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Abstract

We study real business cycle (RBC) phenomena in models where “tech-
nology shocks” are fully anticipated a discrete number of periods prior
to their impact on contemporary production processes. Allowing for antic-
ipation of factor productivity changes, relative to the standard approach
where all such changes are unanticipated, alters the predictions of the
model by raising the relative volatility of hours worked, and by lowering
the contemporaneous correlations between consumption, hours, and out-
put. Additionally, anticipation introduces a significant transitory compo-
nent to impulse-response functions estimated from simulated data where
such responses are absent in the unanticipated case. Improvements in the
permanent components of estimated impulse-response functions may also
be seen with the introduction of anticipation. In particular, a characteris-
tic “hump shaped” response and an initial negative response of hours are
generated as is consistent with empirical evidence. Finally, in some cases
strong positive autocorrelation of output growth is predicted when factor
productivity changes are anticipated. These results suggest that antici-
pation effects can go some way to providing realistic internal propagation
mechanisms within theoretical economic models.

Keywords: Anticipation, Real Business Cycles, Impulse Responses.
JEL: E10, E30, E37.

1 Introduction.

A common feature of real business cycle (RBC) models is that the realizations
of the exogenous “shocks” which imply changes in productivity, fiscal policy,
monetary conditions, or other variables, are assumed to be contemporaneous
with the actual changes in the variables themselves. That is, variations in
economic conditions are always unanticipated. This would seem to be an unlikely
feature of actual economies, however.

For example, changes in regulatory environments which are enacted through
legislation are clearly anticipated well before they legally come into effect. Cal-
ifornia’s zero-emissions-vehicle mandate is almost 10 years old and yet has two
years remaining before automobile manufacturers will be forced to comply. Mo-
torists in southern Ontario had between one and two years to prepare their vehi-
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cles for the provincial governments “drive clean” inspections. Dichloro-diphenyl-
trichloro-ethane (DDT), leaded-gasoline, and chloro-flouro carbons (CFC’s) are
just three examples of products that were “phased-out” rather than being banned
effective immediately. It is clear that this approach is the rule rather than the
exception.

In terms of technological innovation, it is rare for the introduction of a
new product or process to not be accompanied by a series of announcements
and analyses. From colour television and the basics of silicon-chip technology
in the late 1960’s and early 1970’s, to fiber optic cables, high speed internet
access, cellular telephones, global positioning satellites, and fuel cells today, it is
difficult to find an example of a new technology in which the readers of “Popular
Mechanics” were not thoroughly versed, and which was not well anticipated
by the public at large. Indeed the establishment of anticipation and hype for
new “revolutionary” products is by now a standard marketing strategy. The
timely releases of successive MicroSoft “Windows” operating systems and Intel
“Pentium” chips provide ready examples.

This paper explores some of the implications of fully anticipated technolog-
ical change for the predictions of real business cycle models.

Anticipation of technological change in our framework means that economic
agents observe the outcome of a conventional stochastic technology process some
T > 0 periods prior to its impact on productivity. This is a simple variation
on the typical RBC methodology which is easy to handle within our solution
algorithm for any 7 € (0,T), where 7 = 0 yields the standard unanticipated
case. Conceptually then, a “shock” refers to the revelation of information about
future productivities rather than to the impact of the productivity change itself.
Note that this opens the possibility for negative productivity shocks, which are
difficult to interpret within standard RBC frameworks, to be understood as
downward reassessments of the future productivity potential of technological
innovations.

There are at least two basic ways in which anticipation as described above
may have implications for the predictions of RBC models. First, allowing for
agent’s responses in anticipation of technological change may alter the model’s
predictions for the basic variances, and correlations of the economic variables
central to most RBC theory. For example, anticipation of a future increase in
factor productivity may alter agent’s investment decisions. This may impact
on measured investment volatility and could serve to reduce the correlation
between investment and output. Also, agent’s may substitute current leisure
for anticipated increases in future consumption. This is the opposite labour-
supply response to that seen when the technology actually arrives and thus may
serve within the model to increase measured labour volatility.

Our simulation results confirm some of the above intuition. In general, for
a given stochastic technology process, anticipation tends to raise the measured
volatility of output, and the relative volatility of hours to output and investment
to output. Additionally, anticipation effects break down the pattern of near
perfect correlation between consumption, hours, and output which characterizes
many RBC models.



Second, a period of anticipation prior to the impact of the technological
change lengthens the possible response of the economy to any given shock. This
has implications for the internal propagation properties of the model. As is
well know (for example, Cogley and Nason, 1995) many RBC frameworks fail to
generate output persistence or impulse responses that are consistent with actual
data. Our simulation results show a dramatic effect of anticipation on estimates
of impulse-response functions obtained from the model. In particular, when
technological changes are anticipated, we estimate hump-shaped transitory re-
sponse functions from our simulated data for output levels and hours which are
similar to those obtained from US data, and where basically no response at
all appears in the unanticipated case. These transitory dynamic responses in
the presence of a period of anticipation are intuitive and are robust to several
model specifications. In some cases strong autocorrelation of output growth is
also predicted when technological changes are anticipated.

Our study is related to the interesting work of Beaudry and Portier (2000)
who analyze a model where anticipation of technological change is based upon
signals that are sometimes incorrect. Their emphasis, however, is on the poten-
tial recessionary effects of having (ex post) an overly optimistic view regarding
the future path of technology in a model which differs from common RBC frame-
works. Our work complements this by identifying the implications of correctly
anticipating technological changes for a broad set of business-cycle predictions
in common RBC models.

In the next section of the paper we outline a simple base-case RBC model
and briefly discuss our simulation approach. Section 3 presents results from this
model including estimation of impulse-response and autocorrelation functions
from simulated data. In Section 4 we modify the base-case model assumptions
for the stochastic technology process and relate impulse dynamics to the extent
of anticipation effects. Section 5 extensively modifies the model to allow for
endogenous growth and explores anticipation effects in several variants of that
framework. Section 6 concludes.

2 The Base-Case Model

Our study starts with a basic single-sector RBC model similar to many found
in the literature (see, for example, Prescott, 1986; Christiano and Eichenbaum,
1992). There are no adjustment costs or lags. The model is driven by technology
shocks only. There is a balanced-growth equilibrium characterized by stationary
per-capita hours and difference-stationary per-capita output, consumption, and
capital stocks. The long-run rate of growth is determined by an exogenous rate
of increase in total factor productivity.

2.1 Households and Information Structure.

There is a single representative household which maximizes expected utility
according to;
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C; is period-t consumption, and [; is labour supplied from a unit endowment
of time per period. 8 < 1 is the household’s subjective rate of time preference.
The period utility function is isoelastic over consumption and leisure and is
parameterized as:

W(Cil) = ——(CE1 =)= e (0,1), 0<arl  (2)

1—0

w(Cy, 1) = In(C5(1 —1,)79),  o=1.

Q¢4+, T > 0 denotes the household’s time-t information set. If 7 = 0 we have
the standard RBC setup where the household has perfect information about
the state of the economy up to and including the current period, but future
economic conditions are subject to uncertainty. Since this situation implies
that, for example, variations in technologies are never realized in advance of
the current decision making period, we refer to this as the unanticipated case.
Alternatively, if 7 > 0, then the household’s information set includes knowledge
of the state of the economy 7 periods beyond the current decision making period,
and we refer to this as the 7-period anticipated case.

