Children's Affective Experiences in TGfU Game Environments

By
James Mandigo, Ph.D. \& Joanna Sheppard, MA Candidate Brock University
St. Catharines, Ontario, Canada

Thanks for the Funding!

- Social Science and Humanities Research Council of Canada
- Ontario Physical and Health Education Association
- Brock University Internal SSHRC Grant

Social Sciences and Humanities Research Council of Canada

0
Brock University חphea

Ontario Physical and Health Education
Association

Previous TGfU Research

- Physical Domain
- Performance
- Cognitive Domain
- Understanding
- Affective Domain
- Motivation
- Invasion Games (Mitchell et al., 1995)
- Net/Wall Games (Griffin et al., 1995)

Majority of Research

- Holt et al., 2001
-Rink et al., 1996

Wall \& Murray, 1990

Theoretical Framework

(Mandigo \& Holt, 2002)

Cognitive Evaluation Theory

(Deci \& Ryan, 1985)

- optimal challenge + perceived competence lead to enhance intrinsic motivation

Theory of Optimal Experience

(Csikszentmihalyi, 1990)
-when perceived skill and challenge are balanced, have an intrinsically rewarding experience

Competence Motivation Theory

(Harter, 1978)
-optimal challenge + success lead to increased interest which enhances competence and intrinsic motivation

Filling in the Research Gap

(Butler, Griffin, Lombardo, Nastasi, \& Robson, 2003)

- Ideas for Future Research
- Look for strong empirical data that would support our intuitive sense that this approach works for students
- Continue to explore and examine subjective outcomes
- Focus on all aspects of the child
- Continue to ask good questions and to involve major players in finding answers (e.g., teachers, students)
- Fill the gap between theory and practice
- Research the four fundamental pedagogical principles

Purpose

- To present data from two studies to help fill an important gap in the TGfU scholarship related to children's motivation.
- Study 1:
- Children's Experiences in Two Different Approaches to Teaching Games
- Study 2:
- Children's Experiences Within a TGfU Environment that Modifies Teaching Styles

Methods

- 8 Pickleball Lesson Plans
- Lessons 1 \& 8 = Formal Pickleball
- Lessons 2-7= Pickleball Lessons
- 2 Lesson Groups
- Technical ($\mathrm{n}=51$)
- Grade 6 ($\mathrm{n}=27$)
- Grade 3 / 4 ($\mathrm{N}=24$)
- Tactical ($\mathrm{N}=53$)
- Grade $5(\mathrm{n}=25)$
- Grade 4/5 ($\mathrm{n}=28$)
- All lesson plans corresponded to
 Ontario Ministry of Education's expectations for grades 4-6.

Pickleball Lessons \& Progressions

Lesson	Skill Focus (Curtis, 1998)	Tactical Focus (Mandigo \& Anderson, 2003
1	- Pickleball Game	- Pickleball Game
2	- Hand eye coordination - Volley	- Cooperative - Keep it Going
3	- Forehand Drive - Ready Position	- Competitive - Put it Away
4	- Backhand Drive - Drive Serve	- Placement - 4 Corners
5	- Review - Lob Serve	- Long \& Short
6	- Review	- Short \& Wide
7	- Review	- Doubles
8	- Pickleball Game	- Pickleball Game

Affective Domain Instruments

- Motivational State
- Children's Perceptions of Optimal Challenge Instrument (CPOCI):
- Contains 3 sub-scales that represent the degree to which children are optimally challenged (Mandigo, 2001).
- Skill $=$ Challenge, Challenge $>$ Skill, Skill > Challenge
- Intrinsic Motivation Inventory (IMI):
- Multidimensional instrument intended to assess participants' interest/ enjoyment; perceived competence (Whitehead \& Corbin, 1991).

