly)
on what other x’s included or excluded (e.g. if we include two nearly identical x’s,
individually, they will appear totally insignificant, but as soon as we remove one
of them, the other may be highly significant and must stay as part of the model).
We will thus take a practical approach, and learn several procedures which

should get us reasonably close to selecting the ’best’ subset of the independent
variables to be kept in the model (the others will be simply discarded as irrelevant),
even without properly defining what ’best’ means. The basic two are

1. Backward elimination: Starting with the full model, we eliminate the

x with the smallest t =
bβj√

Cjj ·MSE
value, assuming this t is non-significant

(using a specific α). This is repeated until all t values are significant, at which
point we stop and keep all the remaining x’s.

2. Forward selection: Using k models, each with a single x, we select the
one with the highest t. Then we try all k − 1 models having this x, and
one of the remaining ones (again, including the most significant of these).
In this manner we keep on extending the model by one x at a time, until
all remaining x’s prove non-significant (at some fixed level of significance -
usually 5%).

Each of these two procedures can be made a bit more sophisticated by checking,
after each elimination (selection), whether any of the previously eliminated (se-
lected) independent variables have become significant (non-significant), in which
case they would be included (removed) in (from) the model. The trouble is that
some x may then develop a nasty habit of not being able to make up their mind,
and we start running in circles by repeatedly including and excluding them. One



38

can take some preventive measures against that possibility (by requiring higher sig-
nificance for inclusion than for kicking a variable out), but we will not go into these
details. We will just mention that this modification is called stepwise (stagewise)
elimination (selection). In this course, the procedure of choice will be backward
elimination.
We will use data of our previous example, with the exception of the values of

y:
> y := [145, 42, 355, 123, 261, 332, 193, 316, 184, 371, 283, 171, 270, 180, 188, 276, 319]:
> X := matrix(17, 1, 1.):
> X := augment(X,x1, x2, x3):
> C := evalm(inverse(transpose(X)&*X)):
> beta := evalm(C&* transpose(X)&*y);

β := [204.8944465, 23.65441498, 0.0250321373, —0.2022388198]
> e :=evalm(X&*beta− y):
> MSe :=sum(e[’i’]ˆ2,’i’= 1..17)/13;

MSe := 62.41228512
> for i to 4 do beta[i]/sqrt(C[i, i] ∗MSe) od;

24.16751153
32.89189446
0.4111008683
—21.28414937

> statevalf [icdf ,studentst[13]](0.975);
2.160368656

> X := submatrix(X, 1..17, [1, 2, 4]):

In the last command, we deleted the variable with the smallest (absolute) value
of t, since it is clearly nonsignificant (compared to the corresponding critical
value). We then have to go back to recomputing C etc., until all remaining
t values are significant.

Coefficient of Correlation (Determination)
The multiple correlation coefficient (usually called R) is computed in the manner
of (3.5) between the observed (y) and ’predicted’ (by = Hy) values of the response
variable.
First we show that by has the same mean (or, equivalently, total) as y. This can

be seen from

1TX(XTX)−1XTy = yTX(XTX)−1XT1 = yTX(XTX)−1XTX↓ = yTX↓ = yT 1

where 1 is a column vector of length n with each component equal to 1, and X↓
means deleting all columns of X but the first one (equal to 1).
If we call the corresponding mean (of y and by) ȳ, the correlation coefficient

between the two is computed by

R =
yTHy− ȳ2

nr³
yTH2y− ȳ2

n

´³
yTy− ȳ2

n

´



39

Since H is idempotent, this equalsvuutyTHy− ȳ2

n

yTy− ȳ2

n

R2 defines the coefficient of determination, which is thus equal to

yTHy− ȳ2

n

yTy− ȳ2

n

=
yTy− ȳ2

n
− ¡yTy− yTHy¢
yTy− ȳ2

n

=
Syy − SSE

Syy
≡ SSR

Syy

where SSR is the (due to) regression sum of squares (a bit confusing, since
SSE is called residual sum of squares). It is thus best to remember the formula in
the following form:

R2 = 1− SSE
Syy

It represents the proportion of the original Syy removed by regression.

Polynomial Regression
This is a special case of multivariate regression, with only one independent variable
x, but an x-y relationship which is clearly nonlinear (at the same time, there is no
’physical’ model to rely on). All we can do in this case is to try fitting a polynomial
of a sufficiently high degree (which is ultimately capable of mimicking any curve),
i.e.

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ...+ βkx

k
i + εi

Effectively, this is the same as having a multivariate model with x1 ≡ x, x2 ≡ x2,
x3 ≡ x3, etc., or, equivalently

X ≡


1 x1 x21 · · · xk1
1 x2 x22 · · · xk2
1 x3 x23 · · · xk3
...

...
...

. . .
...

