Titan – a first look

 

It appears that Titan is every bit as unusual as we could ever have suspected.  There is evidence of liquid surface flow, drainage channels, fog, springs, rain and a surface that has a sandy or rocky texture.  However, on Titan the liquid is liquid methane or ethane while the surface “rocks” are made of water ice.  Below are images and descriptions taken from ESA’s website.

 

 

This composite was produced from images returned 14 January 2005, by ESA's Huygens probe during its successful descent to land on Titan. It shows the boundary between the lighter-coloured uplifted terrain, marked with what appear to be drainage channels, and darker lower areas. These images were taken from an altitude of about 8 kilometres with a resolution of about 20 metres per pixel

 

 

 

 

 

 

This composite was produced from images returned 14 January 2005, by ESA's Huygens probe during its successful descent to land on Titan. It shows a full 360-degree view around Huygens. The left-hand side, behind Huygens, shows a boundary between light and dark areas. The white streaks seen near this boundary could be ground 'fog' of methane or ethane vapour, as they were not immediately visible from higher altitudes. As the probe descended, it drifted over a plateau (centre of image) and was heading towards its landing site in a dark area (right). This dark area is possibly a drainage channel which might still contain liquid material. From the drift of the probe, the wind speed has been estimated at around 6-7 metres per second. These images were taken from an altitude of about 8 kilometres with a resolution of about 20 metres per pixel.

 

 

 

A single Huygens DISR image that shows two new features on the surface of Titan. A bright linear feature suggests an area where water ice may have been extruded onto the surface. Also visible are short, stubby dark channels that may have been formed by 'springs' of liquid methane rather than methane 'rain'.

 

 

 

This mosaic of three frames provides unprecedented detail of the high ridge area including the flow down into a major river channel from different sources.

 

Spectacular images captured by the DISR reveal that Titan has extraordinarily Earth-like meteorology and geology. Images have shown a complex network of narrow drainage channels running from brighter highlands to lower, flatter, dark regions. These channels merge into river systems running into lakebeds featuring offshore 'islands' and 'shoals' remarkably similar to those on Earth.

Data provide strong evidence for liquids flowing on Titan. However, the fluid involved is methane, a simple organic compound that can exist as a liquid or gas at Titan's sub-170°C temperatures, rather than water as on Earth.  Titan's rivers and lakes appear dry at the moment, but rain may have occurred not long ago. The surface's crust has the consistency of loose sand, possibly the result of methane rain falling on the surface over eons, or the wicking of liquids from below towards the surface.

 

 

Surface images show small rounded pebbles in a dry riverbed. Spectra measurements (colour) are consistent with a composition of dirty water ice rather than silicate rocks. Titan's soil appears to consist at least in part of precipitated deposits of the organic haze that shrouds the planet. This dark material settles out of the atmosphere. When washed off high elevations by methane rain, it concentrates at the bottom of the drainage channels and riverbeds contributing to the dark areas seen in DISR images. New, stunning evidence based on finding atmospheric argon 40 indicates that Titan has experienced volcanic activity generating not lava, as on Earth, but water ice and ammonia.

          Thus, while many of Earth's familiar geophysical processes occur on Titan, the chemistry involved is quite different. Instead of liquid water, Titan has liquid methane. Instead of silicate rocks, Titan has frozen water ice. Instead of dirt, Titan has hydrocarbon particles settling out of the atmosphere, and instead of lava, Titanian volcanoes spew very cold ice. Titan is an extraordinary world having Earth-like geophysical processes operating on exotic materials in very alien conditions.