Factor Analyses

	Factor 1	Factor 2		Factor 1	Factor 2	Factor 3
ENJ1	886		OC1	. 666		
			CS2		. 755	
COMP2		. 936	SC3	-. 640		. 475
COMP2		. 936	OC4	. 854		
ENJ3	. 919		CS5		. 858	
			SC6			.827
COMP4		.942	OC7	. 790		
ENJ5	. 836		CS8		. 889	
C0MP6	446	813	oc10	. 767		. 827
COMP6	. 446	. 813	CS11		. 887	
ENJ7	. 888		SC12			. 773
ENJ8	. 872		OC13	. 897		
ENJ8	. 872		CS14		. 772	
			SC15			. 825
			OC16	. 889		
			CS17		. 816	
$\mathrm{N}=1$			SC18	-. 614		. 416
Explained Variance $=85.6 \%$						
			Explained Variance $=72.4 \%$			

Internal Consistency

(Mean of Each Item Across 8 Lessons)

- Enjoyment: $\alpha=.94$
- Competence: $\alpha=.92$
- Skill = Challenge: $\alpha=.91$
- Challenge > Skill: $\alpha=.92$

■ Skill > Challenge: $\alpha=.87$

Situational Factor (Optimal Challenge)

- Group (2) x Time (2) Repeated Measures
- Lessons 1 \& 8
- MANOVA
- No Significant Interaction
- No Significant Between-Subject Effect
- Significant Within-Subject Effect for Time
- $\lambda(2,79)=.807 ; p<.01$, eta $^{2}=.19$
- Univariate Within-Subject Effects
- Skill > Challenge: $F(1,80)=9.94, p<.01, e t a^{2}=.11$

Situational Factor (Enjoyment \& Competence)

- Group (2) x Time (2) Repeated Measures
- Lessons 1 \& 8
- MANOVA
- No Significant Interaction
- No Significant Between-Subject Effect
- Significant Within-Subject Effect for Time
$-\lambda(2,79)=.777 ; p<.001, e t a^{2}=.22$
- Univariate Within-Subject Effects
- Enjoyment: $F(1,80)=4.69, p<.05, e t a^{2}=.06$
- Competence: $F(1,80)=9.28, p<.01$, eta $^{2}=.10$

Affective Outcomes Across 6 Lessons

- MANOVA 1
- IV: Group (Tactical/ Technical)
- DVs: Mean = Skill = Challenge, Challenge $>$ Skill, Skill > Challenge
- No Significant MV Effect
- $\lambda(3,96)=.995 ; p>.05$, eta $^{2}=.01$
- MANOVA 2
- IV: Group (Tactical/ Technical)
- DVs: Mean Skill = Enjoyment \& Competence
- Significant MV Effect
- $\lambda(2,98)=.932 ; p<.05, e t a^{2}=.07$
- Enjoyment: $F(1,99)=6.12, p<.05$, eta $^{2}=.06$

Specific Lessons (Enjoyment)

- Multiple Independent T-Tests
- Bonferroni Correction Factor ($.05 / 6=.008$)
- Lesson \#6
- $t(93)=2.82 ; p=.006$
- Technical (Review forehand, backhand, and volley)
- $M=6.27$ ($S D=1.00$)
- Tactical (Defending Space)
- $M=5.45$ ($S D=1.74$)

Study 1 Discussion

- Minimal Differences In Affective Outcomes Between The Two Domains
- Enough Time (Turner \& Martinek, 1999)
- Influence of Effective Teaching (Hopper, 2002)
- Both Approaches Demonstrated Positive Affective Outcomes
- Games Pedagogy within TGfU

Study 2

- Does How We Deliver Games Within a TGfU Environment Impact on Participant's Motivation?
- PlaySport: Guiding Principles
- Embraces Teaching Games for Understanding
- Incorporates the 4 pedagogical principles
- Designed for children ages six to twelve
- Games are designed to help children develop skills and learn strategies
- Children will have fun and gain a deeper understanding of games
- Leads to competency and preparation in sports
- Leads to greater success and enjoyment
- Thematic Approach to Teaching Games (Mitchell et al., 2003)

PlaySport Project

Step 2: Game Appreciation

Step 3: Tactical Awareness
Step 5: Skill Execution

Step 4:
Making Appropriate

PlaySport

Decisions

Participants (Schools)

- 4 Schools Across Ontario (North, South, East, West)
- School A Students (Target)
- Grades 2 \& 3
- $\mathrm{N}=21$ ($8 \mathrm{~F} ; 13 \mathrm{M}$)
- School B Students (Net/Wall)
- Grade 4
- $\mathrm{N}=25$ (12F; 13M)
- School C Students (Striking/ Fielding)
- Grade 4
- $\mathrm{N}=24$ (11F; 13M)
- School D Students (Invasion)
- Grade 8

- $\mathrm{N}=25$ ($14 \mathrm{~F} ; 11 \mathrm{M}$)
- Consent Forms Collected and Organized by Teachers