1 xn x2n · · · xkn


All formulas of the previous section apply unchanged. The only thing we may like
to do slightly differently is our backward elimination: In each step, we will always
compute the t value corresponding to the currently highest degree of x only, and
reduce the polynomial correspondingly when this t turns out to be non-significant.
We continue until we encounter a significant power of x, stopping at that point.
This clearly simplifies the procedure, and appears quite reasonable in this context.

> x := [3, 19, 24, 36, 38, 39, 43, 46, 51, 58, 61, 84, 89]:
> y := [151, 143, 155, 119, 116, 127, 145, 110, 112, 118, 78, 11, 5]:
> k := 5:
> X := matrix(13, k):
> for i to 13 do for j to k do X[i, j] := x[i]ˆ(j − 1.) od od:
> C := inverse(transpose(X)&*X):
> beta := evalm(C&* transpose(X)&*y):



40

> e := evalm(X&*beta− y):
> MSe := sum(e[’i’]ˆ2,’i’= 1..13)/(13− k):
> beta[k]/sqrt(MSe ∗ C[k, k]);

—4.268191026
> statevalf [icdf,studentst[13− k]](.975);

2.228138852
> k := k − 1:
> pl1 := pointplot([seq([x[i], y[i]], i = 1..13)]):
> pl2 := plot(beta[1] + beta[2] ∗ z + beta[3] ∗ zˆ2, z = 0..90):
> display(pl1, pl2);

We have to execute the X :=matrix(13, k) to k := k−1 loop until the resulting t
value becomes significant (which, in our program, happened when we reached
the quadratic coefficient).

Similarly to the simple-regression case, we should never use the resulting equa-
tion with an x outside the original (fitted) data (the so called extrapolation). This
maxim becomes increasingly more imperative with higher-degree polynomials - ex-
trapolation yields totally nonsensical answers even for relatively ’nearby’ values of
x.

Dummy (Indicator) Variables
Some of our independent variables may be of the ’binary’ (yes or no) type. This
again poses no particular problem: the yes-no (true-false, male-female, etc.) values
must be translated into a numerical code (usually 0 and 1), and can be then treated
as any other independent variable of the multivariate regression (and again: non
of the basic formulas change). In this context, any such x is usually called an
indicator variable (indicating whether the subject is a male or a female).
There are other instances when we may introduce a dummy variable (or two)

of this type on our own. For instance, we may have two sets of data (say, between
the age and salary), one for the male, the other for female employees of a company.
We know how to fit a straight line for each set of data, but how do we test whether
the two slopes and intercepts are identical?
Assuming that the errors (εi) of both models have the same σ, we can pool

them together, if in addition to salary (y) and age (x), we also include a 0-1 type
variable (say s) which keeps track of the employee’s sex. Our new (multivariate)
model then reads:

y = β0 + β1x+ β2s+ β3x s+ ε

which means that, effectively, x1 ≡ x, x2 ≡ s and x3 ≡ x s (the product of x
and s). Using the usual multivariate regression, we can now find the best (least-
square) estimates of the four regression coefficients. The results must be the same
as performing, separately, two simple regressions, in the following sense:

y = bβ0 + bβ1x
(using our multivariate-fit bβ’s) will agree with the male simple regression (assuming
males were coded as 0), and

y = (bβ0 + bβ2) + (bβ1 + bβ3)x



41

will agree with the female simple regression. So that by itself is no big deal. But
now we can easily test for identical slopes (β3 = 0) or intercepts (β2 = 0), by
carrying out the usual multivariate procedure. Furthermore, we have a choice of
performing these two tests individually or, if we like. ’collectively’ (i.e. testing
whether the two straight lines are in any way different) - this of course would
have to be done by computing the full and reduced SSE, etc. One further advan-
tage of this approach is that we would be pooling the data and thus combining
(adding) the degrees of freedom of the residual sum of squares (this always makes
the corresponding test more sensitive and reliable).

Example: We will test whether two sets of x-y data can be fitted by the same
straight line or not.

> x1 := [21, 30, 35, 37, 38, 38, 44, 44, 51, 64]:
> x2 := [20, 36, 38, 40, 54, 56, 56, 57, 61, 62]:
> y1 := [22, 20, 28, 34, 40, 24, 35, 33, 44, 59]:
> y2 := [16, 28, 33, 26, 40, 39, 43, 41, 52, 46]:
> pl1 := pointplot([seq([x1[i], y1[i]], i = 1..10)]):
> pl2 := pointplot([seq([x2[i], y2[i]], i = 1..10)],color = red):
> display(pl1, pl2);
> x := [op(x1), op(x2)]:
> y := [op(y1), op(y2)]:
> s := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]:
> xs := [seq(x[i] ∗ s[i], i = 1..20)]:
> X := matrix(20, 1, 1.):
> X := augment(X,x, s, xs):
> beta := evalm(inverse(transpose(X)&*X)&*transpose(X)&*y):
> e := evalm(X&*beta− y):
> SSeFull := sum(e[i]ˆ2, i = 1..20);

SSeFull := 316.4550264
> X := matrix(20, 1, 1.):
> X := augment(X,x):
> beta := evalm(inverse(transpose(X)&*X)&* transpose(X)&*y):
> e :=evalm(X&*beta− y):
> SSeRest := sum(e[i]ˆ2, i = 1..20);

SSeRest := 402.0404903
> ((SSeRest− SSeFull)/2)/(SSeFull/(20− 4));

2.163605107
> statevalf [icdf ,fratio[2, 6]](0.95);

3.633723468

Since the resulting F2,16 value is nonsignificant, the two sets of data can be fitted
by a single straight line.