The household’s labour supply earns a competitive wage rate, w;. House-
holds also save directly in capital which is rented out each period for a com-
petitive rate of return r;, and which follows the usual law of motion; K;11 =
(1 = §)Ky + I, where § € (0,1) gives the rate of capital depreciation. The re-
sulting household income is allocated between consumption goods and capital
investments implying the following time-t budget constraint;

Cy < wily + 1 Ky — I, (3)

2.2 Firms and Production Technologies.

The production of output, Z;, is undertaken by a representative firm which
employs labour and rents capital to maximize period-by-period profits under a
constant returns to scale production technology;

Zy = AS KP1 (4)

where, A > 0, and « € (0, 1) are standard production function coefficients. S; >
0 is an exogenous productivity factor or “technology shock” process assumed to
follow a random walk with drift such that;

In(Sy) = In(Se—1) + p+&, & ~iid N(0,07). (5)

The N-step forecast of this process conditional on S; is given by;
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with conditional variance;

Var(in(Sisn) | Si] = NoZ. (7

2.3 Calibration and Simulation.
2.3.1 Base-Case Calibration.

Time periods in the model are assumed to correspond to quarterly observations.
Where possible the calibration is worked so that the model’s balanced-growth
solution replicates long-run averages for U.S. datal. Table 1 provides a summary
of the parameter settings and corresponding balanced-growth variable values for
our base-case calibration.

The parameter o was chosen to set capital’s share of total income (Kinc/Z)
equal to 0.35. The scale parameter A was normalized to unity. The depreciation
rate 0 was set at 2.4% per quarter.We set 3 so that agent’s subjective rate of
time preference is 5% per year.We choose ¢ in accordance with the average
measure of hours worked from our data. Since this measure is of actual hours
per week and the model normalizes available time to unity we must convert our
data measure to percentage terms. Our normalization assumes 16 discretionary
hours available per day (112 per week) and yields an average data value of
19.2%. This lies between the 17% specified in Jones et al. (2000) and the 24%
employed by Gomme (1993). Our results are not sensitive within this range of
values.

Given selections for 8 and e, the choice of o is constrained by three factors.
First, our preference specification implies an intertemporal elasticity of substi-
tution given by IES = 1/(1 — (1 — 0)). Evidence suggests that this should
satisfy IES € (0.25,1.0) (see,for example, Mehra and Prescott (1985)). Second,
within this range for the IES, too low a value of o results in too high of a
capital investment-to-output ratio (Kinv/Z) which should lie roughly between
0.2 and 0.24. Third, too high a value of o results in too high a real interest rate
(inclusive of an equity premium the variance of real-rate estimates is huge but
it seems clear that anything exceeding 10% would be unreasonable). Thus some
compromise is necessary. We choose o to give reasonable values for all of these
model variables in the base-case.

In calibrating the stochastic technological process we choose i to generate
a quarterly balanced-growth rate of output (g) of 0.42% corresponding to the
growth rate of U.S. GDP per worker in our sample?. As in Gomme (1993), and
Beaudry and Portier (2000) we choose o? so as to closely replicate the variance
of output growth per-capita of 0.0095 found in our data sample.

! Appendix A provides specifics of the data series employed throughout the paper.
2We divide by the labour force here rather than population to factor out increases in output
per-capita due to the significant increases in participation rates over the sample.



2.3.2 Simulating the Model with Anticipated Technological Change.

We simulate the model by the deterministic extended path method due to Fair
and Taylor (1984). This method is equally applicable to the solution of standard
unanticipated cases as it is for anticipated ones. Gagnon (1990) and, Taylor
and Uhlig (1990) discuss the use of this method in solving non-linear stochastic
growth models. They find a high degree of accuracy with this approach relative
to more exact grid methods. Appendix B outlines this method in further detail
within the context of the current model and provides other specifics regarding
our simulations.

3 Base-case Simulation Results

3.1 Basic RBC Statistics

Table 2 presents basic RBC statistics calculated from the U.S. data, and from
simulations of our base-case model under two alternative assumptions. The first
simulation employs the standard RBC framework where technological changes
are unanticipated. In the second simulation we instead assume that techno-
logical changes are fully anticipated 4 quarters® before their actual impact on
productivity.

Anticipation raises the variance of output (0z) and of output growth (o, )
in the model relative to the unanticipated case, implying that less exogenous
volatility is required in the model to capture this feature of the data. The an-
ticipation assumption reverses the predictions of the model in regards to the
relative variance of consumption-to-output (c¢/0z), and investment-to-output
(01/0z). Under anticipation o¢/oz falls by more than one-half so the model
now under predicts the data, and o7/0z more than doubles so the model now
over predicts the data. Anticipation more than triples the relative variance
of hours-to-output (o0p /o) bringing the model’s predictions much closer with
a feature of the data that has proven difficult to match in simple RBC frame-
works. Additionally, the anticipation effect breaks down the pattern of near per-
fect correlations of consumption with output (p(C, 7)), investment with output
(p(I,Z)), and hours with output (p(H, Z)) that characterizes many RBC mod-
els. This is particularly true for p(C, Z) which now significantly under estimates
the data. Lastly, while all of the predictions for the first-order autocorrelation
of output growth (p1(gz)), and of consumption growth (p1(gc)), are very close
to zero, the small negative values predicted under the anticipation assumption
indicate a worsening.

Thus, the above results are mixed in terms of which model better fits these
aspects of the data. It seems reasonable, however, to argue that the real world
is not characterized by either extreme of only anticipated technological changes

3This length for the period of anticipation corresponds to that estimated by simulated
method of moments in Beaudry and Portier (2000) using essentially the same data as ours
although under different model assumptions.



nor only unanticipated changes. This argument, together with the above re-
sults, suggests that anticipation effects are an important consideration in our
understanding of business cycle phenomena and that an appropriately general-
ized model encompassing both possibilities could generate a set of intermediate
predictions that are overall more closely in line with the evidence.

3.1.1 Model Impulse Responses.

An understanding of the effects of anticipation reported above can be obtained
by observing the transition paths of the model in response to a single shock.
Figure 1 displays the percentage deviations of hours in the model from a deter-
ministic balanced-growth path (BGP) for both the unanticipated and 4-quarter
anticipated cases in response to a positive 1/2 percent productivity shock. The
obvious contrast between these two cases is the fall in hours over the three pe-
riods prior to the impact of the technological change. Agent’s in the economy
trade-off current consumption for leisure in anticipation of higher returns from
work in the future. This sort of anticipation effect occurs for all of the economic
variables in the model and accounts for a general increase in volatility measured
under the same shock process. Figure 2 shows that, while output also drops in
anticipation of the future technological change, it falls by roughly only 2/3’s of
the percentage that hours do since the capital stock is predetermined. Thus the
relative volatility of hours to output rises in the model.

Figure 3 shows a positive anticipation effect in consumption. Again, this is
due to intertemporal substitution in anticipation of relatively high consumption
in the future. As seen in Figure 4 it is accomplished, despite lower output
over the anticipation period, by reductions in the rate of investment. Since
consumption rises during the period of anticipation while output falls, a lower
correlation between these two variables results and, the relatively smooth path
of consumption compared to output implies a lower ratio of standard deviations,
oc/oz.

As discussed by Beaudry and Portier (2000) the pattern of variable move-
ments outlined above in response to an anticipated increase in technology is
an artifact of the standard RBC model structure employed here. While it is
tempting to relate the declines in hours, output, and investment with a reces-
sion (in the absence of technological regress), the co-movement of consumption
with these variables distinctly contradicts the pattern observed in actual reces-
sions. Clearly anticipation effects cannot make a fully comprehensive model of
the business cycle out of the standard RBC structure, and it is not our objective
here to argue that. However, as we will see further in the next section, anticipa-
tion effects in these models are significant and can address some of their other
failures.



3.2 Estimated Autocorrelation and Impulse-Response Func-
tions.

3.2.1 Preliminary Discussion.

Following the methodology of Cogley and Nason (1995) we use our simulated
data to calculate estimates of the model’s output-growth autocorrelation func-
tion and impulse-response functions for output and hours. These estimates are
then compared with those obtained from actual time-series data. The objec-
tive is to gauge the model’s ability to mimic the propagation of shocks that is
apparent in the actual time-series.