Questionnaires

- Quality of Experience Journal
> Children's Perception of Optimal Challenge Instrument: Skill = Challenge (Mandigo, 2001)
> Intrinsic Motivation Inventory - Competence, Choice, \& Enjoyment Items (McAuley, Duncan \& Tammen, 1989)
> Perceived Skill and Challenge (Csikszentmihalyi \& Larson, 1987)
> Perceived Difficulty (Harter, 1978)

Method

- Teacher Received Detailed Instructions
- 5 Games/ Category
- Two Practice Style (Teacher Chose Modification)
- Two Inclusion Style (Students Chose Modification)
- One Divergent (Students Created Own Game)
- Completed Quality of Experience Journal Immediately Afterwards

Overall PlaySport Means

Differences Between Teaching Styles (All Schools)

- Multivariate Effect
- $\lambda(14,846)=.884 ; p<.001, e t a^{2}=.06$
- Significant Between Subject Effects
- Enjoy: $F(2,429)=3.44, p<.05$, eta $^{2}=.02$
- Choice: $F(2,429)=12.85, p<.001$, eta ${ }^{2}=.06$
- Optimal Challenge: $F(2,429)=4.09, p<.05$, eta $^{2}=.02$
- Difficulty: $F(2,429)=3.20, p<.05$, eta ${ }^{2}=.02$

Differences Between Teaching Styles (All Schools)

Differences Within Least Complex Game Categories

- Target Games
- Multivariate Effect
$-\lambda(14,184)=.605 ; p<.001$, eta $^{2}=.22$
- Significant Between Subject Effects
- Enjoy: $F(2,98)=3.95, p<.05$, eta $^{2}=.08$
- Choice: $F(2,98)=25.08, p<.001$, eta $^{2}=.34$
- Striking/ Fielding
- Multivariate Effect
$-\lambda(14,204)=.708 ; p<.01, e t a^{2}=.16$
- Significant Between Subject Effects
- Choice: $F(2,108)=11.14, p<.001$, eta $^{2}=.17$

Target \& Fielding Game Differences

Differences Within More Complex Game Categories

- Net/ Wall
- Multivariate Effect
- $\lambda(14,226)=.679 ; p<.001$, eta $^{2}=.18$
- Significant Between Subject Effects
- Enjoy: $F(2,119)=10.80, p<.001, e t a^{2}=.15$
- Competence: $F(2,119)=5.29, p>.01$, eta $^{2}=.08$
- Choice: $F(2,119)=6.44, p<.01$, eta $^{2}=.10$
- Optimal Challenge: $F(2,119)=4.79, p<.05, e t a^{2}=.08$
- Difficulty: $F(2,119)=4.57, p<.05, e t a^{2}=.07$
- Invasion Games
- Multivariate Effect
- $\lambda(14,226)=.786 ; p>.05, e t a^{2}=.11$
- Significant Between Subject Effects
- Enjoy: $F(2,95)=6.04, p<.01, e t a^{2}=.11$
- Optimal Challenge: $F(2,95)=3.88, p<.05, e t a^{2}=.08$

Net/Wall \& Invasion Game Differences

Teacher Feedback

- Any Positive Outcomes?
- Try a lot of those games outside from the class
- Increased involvement
- Connection between what they were doing the skill they were trying to improve
- Create an activities ... they had absorbed everything we had talked about
- The kids really like the opportunities to have some input
- Any Indicators of Success?
- Lower level participants got more active then they did in previous units
- They were really interested so it was easier to explain what was going on
- The kids were very excited about PlaySport so they would come in each day wondering what we were doing that day
- A lot of questions about the program and visually just seeing all the kids that were involved playing the best they could
- They would have free time at recess time and then during our free gym periods they would be much more active doing games

Study 2 Discussion

- Positive Outcomes Associated With Creating Games (Curtner-Smith, 1996)
- Types of Knowledge (Dodds, Griffin \& Placek, 2001)
- Less Complex Game Categories
- Positive Affect for Inclusion
- More Complex Game Categories
- Positive Affect for Practice
- Developmental Progression for Thematic Approach (Mitchell et al., 2003)

Future Research Within the Affective Domain

- Children's Experiences Within TGfU Pedagogy and Behavioural Impact
- Interaction with Cognitive \& Physical Domains
- Situational x Dispositional Interaction
- Individual Differences re: Experience in TGfU
- Autonomy-Supportive Environments

And they lived
Happily Ever Active