42

Linear Versus Nonlinear Models
One should also realize that the basic (multi)-linear model

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε

covers many situations which at first may appear non-linear, such as, for example

y = β0 + β1e
−t + β2 ln t+ ε

y = β0 + β1e
−t + β2 ln p+ ε

where t (in the first model), and t and p (in the second one) are the independent
variables (all we would have to do is to take x1 ≡ e−t and x2 ≡ ln t in the first
case, and x1 ≡ e−t and x2 ≡ ln p in the second case, and we are back in business.
The important thing to realize is that ’linear’ means linear in each of the β’s, not
necessarily linear in x.
A slightly more difficult situation is

v = a · bx

where v is the dependent and x the independent variable. We can transform this
to a linear model by taking the logarithm of the equation

ln v = ln a+ x · ln b

which represents a simple linear model if we take y ≡ ln v, β0 ≡ ln a and β1 ≡ ln b.
The only trouble is that we have to assume the errors to be normally distributed
(with the same σ) after the transformation (making the assumptions about errors
rather complicated in the original model).
Of course, there are models which will remain essentially non-linear no matter

how we transform either the independent or the dependent variable (or both), e.g.

y =
a

b+ x

We will now learn how to deal with these.



43

Chapter 5 NONLINEAR REGRESSION
We will assume the following model with one independent variable (the results can
be easily extended to several) and k unknown parameters, which we will call b1,
b2, ... bk:

y = f(x,b) + ε

where f(x,b) is a specific (given) function of the independent variable and the k
parameters.
Similarly to linear models, we find the ’best’ estimators of the parameters by

minimizing
nX
i=1

[yi − f(xi,b)]
2 (5.1)

The trouble is that the normal equations
nX
i=1

[yi − f(xi,b)] · ∂f(xi,b)
∂bj

= 0

(j = 1, 2, ...k) are now non-linear in the unknowns, and thus fairly difficult to
solve. The first two terms of the Taylor expansion (in terms of b) of the left hand
side, at some arbitrary point b0 (close to the exact solution), are

nX
i=1

[yi − f(xi,b0)] · ∂f(xi,b)
∂bj

¯̄̄̄
b=b0

+ (5.2)Ã
nX
i=1

[yi − f(xi,b0)] · ∂
2f(xi,b)

∂bj∂bc

¯̄̄̄
b=b0

−
nX
i=1

∂f(xi,b)

∂bc

¯̄̄̄
b=b0

· ∂f(xi,b)
∂bj

¯̄̄̄
b=b0

!
(bc − bc0) + ...

One can show that the first term in (big) parentheses is a lot smaller than the second
term; furthermore, it would destabilize the iterative solution below. It is thus to
our advantage to drop it (this also saves us computing the second derivatives).
Making the previous expansion (without the offensive term) equal to zero, and
solving for b, yields

b = b0 + (XT
0X0)−1XT

0 e0 (5.3)

where

X0 ≡



∂f(x1,b)

∂b1

∂f(x1,b)

∂b2
· · · ∂f(x1,b)

∂bk
∂f(x2,b)

∂b1

∂f(x2,b)

∂b2
· · · ∂f(x2,b)

∂bk
...

...
. . .

...
∂f(xn,b)

∂b1

∂f(xn,b)

∂b2
· · · ∂f(xn,b)

∂bk


b=b0

is the matrix of all k partial derivatives, evaluated at each value of x, and

e0 ≡


y1 − f(x1,b0)
y2 − f(x2,b0)

...
y2 − f(x2,b0)





44

is the vector of residuals.
The standard (numerical) technique for solving them iteratively is called

Levenberg-Marquardt, and it works as follows:

1. We start with some arbitrary (but reasonably sensible) initial values of the
unknown parameters, say b0.We also choose (quite arbitrarily) the first value
of an iteration parameter to be λ = 1 .

2. Slightly modifying (5.3), we compute a better approximation to the solution
by

b1 = b0 + (XT
0X0 + λdiagXT

0X0)−1XT
0 e0 (5.4)

where ’diag’ keeps the main-diagonal elements of its argument, making the
rest equal to 0 (effectively, this says: multiply the diagonal elements of XT

0X0
by 1+λ). If the sum of squares (5.1) increases, multiply λ by 10 and backtrack
to b0, if it decreases, reduce λ by a factor of 10 and accept b1 as you new
solution.