Impulse response functions are estimated employing the methodology of
Blanchard and Quah (1989). Given an estimated bivariate autoregressive pro-
cess obtained from stationary time-series (here quarterly per-capita output growth
and hours), this methodology allows for the decomposition of the two variable’s
responses to shocks into transitory components, which by construction eventu-
ally die out, and permanent ones which need not.

Both in the data and in the simulations we use 187 observations correspond-
ing to our sample period of 1954:1 to 2000:3. Estimates reported for the model
simulations are the average over the number of replications (R = 1000). In all
cases we employ a lag length of 8.

Graphical visualisation of the autocorrelation functions and impulse response
functions is informative but we also report two statistics for the autocorrelation.
The first (Pag,) due to Gregory and Smith (1991) gives the probability of
observing a first-order autocorrelation coefficient of output growth in the model
that is at least as large as that found in the data.

The second (Qacy) is discussed by Cogley and Nason (1995). The null hy-
pothesis is that the simulated autocorrelation function is equal to the sam-
ple autocorrelation function and thus a low enough P-value indicates that the
model’s autocorrelation function is not a good approximation to the sample
autocorrelation function*.

3.2.2 Results.

Figure 5 plots the estimated autocorrelation functions for output growth from
the data and from the unanticipated, and 4-quarter anticipated simulations of
our base-case model. Consistent with the very poor first-order autocorrelation
coefficient estimates given in table 2 above, both models produce very poor es-
timates of the autocorrelation functions. The reported Pag,and Qs statistics
(P-values in parentheses) emphasize this failure. One interesting feature of these
plots is the appearance of a downward spike in the autocorrelation function for
the 4-quarter anticipated case at lag 3. This clearly reflects the zig-zag path
of output in the model, as displayed in Figure 2, in response to the arrival of
technological changes 4 periods after the economy’s initial response.

4Further discussion regarding calculation of this statistic is provided in the Appendix C.



Figure 6 plots the impulse-response functions for output (GDP) and Hours
estimated from the data and again, from the unanticipated, and 4-quarter antic-
ipated simulations of our base-case model. As is well known (see, for example,
Blanchard and Quah (1989)) the data for both GDP and hours show significant
transitory and permanent responses to a shock. Further, each of these responses
is characteristically “hump-shaped”. These facts have proven difficult to repli-
cate with standard RBC models (Cogley and Nason (1995)) and, as shown in
Figure 6, the results for our unanticipated case continue to reflect this. The
unanticipated case produces virtually no transitory response in either output or
hours with the plotted function estimates lying almost entirely along the hori-
zontal axis. While this case does generate permanent responses to a shock these
are relatively small and essentially monotonic rather than hump-shaped as for
the data.

The 4-quarter anticipated case, on the other hand, displays marked tran-
sitory responses in both output and hours. These estimated responses clearly
differ from those obtained with the data, nonetheless they indicate an impor-
tant trend-reverting component in modelled output and hours. Given these
sizable transitory responses in the anticipated case, it is not surprising that the
decomposition technique employed estimates smaller corresponding permanent
responses than found for the unanticipated case. In favourable contrast to the
unanticipated case, however, the permanent response functions for the antici-
pated case are distinctly hump-shaped as is consistent with the non-monotonic
permanent responses estimated from the data.

Finally, note that the anticipated case also generates an initial negative
response in the permanent hours function which is consistent with the data.
This reflects the initial negative response of hours to anticipated future changes
in productivity as seen in Figure 1 above. In general, the transitory responses
seen when changes in technology are assumed to be anticipated are a reflection
of the anticipation effects previously stylized in Figures 1 to 4, which are by
their nature short-lived.

4 Alternative Technology Processes in the Base-
Case Model.

4.1 Discussion and Model Specification.

It is well known that in large part the stochastic driving processes in RBC models
determine the predictions of those models, particularly in regards to propagation
mechanisms (see, for example, Cogley and Nason 1993, 1995). We therefore wish
to ask how sensitive are our results, regarding the effects of anticipation in RBC
models, to the specification of the model’s exogenous technological process. In
this section then we consider some alternative specifications for the evolution of
the model’s production technology.

The production function specification in the model is modified to the follow-

ing;
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As before S; is a random productivity shock but is now specified as®;
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The N-step forecast of this stochastic process conditional on z;_; is given
by,
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These assumptions imply that F[S;] = 1 and the model has a well defined
BGP. Further, for small 4 and in the limit as p — 1 this model is equivalent to
that presented in Section 2 above where we assumed a random walk with drift.
Essentially then this model specification enables us to study the implications of
the degree of persistence in productivity shocks for our results. Also, for p < 1,
productivity shocks are by definition temporary (although potentially very long-
lived) relative to the exogenous growth path implied by the evolution of the scale
parameter A;. There are important implications of this for estimated transitory
responses to shocks in the model where, based upon our earlier results, we
may expect to see significant effects of anticipation and thus this specification
provides emphasis for this point of comparison.

4.2 Simulation Results with Alternative Technology Pro-
cesses.

4.2.1 Basic RBC Statistics.

Table 3 presents the basic RBC statistics calculated from simulations of the
standard unanticipated cases and the 4-quarter anticipated cases of the alterna-
tive model under 3 choices of the persistence parameter; p = 0.99, p = 0.95, and
p = 0.0. For each value of p, the table also reports a corresponding value of the
parameter og which, again, is set so as to approximate the variance of output-
growth found in the data for the unanticipated cases. Otherwise calibration is
identical here to that given in Table 1, since the balanced-growth properties of
the model are unaffected by the specification of the stochastic driving process.

As should be expected the model results for the p = 0.99 case are almost
the same as those for the random walk model presented in Section 2 above. As

5This specification for the shock process is adopted from Jones, Manuelli, and Siu (2000).
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the level of persistence in the shock process diminishes, however, it is appar-
ent that the differences between the unanticipated results and the anticipated
results narrows. This effect is consistent across every statistic calculated and
continues until, for the p = 0.0 case, there is virtually no difference between the
unanticipated and anticipated cases.

The intuition for this result is quite simple. Agent’s response in anticipation
of future productivity changes is larger the longer lasting the effects of those
changes are expected to be. For short-lived changes there is little opportunity
to benefit from intertemporal substitution of, for example, labour supply and
thus little response in anticipation of the change. This can be seen clearly by
observing model impulse response functions. Figure 7 displays, for the p = 0.0
model, the percentage deviations of hours from a deterministic BGP in both
the unanticipated and 4-quarter anticipated cases given a positive 1/2 percent
productivity shock. Compared to Figure 1 from the earlier random walk model,
it is clear how both the anticipation effect and the length of response subsequent
to the shock vary with the shock persistence. In the p = 0.0 model, the dominant
distinguishing feature between the anticipated and unanticipated cases is the
timing of the arrival of the productivity change, and it is apparent how these
two cases would be virtually indistinguishable statistically. Similar results are
also apparent in regards to output, consumption, and investment responses.

4.2.2 Estimated Impulse Response Functions.

Figures 8 and 9 plot the impulse-response functions for output (GDP) and hours
estimated from the data and from the unanticipated, and 4-quarter anticipated
simulations of the p = 0.95 and p = 0.0 versions of our alternative model. Two
main features of these plots relative to Figure 6 presented earlier for the random
walk model are apparent. First, there are no long-run permanent effects of
shocks. Second, there are now significant transitory responses to shocks in both
the unanticipated and anticipated cases. These results reflect the fact that for
p < 1, shocks have no permanent effects relative to the balanced-growth path in
the model. With anticipation the responses to a transitory shock are larger in the
short-term, reflecting significant anticipation effects of the kind seen previously
in Figures 1 to 4. However, these estimated responses are far less drawn out then
when the shock is unanticipated. On the other-hand, the estimated responses to
a permanent shock are also less drawn out and smaller than in the unanticipated
case. Anticipation in these model specifications continues to generate a negative
initial response of hours to a permanent shock, however, hump-shaped responses
are absent or at least less pronounced.