3. Recompute (5.4) with the new λ and, possibly, new b, i.e.

b2 = b1 + (XT
1X1 + λdiagXT

1X1)−1XT
1 e1

where X and e are now to be evaluated using b1 (assuming it was accepted
in the previous step). Again, check whether this improved the value of (5.1),
and accordingly accept (reject) the new b and adjust the value of λ.

4. Repeat these steps (iterations) until the value of (5.1) no longer decreases
(within say 5 significant digits). At that point, compute (XTX)−1 using the
latest b and λ = 0.

Note that by choosing a large value of λ, the procedure will follow the direction
of steepest descent (in a certain scale), a foolproof but inefficient way of min-
imizing a function. On the other hand, when λ is small (or zero), the procedure
follows Newton’s technique for solving nonlinear equations - fast (quadratically)
converging to the exact solution provided we are reasonably close to it (but go-
ing crazy otherwise). So, Levenberg-Marquardt is trying to be conservative when
things are not going too well, and advance rapidly when zeroing in on a nearby so-
lution. The possibility of reaching a local (i.e. ’false’) rather then global minimum
is, in these cases, rather remote (normally, there is only one unique minimum);
furthermore, one would readily notice it by graphing the results.
At this point, we may give (5.2) a slightly different interpretation: If we replace

b0 by the exact (albeit unknown) values of the parameters and b by our least-
square estimators, the ei residuals become the actual εi errors, and the equation
implies (using a somehow more sophisticated version of the large-sample theory):

bb = b+ (XTX)−1XTε+ ...

indicating that bb is an asymptotically unbiased estimator of b, with the variance-
covariance matrix of

(XTX)−1XT E[εεT ]X(XTX)−1 = σ2(XTX)−1



45

The best estimator of σ2 is, clearlyPn
i=1

h
yi − f(xi, bb)i2
n− k

The previous formulas apply, practically without change (we just have to replace
x by x) to the case of more than one independent variable. So, the complexity of
the problem (measured by the second dimension of X) depends on the number of
parameters, not on the number of the independent variables - for the linear model,
the two numbers were closely related, but now anything can happen.

Example Assuming the following model

y =
b1

b2 + x
+ ε

and being given the following set of observations:

xi 82 71 98 64 77 39 86 69 22 10
yi .21 .41 .16 .43 .16 .49 .14 .34 .77 1.07

56 64 58 61 75 86 17 62 8
.37 .27 .29 .12 .24 .07 .64 .40 1.15

we can find the solution using the following Maple program:

> with(linalg):
> x := [82, 71, ....]:
> y := [.21, .41, .....]:
> f := [seq(b[1]/(b[2] + x[i]), i = 1..19)]:
> X := augment(diff(f, b[1]),diff(f, b[2])):
> b := [1, 1]:
> evalm((y − f)&*(y − f));

4.135107228
> λ := 1 :
> bs := evalm(b):
> C := evalm(transpose(X)&*X):
> for i to 2 do C[i, i] := C[i, i] ∗ (1 + λ) end do:
> b := evalm(b+ inverse(C)&* transpose(X)&*(y − f)):
> evalm((y − f)& ∗ (y − f));

7.394532277
> b := evalm(bs):

After several iterations (due to our selection of initial values, we first have to
increase λ a few times), the procedure converges to bb1 = 21.6 ± 2.6 andbb2 = 10.7± 2.9. The two standard errors have been computed by an extra

> for i to 2 do sqrt(inverse(C)[i, i]*evalm((y − f)& ∗ (y − f))/17) end do;

It is also a good idea to display the resulting fit by:



46

> with(plots):
> pl1 := pointplot([seq([x[i], y[i]], i = 1..19)]):
> pl2 := plot(b[1]/(b[2] + x), x = 6..100):
> display(pl1, pl2);

This can also serve, in the initial stages of the procedure, to establish ’sensible’
values of b1 and b2, to be used as initial values of the iteration loop.



47

Chapter 6 ROBUST REGRESSION
In this chapter we return to discussing the simple linear model.
When there is an indication that the εi’s are not normally distributed (by

noticing several unusually large residuals - so called outliers), we can search for
maximum-likelihood estimators of the regression parameters using a more appro-
priate distribution. The two most common possibilities are the Laplace (double
exponential) and Cauchy distribution.. Both of them (Cauchy in particular) tend
to de-emphasize outliers and their influence on the resulting regression line, which
is quite important when dealing with data containing the occasional crazy value.
Procedures of this kind are called robust (not easily influenced by outliers).

Laplace distribution
We will first assume that εi are distributed according to a distribution with the
following PDF..

exp(− |x |
γ
)

2γ

for all real values of x (the exponential distribution with its mirror reflection).
Since the distribution is symmetric, the mean is equal to 0 and standard deviation
is equal to

√
2γ ≡ σ.

The corresponding likelihood function, or better yet its logarithm, is then

−n ln(2γ)− 1
γ

nX
i=1

| yi − β0 − β1xi |

The ∂
∂γ
derivative is

−n
γ
+
1

γ2

nX
i=1

| yi − β0 − β1xi |

Making it equal to zero and solving for γ yields

bγ = Pn
i=1 | yi − bβ0 − bβ1xi |

n

where bβ0 and bβ1 represent the solution to the other two normal equations,namely
nX
i=1

sign( yi − β0 − β1xi) = 0

nX
i=1

xi · sign( yi − β0 − β1xi) = 0

Solving these is a rather difficult, linear-programming problem. We will bypass
this by performing the minimization of

nX
i=1

| yi − β0 − β1xi |



48

graphically, with the help of Maple.
To find the mean and standard deviation of bγ, we assume that n is large (large-

sample theory) which allows us to replace ei by εi. We thus get

bγ ' Pn
i=1 | εi |
n

which implies that

E(bγ) = Pn
i=1 E(| εi |)

n
= γ + ...

(where the dots imply terms proportional to 1
n
, 1
n2
, etc.), sinceR∞

−∞ |x| exp(− |x|γ ) dx
2γ

= γ

bγ is thus an asymptotically unbiased estimator of γ.
Similarly,

Var(bγ) ' Var( | ε | )
n

=
γ2

n
+ ...

(the dots now imply terms proportional to 1
n2
), sinceR∞

−∞ x2 exp(− |x|
γ
) dx

2γ
= 2γ2

The standard deviation of bγ is thus γ√
n
' bγ√

n
.

To perform the same kind of analysis for our (graphical) estimators of β0 and
β1, we first realize that these have been obtained by minimizing the sum of a
specific function (say F ) of the residuals:

nX
i=1

F (ei)

(in this case, F represents taking the absolute value, but we are better off by
considering the general case). The two normal equations are thus

nX
i=1

F 0(ei) = 0

nX
i=1

xi F
0(ei) = 0

Expanding the left hand side with respect to bβ0 and bβ1 at the exact (albeit un-
known) values β0 and β1 yields:

nX
i=1

F 0(εi)− (bβ0 − β0)
nX
i=1

F 00(εi)− (bβ1 − β1)
nX
i=1

xiF
00(εi) + ... = 0

nX
i=1

xiF
0(εi)− (bβ0 − β0)

nX
i=1

xiF
00(εi)− (bβ1 − β1)

nX
i=1

x2iF
00(εi) + ... = 0



49

We can easily solve for" bβ0bβ1
#
=

·
β0
β1

¸
+

· Pn
i=1 F

00(εi)
Pn

i=1 xiF
00(εi)Pn

i=1 xiF
00(εi)

Pn
i=1 x

2
iF

00(εi)

¸−1 · Pn
i=1 F

0(εi)Pn
i=1 xiF

0(εi)

¸
+ ...

(6.1)
The large-sample theory enables us to replace the coefficient matrix by the corre-
sponding expected value (this is kind of tricky here since F 00 relates to the Dirac
function), thus:" bβ0bβ1

#
=

·
β0
β1

¸
+ γ

·
n

Pn
i=1 xiPn

i=1 xi
Pn

i=1 x
2
i

¸−1 · Pn
i=1 F

0(εi)Pn
i=1 xiF

0(εi)

¸
+ ...

≡
·
β0
β1

¸
+ γ(XTX)−1XTF0

since E[F 00(εi)] = 1
γ
. Furthermore, based on E[F 0(εi)] = 0, we can see that the β

estimators are asymptotically unbiased. Their variance-covariance matrix equals

γ2(XTX)−1XT E[F0F0T ]X(XTX)−1 = γ2(XTX)−1 ' bγ2(XTX)−1

since E[F0F0T ] = I .

Example: In this example, we will generate our own data, using n = 25, β0 = 80,
β1 = −2 and σ = 10 (the Maple program calls the regression coefficients a
and b):

> with(linalg): with(stats): with(plots):
> x := randvector(25,entries= rand(1..35)):
> y := [seq(80− 2 ∗ x[i]+random[laplaced[0, 10]](1), i = 1..25)]:
>pointplot([seq([x[i], y[i]], i = 1..25)]);
> F := sum(abs(y[i]− a− b ∗ x[i]), i = 1..25) :
> contourplot(log(F ), a = 80..90, b = −2.3..− 2.1,contours= 30);
> a := 85: b := −2.25:
> X :=augment([seq(1, i = 1..25)], x):
> g := F/25;

g := 11.30304097
> for i to 2 do sqrt(inverse(transpose(X)& ∗X)[i, i] ∗ gˆ2) end do;

4.585200522
0.2499498573

> g∗ sqrt(2.); g∗ sqrt(2./25);
15.98491383
3.196982767

Our estimates for β0 and β1 are thus 85± 5 and −2.25± 0.25, in good agreement
with the true values of 80 and −2. The σ estimate of 16.0 ± 3.2 is not that
impressive (the exact value was 10), but its error is less than 2 standard
errors, which we know to be quite feasible.