The basic intuition above regarding the implications of persistence for the
effects of anticipation in the model extends to the estimated impulse response
functions. Figure 9 shows clearly that the estimated response functions in the
unanticipated and anticipated cases are essentially the same when the shocks
show no persistence (p = 0.0).

Finally, we do not present estimated autocorrelation functions for these mod-
els as there is virtually no change in results. The models all continue to fail

11



miserably in this regard.

5 An Endogenous Growth Model (EGM).

The models examined so far specify long-run growth as an exogenous process.
Jones, Manuelli, and Siu (2000) provide a detailed comparison of the business
cycle predictions of similar exogenous growth RBC models with a two-sector
endogenous growth model (EGM) of human and physical-capital accumulation.
They highlight the EGM’s persistence properties and, in particular, its ability
to generate positive first-order correlation in growth rates of output.

We have seen for exogenous growth models that allowing for anticipation of
technology change tends to weaken their (admittedly limited) ability to generate
positive persistence in growth rates. Also, our work suggests that the effects of
anticipation, particularly with respect to estimated impulse response functions,
are sensitive to the assumed growth process. Finally, it is intuitive that allowing
for the possibility of intersectoral substitution, as well as for intertemporal sub-
stitution, in response to an anticipated technological change may be important
for our understanding of business cycles. These factors, and the work of Jones
et al. (2000) motivate the analysis in this section of the paper of the effects of
anticipation in a two-sector endogenous growth framework.

5.1 Model Specification.

As in Lucas (1988) there are two sectors in the economy: the human-capital
sector and the final-goods sector. Human capital is embodied within individuals
to provide a supply of “effective” labour which is elastically supplied to the
market. Each sector employs both this effective labour and physical capital
under constant returns to scale. The level of human capital at time t, Hy, is
given by the net accumulation of output from the human-capital sector and
physical capital, K, is accumulated by foregoing current consumption from the
final-goods sector®.

We present here a basic outline of the central remaining features of the
model ostensibly for the purposes of establishing notation and a framework
for further discussion. Proofs of the existence and uniqueness of competitive
equilibrium in this framework, detailed analyses of balanced-growth solutions,
and analytical characterizations of the model’s transitional dynamic properties
are well established elsewhere in the literature. An excellent reference in this
regard for readers further interested is Barro and Sala-i-Martin (1996, chpt. 4).

We assume the same utility and information structure for the representative
household as given in Section 2.1 above. Time available for leisure (L;), however,
is now subject to the following constraint;

6In addition to Lucas (1988), this class of endogenous growth models has been studied
extensively in the growth literature. See for example, Rebello (1991), and King and Rebello
(1990). Gomme (1993) examined a monetary version of this model in a RBC context.
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Li=1—1g¢ — luy, (12)

where total hours available have been normalized to unity. [x; represents
hours supplied for employment in the final-goods sector, and [g; is hours em-
ployed in human-capital formation.

The household’s effective labour supply H:(lx: + lm:) earns a competitive
wage rate, w;. Households also save directly in physical capital which is rented
out each period for a competitive rate of return, ;. The resulting household
income is allocated between the purchase of consumption goods, physical-capital
investments, and human-capital accumulation” implying the following time-t
budget constraint;

Cy < wiHe(lce+ 1) +re K — (Kep1 —(1—0x) Kt) —qe(Hep1 — (1—0p) He). (13)

Here 65 € (0,1), and oy € (0,1) give the rates of depreciation of physical-
capital and human-capital respectively, and ¢; gives the relative price of human
capital in terms of final-goods.

Final-goods production, Y;, is undertaken by firms which employ effective
labour and rent proportion 6; of the capital stock to maximize period-by-period
profits. Human capital production, X;, employs a symmetric production tech-
nology and pays the same wages and rental rates as in the final-goods sector.
The corresponding production technologies are;

Y; = A Sre(0:K)* (It Hy ) 2. (14)

Xy = AuSue((1 — 0)K,) (g Hy) 7, (15)

Here, Ax >0, Ay >0, a € (0,1), and v € (0,1) are standard production
function coefficients. Sk; > 0 and Sy > 0 are exogenous productivity shocks.
For simplicity we will assume that the two sectors are subject to identical shocks
in each period so that Sk; = Sy = S; Vi. These shocks are assumed to follow
the process given by Equations 9 to 11 in Section 4.1 above®.

The final-goods market-clearing condition is;

Yy = G + Kiy1 — (1 — 0x) K. (16)

Market clearing in human-capital implies;

7The assumption that human-capital is explicitly purchased in a market rather than, say
being produced by households at home, is made for simplicity of exposition only. Under
constant returns to scale and perfect competition as assumed here, the results are invariant
to this choice.

8Note that, as opposed to the model of Section 4.1, the rate of growth here is a function of
the scale parameters in the constant returns to scale production technologies (i.e. Ax S: and
ApSt). In this version of the model therefore, similarly to the random walk model of Section
2, shocks will by definition have permanent effects.
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Xy = Hyp1 — (1 — 0g)Hy. (17)

Finally, it can be readily shown that the optimal intersectoral allocation of
factors implies the following expression for the relative price of human-capital
in terms of final-goods output;

_ 8)@/81[{1& _ (1—0&)AKSKt(9th/HtZKt)a (]_8)
0X¢/Olgy (1 —7)ASue((1 — 0,) K¢/ Hlge)v

Employing this condition we calculate aggregate economic output from the

model as;

qt

Zy =Y +q Xy, (19)

5.2 Calibration and Measurement in the EGM.

Calibration of this model for the purposes of numerical simulation poses a few
additional difficulties over the standard RBC framework due to the explicit mod-
eling of the difficult to measure human-capital sector. As discussed in Jones et
al. (2000) some elements of human-capital accumulation are likely attributed
to consumption in the data (for example, tuition payments and components of
health care). Others are measured in the data as inputs to the production pro-
cess (research and development, and worker training), while still others are not
measured at all (parental input to child rearing, student effort in schooling, and
learning-by-doing). Additionally, there is basically no solid evidence regarding
the relative factor intensities in production of human capital (determining ) or
on the rate of depreciation of human capital (dy).

In order to isolate the effects of alternative parameter specifications and/or
approaches to measurement on our results we adopt a three-pronged strategy.
First we specify a base-case EGM model following a common practice in this
framework of assuming perfect symmetry between production sectors (i.e. iden-
tical technologies (Ax = Ay and « = 7), and depreciation rates (dx = 0g)).
This amounts to assuming a single-sector model of homogeneous output (¢ = 1)
and consumption goods which therefore, relative to the models of Sections 2 and
4 above, differs essentially only in regards to the endogenous versus exogenous
growth assumption.

Second, in the perfectly symmetric sectors EGM the critical ratio of human-
to-physical capital is a constant and transitional dynamic responses of the cap-
ital stocks to changes in economic conditions transpire within a single time
period. Assuming symmetric effects of technology changes between sectors
(Skt = SHt), this implies no intersectoral shifting of resources in response to
any given productivity shock, and thus rules out this possible avenue for the ef-
fects of anticipation of shocks. We therefore modify the base-case EGM to allow
for alternative asymmetries between sectors and examine the implications.

Third we extend the base-case EGM and the asymmetric-sectors models in
an attempt to address some of the measurement issues outlined above.
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In each case calibration employs the same stylized facts and basic method-
ology used for the previous models. The specifics of each of these alternative
approaches are discussed below in conjunction with the presentation of corre-
sponding results.