50

Cauchy Case
This time we will assume that the ε distribution is Cauchy, with the following
PDF:

1

π
· σ

σ2 + x2

Note that this distribution has indefinite mean (even though its median is equal
to 0), and infinite standard deviation (σ denoting its quartile deviation).
The logarithm of the likelihood function is now

−n lnπ + n lnσ −
nX
i=1

ln[σ2 + (yi − β0 − β1xi)
2]

Differentiating with respect to σ, we get

n

σ
−

nX
i=1

2σ

σ2 + (yi − β0 − β1xi)
2

Setting it to zero yields
nX
i=1

1

1 + (ei
σ
)2
− n

2
= 0 (6.2)

where ei ≡ yi − β0 − β1xi.
Similarly, making the β0 and β1 derivatives equal to 0 results in

nX
i=1

ei
σ2 + e2i

= 0 (6.3)

nX
i=1

xiei
σ2 + e2i

= 0

Maple in normally capable of solving these (nonlinear) equations for the three
parameters, but we may have to help in the following way: Rather then asking it
to solve (6.2) and (6.3) simultaneously, we first provide a rough estimate for σ, and
solve (6.3) for β0 and β1 (it is always save to start with a large value of σ, which
reduces this step to a simple regression). Using these values of β0 and β1, we ask
Maple to solve (6.2) for σ. This cycle is repeated till convergence (σ, β0 and β1 no
longer change). The results are of course our bσ, bβ0 and bβ1 estimates.
To investigate the statistical properties of the three estimators (now considered

as random variables, not the final values), we again expand the right hand sides
of the normal equations at the exact values. We should now do it with all three
equations, since

F ≡ lnσ − ln(σ2 + e2i )

is a function of all three parameters. But it is easy to see that the resulting
equations decouple eventually (since the partial derivative of F with respect to σ
and si, namely 4σei

(σ2+e2i )
2 , has, in our approximation, a zero expected value).

So it is quite legitimate to first expand (6.2), assuming that β0 and β1 are fixed:

nX
i=1

σ2

σ2 + ε2i
− n

2
+

nX
i=1

2σε2i
(σ2 + ε2i )

2
(bσ − σ) + ... = 0 (6.4)



51

Since

E
µ

σ2

σ2 + ε2i
− 1
2

¶
=
1

π

∞Z
−∞

µ
σ2

σ2 + x2
− 1
2

¶
σ

σ2 + x2
dx = 0

bσ is clearly asymptotically unbiased. Furthermore, after dividing (6.4) by n, we
may replace the second coefficient by its expected value

1

π

∞Z
−∞

2σ x2

(σ2 + x2)2
· σ

σ2 + x2
dx =

1

4σ

thus:
nP
i=1

µ
σ2

σ2 + ε2i
− 1
2

¶
n

+
1

4σ
(bσ − σ) + ... = 0

This means that the variance of bσ equals
16σ2

n
Var

µ
σ2

σ2 + ε2i
− 1
2

¶
=
2σ2

n
' 2bσ2

n

Similarly, (6.1) now implies (since F (εi) = − ln(σ2 + ε2i ), assuming that σ is
fixed):" bβ0bβ1

#
=

·
β0
β1

¸
+

 Pn
i=1

2(σ2−ε2i )
(σ2+ε2i )

2

Pn
i=1 xi

2(σ2−ε2i )
(σ2+ε2i )

2Pn
i=1 xi

2(σ2−ε2i )
(σ2+ε2i )

2

Pn
i=1 x

2
i
2(σ2−ε2i )
(σ2+ε2i )

2

−1 " Pn
i=1

2εi
σ2+ε2iPn

i=1 xi
2εi

σ2+ε2i

#
+ ...

' 2σ2
·

n
Pn

i=1 xiPn
i=1 xi

Pn
i=1 x

2
i

¸−1 " Pn
i=1

2εi
σ2+ε2iPn

i=1 xi
2εi

σ2+ε2i

#
+ ...

which demonstrates that bβ0 and bβ1 are asymptotically unbiased, having the fol-
lowing variance-covariance matrix

4σ4(XTX)−1XT E[F0F0T ]X(XTX)−1 = 2σ2(XTX)−1 ' 2bσ2(XTX)−1

Example: We will use the same parameters as in the previous example, except
now the εi’s have the Cauchy distribution with σ = 3. The following Maple
program does the job:

> with(linalg): with(stats): with(plots):
> x := randvector(25,entries = rand(1..35)):
> y := [seq(80− 2 ∗ x[i]+random[cauchy[0, 3]](1), i = 1..25)]:
>pointplot([seq([x[i], y[i]], i = 1..25)]);
> F1 := sum(σˆ2/(σˆ2 + (y[i]− a− b ∗ x[i])ˆ2), i = 1..25):
> F2 := sum((y[i]− a− b ∗ x[i])/(σˆ2 + (y[i]− a− b ∗ x[i])ˆ2), i = 1..25):
> F3 := sum((y[i]− a− b ∗ x[i]) ∗ x[i]/(σˆ2+ (y[i]− a− b ∗ x[i])ˆ2), i = 1..25):
> σ := 100:
> fsolve({F2, F3}, {a = 60..100, b = −5..− 1});