5.3 The Base-Case EGM.

Table 4 provides a summary of the parameter settings and corresponding balanced-
growth variables for our base-case EGM calibration, and Table 5 presents the
corresponding RBC statistics estimated from our simulated data. Results for
two choices of persistence parameter p are given. Following Gomme (1993) we
use p = 0.95. Alternatively, Jones et al. (2000) estimate p = 0.95 for an annual
calibration of their model, implying p = 0.9877 for our quarterly version.

Qualitatively the results here are perfectly analogous to those found for the
base-case one-sector model studied above. Anticipation raises the variance of
output (0z) and of output growth (0,,). oc/oz falls while o;/0z and op/oz
increase under anticipation. The anticipation effect continues to break down
the pattern of near perfect correlations of consumption with output (p(C, Z)),
investment with output (p(I,Z)), and hours with output (p(H,Z)). Lastly,
anticipation worsens the model’s already weak predictions regarding the first-
order autocorrelations of output growth (p1(gz)), and of consumption growth
(p1(g9c)). Model impulse response functions for this base-case EGM are also
qualitatively identical to those in Figures 1 to 4 from the one-sector models
showing the same intuition as was discussed in that case.

Quantitatively, however, these effects are smaller than in the one-sector ran-
dom walk model and can be seen to diminish with the degree of persistence in
the shock process. The base-case EGM clearly shows the same effects of per-
sistence as were seen for the alternative specifications of the one-sector model
studied in Section 4 above.

This fact is reiterated in the estimated impulse-response functions for the
model shown in Figure 10 for the p = 0.9877 case, and Figure 11 for the p =
0.95 case. As for the one-sector model the base-case EGM shows no transitory
responses of either hours or output, but significant transitory responses are
estimated in the anticipated case. Correspondingly, permanent responses are
estimated to be smaller under anticipation. These estimated impulse response
functions are very similar in the p = 0.9877 case to those for the base-case one-
sector model where shocks followed a random walk and, in particular, they show
a characteristic hump-shaped response. This later property is lost, however, as
the shock persistence declines. A comparison with the p = 0.95 case shows
reduced responses on the transitory side under anticipation, and permanent
responses under anticipation which are getting closer to the of responses seen
in the unanticipated case.

These results indicate that endogenizing the growth process in itself has little
impact on the nature of the effects of anticipation of productivity shocks for the
business cycle predictions of this class of models.
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5.4 Asymmetric Sectors.

It may seem unlikely that the processes employed in producing human and phys-
ical capital would be perfectly symmetric in terms of relative factor intensities.
As stressed by Barro and Sala-i-Martin (1995, chpt. 5), intuition and casual
observation suggest the empirically relevant case to be where human-capital
production is relatively intensive in the use of human capital. It also seems
unlikely that human and physical capital are subject to equal rates of depre-
ciation. Intuition suggests that knowledge capital embodied within individuals
is relatively long lived. To address this possibility we specify two alternative
models to the base-case EGM.

In the first of these alternatives (EGM-B) we reduce the intensity of physical-
capital utilization in the human-capital sector (smaller ) by a small margin
such that the estimated income share of capital in GDP (and by construction
also the share of labour) continues to satisfy the calibration requirements. In
the second alternative (EGM-C) we reduce the rate of depreciation on human
capital relative to the rate on physical capital. In both of these cases we fix
p = 0.95. The corresponding calibrations for these models are given in Tables 8
and 9 found in Appendix D.

Table 6 presents the corresponding RBC statistics estimated from our sim-
ulated data. Generally, anticipation of technology change continues to have
significant effects. Except where investment is concerned we once again find the
same basic pattern of results as for our previous models. In the EGM-B case
o1/oz is still seen to rise with anticipation, however, in the EGM-C case there is
a significant fall in this measure relative to the unanticipated case. In both the
EGM-B and EGM-C cases we also see a dramatic fall, rather than only a minor
one, in the correlation of investment to output (p(1, Z)) in the anticipated case
relative to the unanticipated case.

These results can be understood by observing the model impulse response
functions. For hours, consumption, and output, these transition paths remain
qualitatively identical to those shown for the base-case one-sector model in Fig-
ures 1 to 3 above. In these asymmetric sector models, however, since the ratio
of human-to-physical capital is no longer constant, but varies in transition, the
investment paths for human versus physical-capital, rather than being identical,
show markedly different behaviours from each other. Figure 12, shows the paths
of human and physical-capital investment in the EGM-B model in response to
a 1/2 percent positive productivity shock. In the anticipated case physical-
capital investment rises in the periods prior to the technological change, and
falls significantly on the arrival date (period 4) before rising again subsequent
to the technological change taking effect. Human-capital investment follows an
opposite pattern. The movements of physical-capital investment at the arrival
date are in the opposite direction to those for output on this date, and be-
ing relatively large, this accounts for the models low prediction regarding the
correlation of output and physical-capital investment.

Figure 13 shows that investment deviations in the EGM-C model follow
similar paths, although with generally higher volatility than in the EGM-B case
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which accounts for the increased relative volatility of investment to output in
this model. Also, the timing of investment swings differs. This is a reflection
of the asymmetries in depreciation rates between sectors which characterizes
this model. In the anticipated case, while physical-capital investment is still
high in the period before the arrival date, and human-capital investment is low,
there is no overshooting of these rates from their long-run levels on the arrival
date itself. The transitional responses of investments are essentially completed
before the arrival date. This is contrasted with the unanticipated case, where
the need to adjust the ratio of capital stocks in response to the arrival of the
technological shock forces adjustment on the arrival date itself and accounts for
the reduction in the relative volatility of physical-capital investment to output
under anticipation.

Finally, estimated impulse-response and autocorrelation functions for these
asymmetric cases show almost no variation in results relative to the symmetric
sector model and thus are not presented here. There does arise a very small
estimated transitory response for both output and hours in the unanticipated
cases which verifies the intuition that allowing for intersectoral reallocations
of resources in response to shocks may influence the models output dynamics,
however, there are no implications for the relative effects of anticipation.

5.5 Alternative Measurements of the Human Capital Sec-
tor.

5.5.1 Discussion.

Next we extend our base-case EGM model and the two asymmetric sector cases
“EGM-B” and “EGM-C” in an attempt to address some of the measurement
issues outlined above. The only evidence that we are aware of in regards to
empirically establishing the extent of mismeasurement (or non-measurement,)
of human-capital investment in the national accounts is Kendrick (1976, Tables
A-1 and B-2). A rough guideline from this work suggests that only one-half of
gross investment in human capital is included in measured output. Using this
estimate as the fraction (\) of human-capital investment not measured in the
output data, and given that the share of human-capital investment in aggregate
output along a balanced growth path in our base-case model is ¢; X;/Z; = 0.41,
then the model will be overestimating measured output by roughly 20 percent.

To account for this we adjust our measures of output and incomes earned
from the human-capital sector by fraction A = 0.5. These adjustments have no
impact on the actual structure of the model (aside from a need for re-calibration)
but only affect how our simulated data series are constructed from the model
solutions.

Since some fraction of labour inputs to the human-capital production process
are not measured (for example, student hours in school, parental inputs, some
portion of time learning-by-doing) we write,

Hours; =l + My,
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where Hours; refers to measured labour hours rather than actual hours
worked. Accordingly, a fraction of effective income earned in the production
of human capital is not measured. Therefore we write measured labour income
as;

Linc, = tht(th + )\lHt)-

Similarly we assume that some returns from physical capital in the produc-
tion of human capital (for example, university and school buildings, publicly run
hospitals, museums, etc.) are not measured in the national income accounts.
Thus we write measured capital income as:

Ki?’LCt = rth(Ht + )\(1 — Ht))

Finally, we rewrite Equation 19, for measured aggregate output as;

Zy =Yy + pqe Xy, (20)

These adjustments do not address the inclusion of human-capital invest-
ments in aggregate consumption data. In our view the least ad-hoc method of
dealing with this expenditure side measurement issue would be to subtract from
the actual consumption data those components which are readily attributed to
human-capital accumulation. To this end we deducted personal consumption
expenditures on education and research services, and personal consumption ex-
penditures on medical services from our base consumption series for the U.S.
We found no appreciable difference in the statistical properties of this series
over the base consumption series (besides the reduction in average percentage
of GDP) and thus do not report particular results in this regard.

The modification of our models to account for these measurement changes re-
quires alternative calibrations in order to continue to provide variable solutions
consistent with observation. By assuming that more hours are actually worked
in human-capital accumulation than are measured, total hours in the model
must rise for measured hours to match our calibration requirements. The per-
centage of human-capital output in measured aggregate output falls by roughly
one half from 40% of measured aggregate output to 20%, which seems like a
more reasonable number. Since physical-capital investment is fully measured in
the model, but the measure of aggregate output is now smaller, the Kinv/Z
ratio falls unless depreciation rates are lowered.

We refer to these variations of our model as the “unmeasured” cases (“Base-
Case EGMu”, “EGMu-B”, “EGMu-C”). The parameters and balanced-growth
variable values for each of these calibrations are given in Tables 10, 11, and 12
found in Appendix D.

5.5.2 Basic RBC Statistics

Table 7, shows the basic RBC statistics generated from our simulations of the
“Base-Case EGMu”, “EGMu-B”, and “EGMu-C” models in both the unantici-
pated and 4-quarter anticipated cases. Again, a number of variations in the
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results are apparent in these cases. Generally, there are no implications for the
symmetric sector model. This should be expected since, as discussed previously,
this symmetry amounts to assuming a single-sector model of homogeneous out-
put and consumption goods with ¢; = 1, and therefore the mismeasurement we
consider boils down to a uniform rescaling of all of the relevant variables.

In regards to the asymmetric sector cases there are three basic results. First,
volatilities of output, and output growth tend to fall with anticipation here
rather than rise as we saw in the earlier results. Second, incomplete measure-
ment of the human-capital sector further exacerbates the breakdown in the
near perfect correlations between output and consumption, output and invest-
ment, and output and hours which results in the anticipated cases. Finally, the
“EGMu-B” and “EGMu-C” cases both show substantial positive autocorrelation
of output growth for the case of anticipated technological change. As might be
expected then, and as is shown in the next section, these cases also improve sig-
nificantly on the models predictions for the autocorrelation function of output
growth.

5.6 Estimated Autocorrelation and Impulse Response Func-
tions.

As we have seen, mismeasurement of the human-capital sector has virtually
no implications in the symmetric sector model. We therefore discuss the esti-
mated autocorrelation and impulse-response functions from the “EGMu-B” and
“EGMu-C” models only (Figures 15, 14, 17, and 16). The message here remains
essentially the same as that gained in regards to previous models. Anticipation
effects significantly improve predictions with respect to the dynamic properties
of output and hours. A large transitory component in the estimated response
functions arises under anticipation where none is present when technological
change arrives without warning. Additionally, the response functions often dis-
play the typical hump-shape found in the data, and improvements in the initial
responses of hours worked (i.e. negative values) are also seen. Finally, while the
Qacy statistics continue to reject the complete autocorrelation functions esti-
mated for these cases of the model, the P4, statistics confirm strong first-order
autocorrelation of output growth when technological change is anticipated. A
tentative conclusion from this is that mismeasurement of factors relating to
human-capital accumulation may be important for understanding some of the
autocorrelation properties seen in the data.

6 Conclusions

This paper explores some of the implications of fully anticipated technological
change for the predictions of real business cycle models. Our simulation re-
sults show that anticipation of technological change has significant effects on
the predictions for various moments of economic data in a wide number of
model frameworks. In addition, we estimate impulse-response functions from
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our simulated data for both output-growth and hours which are roughly consis-
tent with those obtained from US data, and where such responses are basically
non-existent in the unanticipated case. In some cases strong autocorrelation
of output growth is also predicted when technological changes are anticipated.
This suggests that anticipation effects can go some way to providing realistic
internal propagation mechanisms within theoretical economic models and to im-
proving our understanding of various economic phenomena including business
cycles. This makes sense given the degree to which human behaviour relates to
the ability to anticipate events and consequences.

Of course the models fail on some dimensions. Estimated autocorrelation
functions are consistently rejected by our calculated Q-statistics relative to the
sample functions for example. But the central point, that anticipation is im-
portant for the predictions of these models remains valid and we see no reason
why this should not extend to other alternative frameworks. Intuitively, actual
economies are likely characterized by combinations of anticipated and unantic-
ipated change as well as processes of updating expectations of change with the
revelation of new information. We see this as a promising avenue for future
research in the RBC literature and elsewhere.

Appendix A. Data.

U.S. quarterly data series employed covered the period 1954:1 to 2000:3.
Series denoted in italics where obtained from the National Income and Product
Accounts data matrix (NIPAQ) downloaded from the EconData web-site at
the University of Maryland. Series denoted in noun-style type where obtained
from the Federal Reserve Economic Database (FRED) and where aggregated
from monthly to quarterly. Where applicable all series were deflated by the
implicit price deflator (d0104), and were divided by the civilian non-institutional
population 16 years of age and older (CNP160V) to obtain per-capita values.

Output figures are gross domestic product (n0101).

Consumption is measured as the sum of, personal consumption expenditure
(c0201), Federal government defense expenditures (g0704), Federal government
non-defense expenditures (g0715), and State and Local government expendi-
tures (g0728).

Labour income was measured as the sum of, compensation of employees
(n1402) and proprietors income with inventory valuation and capital consump-
tion adjustments (n1409).

Capital income was measured as gross national income (n0928) less labour
income.

Capital investment was measured by the sum of, private fixed investment
(v0401), Federal government defense investment (g0711), Federal government
non-defense investment (g0724), and State and Local government investment
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(90735).

Our measure of “hours worked” accords closely with the Citibase “Lhours”
series which was not used as it ends at the last month of 1993. Thus we con-
structed;

hours avg.hrs. x employment rate X participation rate

= awg.hrs. x employment + population

where avg.hrs. was given by, average weekly hours of production workers (BLS
national employment, hours, and earnings series EEU005 annual figures extrap-
olated to quarterly) for the period 1954:0 to 1963:4, and by average weekly
hours of non-agricultural workers (awhnonag) for the period 1964:1 to 2000:3
(monthly data averaged to quarterly). The later series was employed as the
former is seasonally unadjusted after 1964. In any case, all of our results appear
robust to this choice. Employment was measured by civilian employment 16
years of age and older (CE160V), and population was again (CNP160V).

Finally, the labour force was measured by the civilian labour force 16 years
of age and older (CLF160V).

Appendix B. Numerical Simulation.

At the beginning of any time period t, the economy’s initial conditions are
predetermined by the current value of the state variable K;. Also at the be-
ginning of this period we assume that agent’s realize the time ¢ + 7 outcome of
the stochastic process {S;}, for some 7 > 0. Equivalently, at each point in time
we have an assumption of perfect foresight for the future period {t,...,t + 7},
and the future sequence of technology variables is therefore known for this sub-
period. Technology variables for times {t+ 7+ 1, ..., T} are forecast conditional
on this information, and according to agents’ knowledge of the evolution of the
stochastic process {S:} as given by equations 5 to 7. T gives the possibly in-
finite length of agents’ forecast horizon. A rational expectations forecast for
the entire future sequence of technology variables is thus made and a solution
for the economy’s optimal transitional response in light of this sequence can
be calculated by employing standard methods®. This expected transition path
yields observations for the time t choice variables of the model which determine
the time t+1 state variable values. These state variables in turn represent the
time t+1 initial conditions for the economy when a new outcome of the stochas-
tic process {S;} is realized and thus the basis for a solution of the time t+1
expected transition path is established.