{b = —1.979312306, a = 79.80522543}



52

>assign(%): σ := ’σ’:
> σ := fsolve(F1− 25/2, σ = 0..100);

σ := 3.351948403
> a := ’a’: b := ’b’:
> X :=augment([seq(1, i = 1..25)], x):
> for i to 2 do sqrt(inverse(transpose(X)& ∗X)[i, i] ∗ 2 ∗ σˆ2) end do;

1.735026661
0.09386891459

> σ∗ sqrt(2./25);
0.9480741785

This time, we are getting 79.8± 1.7 for β0, −1.979± 0.094 for β1 and 3.35± 0.95
for σ. Note that we had to iterate (about 4 times) through the fsolve loop
to reach these values.



53

Chapter 7 TIME SERIES
In this chapter we study the possibility of the ε’s being correlated with one an-
other. This would normally happen when x is time, and we take a y observation
(something like a stock price) every day (month, year, etc.). We will assume a
simple linear (or polynomial) relationship between x and y, but the ε’s are now
generated by

εi = α1εi−1 + α2εi−2 + ...+ δi

where α1, α2, ... are (unknown) constants, and δi are independent, normally dis-
tributed, with the mean of zero and standard deviation of σ. This is called the
autoregressive model (for the ε’s). We will first look in detail at the simplest
case of the

Markov Model
namely

εi = α1εi−1 + δi ≡ ρεi−1 + δi (7.1)

A terminology note: When the εi’s were independent, they could be seen sim-
ply as a random independent sample of size n from N (0, σ). Now, when
generated in this new, rather nontrivial manner, they constitute a so called
stochastic process. There are several kinds of stochastic processes; the
ones with an integer index (the time scale is discrete) and continuous state
space (values of ε) are called time series.

We will assume that this process (of generating the εi’s) is stationary, i.e. it
started in a distant past (not just with our ε1), implying that the distribution of all
the εi’s is the same (so is the correlation coefficient between any two consecutive
εi’s, etc.). The process can be stationary only when the model parameters (ρ in
this case) fall in a specific range (meeting conditions of stability).
Under this assumption, we can establish that the εi’s remain normal with the

mean of zero. We can also find their common variance by taking the variance of
each side of (7.1):

Var(ε) = ρ2Var(ε) + σ2

(note that εi and δj are uncorrelated whenever i < j). This implies that

Var(ε) =
σ2

1− ρ2

Note that the result is finite and positive only when |ρ| < 1 (this is also the stability
condition).
To find the correlation coefficient between εi−1 and εi (the so called first

serial correlation ρ1), we multiply (7.1) by εi−1 and take the expected value,
getting:

Cov(εi−1, εi) = ρVar(εi−1)

Dividing by Var(ε) yields:
ρ1 = ρ



54

giving us a clear interpretation of our parameter ρ.
Similarly, to establish the kth serial correlation, we multiply (7.1) by εi−k and

take the expected value:

Cov(εi−k, εi) = ρCov(εi−k, εi−1)

Dividing by the common variance yields the following recurrence formula

ρk = ρ · ρk−1
which implies almost immediately that

ρk = ρk

This means that the variance-covariance matrix of ε1, ε2,....εn (and therefore of
y1, y2, .... yn) is

V =
σ2

1− ρ2


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3
...

...
...

. . .
...

ρn−1 ρn−2 ρn−3 · · · 1


Luckily, this matrix has a rather simple (tri-diagonal) inverse:

V−1 = 1

σ2


1 −ρ 0 · · · 0
−ρ 1 + ρ2 −ρ · · · 0
0 −ρ 1 + ρ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ≡
1

σ2
W

(check it out). Its determinant is equal to
σ2n

1− ρ2
.

To perform simple regression, we need to maximize the logarithm of the likeli-
hood function, namely:

−n
2
log(2π)− n log σ +

1

2
log(1− ρ2)− (y−Xβ)

TW(y−Xβ)
2σ2

This will yield the usual (weighted) estimators of β and σ2, but now we also need
to estimate ρ, based on

ρ

1− ρ2
=
(y−Xβ)TU(y−Xβ)

2σ2

where

U ≡


0 1 0 · · · 0
1 −2ρ 1 · · · 0
0 1 −2ρ · · · 0
...

...
...

. . .
...