Iteration on the above process Q times yields a Q-period artificial time series
for our model economy from which estimates of the moments of the model’s

9We employ a two-point boundary solution method based on exact specifications of the
model’s dynamic equations system. As discussed by Fair and Taylor (1984), this imposes the
model’s terminal conditions improving the efficiency of the solution method.
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variables can be obtained. Following a standard RBC approach (Prescott, 1986),
we replicate this entire process R times to generate a large number of such
artificial time series and a large sample of estimated moments the averages of
which are then compared to real economic data.

In practice we set T = 200 for the solution of each transition path. This is
adequate to ensure that the model converges to its long run balanced growth
path with a high degree of numerical accuracy'®. We set Q=200 but truncate
the first observations to eliminate any dependence of the simulated series on
the 7 starting values. This yields time-series of equal length to our actual data
sample (187 observations)!!. Finally we perform R=1000 replications for each
model presented.

Appendix C. ACF Statistic.

Qacy is computed as,

Qact = (¢ — C)/Vfl(é —c)

where ¢ and ¢ are 8 x 1 vectors containing the autocorrelations for the sam-
ple and the simulations respectively. The middle term is a covariance matrix
calculated as,

1 R
V={z} Z(Ci —c)(ci—¢)

where c is computed as,

1B
C:{E}ZQ‘

and ¢; is the autocorrelation function obtained from replication i. Qqcys is
distributed as a x*(8).

This type of statistic can also be computed for the impulse-response functions
if the number of shocks in the model is as large as the order of the vector
autoregression (here, two). In the present paper, however, there is only one
shock (applied symmetrically to both sectors in the endogenous growth model)
and hence the @) statistics for the impulse-response functions are not available.

10Lower values would be adequate with lower persistence in the stochastic process, and
correspondingly larger values would be appropriate in the case of greater persistence.

1See Gregory and Smith (1991) for the statistical rational behind requiring equal sample
sizes.
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Table 1: Parameters and Balanced-Growth Variables: Base-Case Calibration

Model Parameters.

A =1.0, a = 0.35, 6 =0.024
B8 =0.987,¢=0.22,0 =4.0, [ES = 0.6024
o¢ = 0.0083, = 0.0027
Balanced-Growth Variable Values
g = 0.0042, 1 =0.191
Kinc/Z = 0.35, Kinv/Z = 0.222, r — § = 0.02
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Table 2: Volatilities and Cross-Correlations: U.S. Data, Unanticipated Base-
Case model, and 4-period Anticipated Base-Case Model. Logged and Hodrick-
Prescott Filtered Data.

| | U.S. Data | Unanticipated | 4-qtr Anticipated |

gy 0.0095 0.0095 0.014
o 1.62 1.21 1.61
oc/oz 0.63 0.76 0.37
o107 2.34 1.85 3.91
o110z 0.78 0.198 0.68
o(C. Z) 0.85 0.998 0.58
o(I,2) 0.91 0.996 0.96
o(H,Z) 0.87 0.982 0.93
p1(92) 0.33 0.011 -0.007
p1(90) 0.16 0.03 -0.003

Notation: o, gives the standard deviation of variable x. p(x,y) gives the correlation of
variables z and y. p1(z) gives the first-order autocorrelation of variable . Z denotes aggregate
output, and gz its growth rate. C denotes consumption, and g¢ its growth rate. I denotes
capital investment, and H total hours.
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Figure 1: Transitional Dynamic Response of Hours.
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Figure 2: Transitional Dynamic Response of Output
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Figure 3: Transitional Dynamic Response of Consumption
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Figure 4: Transitional Dynamic Response of Investment
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Figure 5: Estimated Autocorrelation Functions, Data and Base-Case Model.

PR =0.0, QY7 = 35.1 (P = 0.00003): P4 = 0.0, Qi = 52.4 (P = 0.0).

plots/ 1000_acf_sim_data_laRWunlaRWan.eps not found!
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Figure 6: Estimated Impulse-Response Functions, Data and Base-Case Model.
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Table 3: Volatilities and Cross-Correlations: U.S. Data, and Section 4 alterna-
tive models, Unanticipated, and 4-period Anticipated Simulations. Logged and

Hodrick-Prescott Filtered Data.

Data | p=0.99 U? =.0075 | p=0.95 ag =.007 | p=0.0 (T? =.005
Un An Un An Un An
Ogy 0.0095 | 0.0093 0.013 0.0098 0.012 0.0115 0.0116
oz 1.62 1.19 1.47 1.25 1.40 0.783 0.785
oc/oz 0.63 0.64 0.35 0.48 0.31 0.24 0.23
orfoz 2.34 2.29 3.77 2.88 3.62 3.66 3.69
og/oz 0.78 0.3 0.65 0.44 0.61 0.619 0.623
p(C, 7Z) 0.85 0.995 0.696 0.982 0.856 0.98 0.987
o(1,7) 0.91 0.995 0.972 0.99 0.987 0.999 0.999
p(H,Z) 0.87 0.985 0.951 0.986 0.977 0.998 0.999
01(9z2) 0.33 0.0086 -0.0087 -0.012 -0.023 -0.491 -0.492
(gc) 0.16 0.041 0.024 0.04 0.032 -0.479 -0.485

Notation: o, gives the standard deviation of variable x.

p(z,y) gives the correlation of

variables « and y. p1(z) gives the first-order autocorrelation of variable . Z denotes aggregate

output, and gz its growth rate. C denotes consumption, and g¢ its growth rate. I denotes

capital investment, and H total hours.
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Figure 7: Transitional Dynamic Response of Hours, p = 0.0 Alternative Model.

plots/al00_hours.eps not found!
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Figure 8: Estimated Impulse-Response Functions, Data and p = 0.95 Model.

plots/1000_gdp_hours_sim_data_la95unla95an.eps not found!

Quarters

+— U.S. data, 1 - Unanticipated, o—4-qtr Anticipated
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Figure 9: Estimated Impulse-Response Functions, Data and p = 0.0 Model.

plots/1000_gdp_hours_sim_data_la0OuniaOOan.eps not found!

Quarters

+— U.S. data, ™ - Unanticipated, o—4-qtr Anticipated

36




Table 4: Parameters and Balanced-Growth Variables: Base-Case EGM Calibra-
tion

Model Parameters.
AK = AH = 0.2476, a =77 = 0.35, 6}( = (SH =0.024
B8 =0.987,¢ =0.1175, 0 = 6.8, IES = 0.59
o¢ = 0.008, p = 0.95 or 0.9877
Balanced-Growth Variable Values
g=0.0042, I = 0.113,lx + Iy = 0.192
Kinc/Z = 0.35, Kinv/Z = 0.223, r — 0 = 0.02

Table 5: Volatilities and Cross-Correlations: U.S. Data, Unanticipated Base-
Case EGM, and 4-period Anticipated Base-Case EGM. Logged and Hodrick-
Prescott Filtered Data.

US. Data | p=0.95 case | p=0.9877 case
Un An Un An

Tgs 0.0095 0.0107  0.012 0.0092 0.012
oz 1.62 1.36 1.44 1.17 1.39
oc/oz 0.63 0.52 0.42 0.73 0.46
orfoz 2.34 1.28 1.34 1.15 1.36
on/oz 0.78 0.398 0.49 0.22 0.53
p(C,Z) 0.85 0.993 0.97 0.999 0.84
p(1,2) 0.91 0.999 0.999 0.999 0.994
p(H,Z) 0.87 0.992 0.986 0.992 0.92
r(9z) 0.33 -0.012  -0.015 0.012 0.003
p1(gc) 0.16 0.018  0.0084 0.13 0.004

Notation: o, gives the standard deviation of variable x. p(z,y) gives the correlation of vari-
ables z and y. p1(x) gives the first-order autocorrelation of variable . Z denotes aggregate
output (equation 19 from the model), and gz its growth rate. C denotes final-goods con-
sumption, and g¢ its growth rate. I denotes physical-capital investment, and H total hours
(l K +1 H)-
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Figure 10: Impulse-Response Functions, Data and Base-Case EGM p = 0.9877.

plots/gdp_hours_sim_data_AmuAma4.eps not found!