0 0 0 · · · 0





55

or, equivalently,

ρ =

Pn−1
i=1 eiei+1Pn−1

i=2 e
2
i +

σ2

1−ρ2
(7.2)

It is clear that, so solve for the maximum-likelihood estimators, one would have
to iterate, e.g. start with ρ = 0 and do the ordinary regression, then use (7.2) to
estimate ρ and come back to estimating β and σ2 by the corresponding weighted
regression, etc., until the estimators no longer change.
We will not derive the standard error of each of these estimators (it would be

fairly tricky - we would have to use the large-n approach).
> x := [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]:
> y := [126, 114, 105, 108, 95, 102, 101, 95, 83, 71, 75, 93, 102, 84, 62, 67, 63, 55, 21, 20]:
> pointplot([seq([x[i], y[i]], i = 1..20)]):
> X := matrix(20, 2):
> for i to 20 do X[i, 1] := 1; X[i, 2] := x[i] od:
> W := matrix(20, 20, 0):
> rho := 0:
> for i to 19 do W [i, i+1] := −rho; W [i+1, i] := −rho; W [i, i] := 1+ rhoˆ2

od:
> W [1, 1] := 1 :W [20, 20] := 1:
> beta := evalm(inverse(transpose(X)&*W&*X)&*transpose(X)&*W&*y);

β := [130.0261406, —0.9337280922]
> e := evalm(y −X&*beta):
> var := evalm(e&*W&*e)/18;

var := 123.7606318
> A := sum(e[’i’] ∗ e[’i’+1],’i’= 1..19):
> B := sum(e[’i’]ˆ2,’i’= 2..19):
> rho := fsolve(r = A/(B + var/(1− rˆ2)), r);

ρ := 0.5775786348
Note that, to get the solution, we had to iterate (repeat the execution of the

last few lines, starting with redefining the elements of W ).

Yule Model
The error terms are now generated by

εi = α1εi−1 + α2εi−2 + δi (7.3)

where α1 and α2 are (unknown) constants, and δi are independent N (0, σ).
Multiplying by εi−1, taking the expected value and dividing by Var(X) yields

ρ1 = α1 + α2ρ1

which implies that
ρ1 =

α1
1− α2

(7.4)

Similarly, multiplying (7.3) by εi−k (where k ≥ 2), taking the expected value
and dividing by Var(X) results in the following recurrence formula for all the
remaining serial correlation coefficients:

ρk = α1ρk−1 + α2ρk−2



56

(with the understanding that ρ0 ≡ 1).
Taking the variance of each side of (7.3) yields

Var(ε) = α21Var(ε) + α22Var(ε) + 2α1α2Var(X) ρ1 + σ2

With the help of (7.4), we can now solve for

Var(ε) =
1− α2

(1 + α2)(1− α1 − α2)(1 + α1 − α2)
σ2

One can also show that the process is stable (stationary) if and only if all three
factors in the denominator of the previous formula are positive.
The logarithm of the likelihood function is now:

−n
2
log(2π)−n log σ+log(1+α2)+1

2
log(1−α1−α2)+1

2
log(1+α1−α2)−(y−Xβ)

TW(y−Xβ)
2σ2

where

W =



1 −α1 −α2 0 · · · 0
−α1 1 + α21 −α1(1− α2) −α2 · · · 0
−α2 −α1(1− α2) 1 + α21 + α22 −α1(1− α2) · · · 0
0 −α2 −α1(1− α2) 1 + α21 + α22 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1


Setting the α1 derivative equal to 0 yields

α1σ
2

(1− α1 − α2)(1 + α1 − α2)
+ α1

n−1X
i=2

e2i + α2

n−2X
i=2

eiei+1 =
n−1X
i=1

eiei+1

Similarly, using the α2 derivative, we get

(2α2 + α21 − 2α22)σ2
(1 + α2) (−1 + α1 + α2) (1 + α1 − α2)

+ α1

n−2X
i=2

eiei+1 + α2

n−2X
i=3

e2i =
n−2X
i=1

eiei+2

To a good approximation (when n is reasonably large), these can be replaced
by

α1

Pn
i=1 e

2
i

n
+ α2

Pn−1
i=1 eiei+1
n− 1 =

Pn−1
i=1 eiei+1
n− 1

α1

Pn−1
i=1 eiei+1
n− 1 + α2

Pn
i=1 e

2
i

n
=

Pn−2
i=1 eiei+2
n− 2

> n := 60: eps := vector(n):
> eps[n] := 0: eps[n− 1] := 0:
> with(stats):with(linalg):with(plots):
> eps[1] := 1.63 ∗ eps[n]− .72 ∗ eps[n− 1]+ random[normald[0, 1]](1):
> eps[2] := 1.63 ∗ eps[1]− .72 ∗ eps[n]+ random[normald[0, 1]](1):



57

> for i from 3 to n do eps[i] := 1.63 ∗ eps[i − 1] − .72 ∗ eps[i − 2]+ ran-
dom[normald[0, 1]](1) od:

> pointplot([seq([i, eps[i]], i = 1..n)]):
> A := sum(eps[0i0] ∗ eps[0i0+ 2], 0i0 = 1..n− 2)/(n− 2):
> B := sum(eps[0i0] ∗ eps[0i0+ 1], 0i0 = 1..n− 1)/(n− 1):
> C := sum(eps[0i0]ˆ2, 0i0 = 1..n)/n:
> linsolve(matrix(2, 2, [C,B,B,C]), [B,A]);

[1.612192917, —0.7481655896]