Quarters

+— U.S. data, 1 - Unanticipated, o—4-qtr Anticipated
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Figure 11: Impulse-Response Functions, Data and Base-Case EGM p = 0.95.

plots/1000_gdp_hours_sim_data_AmuAma4.eps not found!

Quarters

+— U.S. data, ™ - Unanticipated, o—4-qtr Anticipated
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Table 6: Volatilities and Cross-Correlations: U.S. Data, “EGM-B” and “EGM-C”
Unanticipated, and 4-period Anticipated Models. Logged and Hodrick-Prescott
Filtered Data.

| | Data | EGM-B  Case | EGM-C  Case |

| | | Un An | Un An |
Ogy 0.0095 | 0.0106 0.012 | 0.0109 0.012
oy 1.62 1.35 1.43 1.38 1.47

oc/oz | 063 | 052 042 | 049 040
orfoz | 2.34 120 136 | 3.16  2.52
onjoz | 078 | 040 049 | 0.41 05
po(C.Z) | 08 | 099 097 | 099 0097
p(I,Z) | 001 099 019 | 067  0.047
p(H,Z) | 087 | 099 098 | 099  0.987
pi(gz) | 0.33 | -0.015 -0.02 | -0.007 -0.016
pi(gc) | 0.16 | 0.014 -0.01 | 0.017 0.0026

Notation: o, gives the standard deviation of variable x. p(z,y) gives the correlation of vari-
ables z and y. p1(x) gives the first-order autocorrelation of variable . Z denotes aggregate
output (equation 19 from the model), and gz its growth rate. C denotes final-goods con-
sumption, and g¢ its growth rate. I denotes physical-capital investment, and H total hours
(Ix + 1)
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Figure 12: Transitional Dynamic Responses of Capital Investments: “EGM-B”.

plots/Bkm-Inv.eps not found!
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Figure 13: Transitional Dynamic Responses of Capital Investments: “EGM-C”.

plots/Gm_inv.eps not found!
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Table 7: Volatilities and Cross-Correlations: U.S. Data, “Base-Case EGMu”,
“EGMu-B”, “EGMu-C” Unanticipated , and 4-period Anticipated Models.
Logged and Hodrick-Prescott Filtered Data.

Data

Base-Case EGMu | “EGMu-B” case | “EGMu-C” case
Un An Un An Un An
Ogy 0.0095 0.0097 0.104 0.0093 0.005 0.0015 0.0073
oz 1.62 1.247 1.28 1.22 1.04 1.453 1.168
ocfoz 0.63 0.496 0.41 0.51 0.51 0.42 0.44
O']/O'Z 2.34 1.68 1.8 1.56 3.43 3.54 3.64
oujoz 0.78 0.365 0.434 0.35 0.41 0.51 0.48
p(C, Z) 0.85 0.99 0.97 0.99 0.92 0.942 0.91
p(1,72) 0.91 0.998 0.997 0.98 0.20 0.86 0.48
p(H, Z) 0.87 0.994 0.987 0.99 0.80 0.945 0.87
(gz2) 0.33 -0.017 -0.02 0.003 0.73 -0.29 0.47
(gc) 0.16 -0.006 -0.004 0.004 -0.02 0.006 -0.006

Notation: o, gives the standard deviation of variable x. p(z,y) gives the correlation of vari-

ables = and y. p1(x) gives the first-order autocorrelation of variable . Z denotes aggregate

output (equation 20 from the model), and gz its growth rate. C denotes final-goods con-

sumption, and g¢ its growth rate. I denotes physical-capital investment, and H total hours

(lK =+ )\lH).
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Figure 14: Estimated Autocorrelation Functions, Data and “EGMu-B”.

PR =0.0, QU1 = 27.49 (P = 0.0006): Pip = 1.0, Qi = 47.5 (P = 0.0).

plots/ 1000_acf_sim_data_BkuuBkua4.eps not found!

+— U.S. data, 1 - Unanticipated, o—4-qtr Anticipated
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Figure 15: Estimated Impulse-Response Functions, Data and “EGMu-B”

plots/1000_gdp_hours_sim_data_BkuuBkua4.eps not found!

Quarters

+— U.S. data, ™ - Unanticipated, o—4-qtr Anticipated
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Figure 16: Estimated Autocorrelation Functions, Data and “EGMu-C”.

PR = 0.0, QU7 = 34.0 (P = 0.00004): P =0.99, Qi = 54.7 (P = 0.0).

plots/ 1000_acf_sim_data_GuuGua4.eps not found!

+— U.S. data, 1 - Unanticipated, o—4-qtr Anticipated
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Figure 17: Estimated Impulse-Response Functions, Data and “EGMu-C”.

plots/1000_gdp_hours_sim_data_GuuGua4.eps not found!

Quarters

+— U.S. data, ™ - Unanticipated, o—4-qtr Anticipated
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Appendix D. Asymmetric Sectors and “Unmea-
sured” - case Calibrations.

Table 8: Parameters and Balanced-Growth Variables: EGM-B

Model Parameters
A = Ag =0.2493, a =0.35,v=0.34, 0x = oy = 0.024
8 =0.987, e =0.1166, c = 6.8, IES = 0.6
o = 0.008, p = 0.95
Balanced-Growth Variable Values
g=0.0042, I = . 111, I + g = 0.192
Kinc/Z = 0.346, Kinv/Z = 0.22, 7 — 0 = 0.02

Table 9: Parameters and Balanced-Growth Variables: “EGM-C”.

Model Parameters
Ag = Ay =0.227, a=~v=0.35, dx =0.024, g = 0.018
B8=0.987,¢=0.129, 0 = 6.8, IES = 0.57
oe = 0.008, p =0.95
Balanced-Growth Variable Values
g=0.0042, lgx = .12, I + 1y = 0.192
Kine/Z =0.35, Kinv/Z = 0.221, r — §x = 0.02
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Appendix D, Continued.

Table 10: Parameters and Balanced-Growth Variables: “Base-Case EGMu”

A=05

Model Parameters
AK = AH = 0.1724, a =77 = 0.35, 6}( = (SH =0.014
B8 =0.987,e=0.181, 0 = 5.4, IES = 0.56
o = 0.008, p = 0.95
Balanced-Growth Variable Values
g =0.0042, I = .153, Il + Alg = 0.192
Kinc/Z = 0.35, Kinv/Z = 0.22, r — §g = 0.02

Table 11: Parameters and Balanced-Growth Variables: “EGMu-B” Model

A=0.5

Model Parameters
Ag = Ay =0.173, a =0.35,7v=0.34, g =g = 0.014
B8 =0.987,e=0.1808, 0 = 5.4, [ES = 0.56
oe = 0.008, p =0.95
Balanced-Growth Variable Values
g =0.0042, i = 152, I + Alg = 0.192
Kinc/Z =0.348, Kinv/Z = 0.218, r — 6 = 0.02
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Table 12: Parameters and Balanced-Growth Variables: “EGMu-C” Model

A=0.5

Model Parameters
Ag = Ay =0.1639, =~ =0.35, dx =0.014, 5y = 0.0105
B8=0.987,¢=0.188, 0 = 5.4, IES = 0.55
oe = 0.008, p =0.95
Balanced Growth Variable Values
g =0.0042, i = 158, I + Alg = 0.192
Kine/Z =0.35, Kinv/Z = 0.215, r — §x = 0.02
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