CHAPTER 2: ORGANIZING DATA (TABLES AND GRAPHS)

BAR GRAPHS AND **CIRCLE** (OR **PIE**) **GRAPHS** ARE USUALLY USED WITH NOMINAL (QUALITATIVE) TYPE VARIABLES HAVING SEVERAL POSSIBLE VALUES

IF THE BARS ARE RE-ARRANGED FROM THE LARGEST TO THE SMALLEST, WE GET **PARETO CHART**

PIE CHART

TIME PLOTS ARE USEFUL WITH SEQUENTIAL (TIME-RELATED) DATA, E.G. CAR SALES DURING THE PAST 7 YEARS.

A BIT MORE INVOLVED IS THE ISSUE PLOTS RELATED TO **GROUPED DATA**.

LET'S ASSUME THAT WE HAVE ONLY ONE <u>QUANTITATIVE</u> (NUMERICAL) VARIABLE OF THE <u>CONTINUOUS</u> TYPE, SUCH AS YEARLY INCOME, IN \$1000), E.G. 17, 28, 42,, 31, SUMMARIZED IN A **FREQUENCY TABLE**, E.G.

SALARY (IN \$1000)	FREQUENCY		
10-19	7		
20-29	12		
110-119	4		

EACH ROW CORRESPONDS TO A **CLASS**. THE NUMBERS IN THE LEFT COLUMN ARE CALLED **CLASS LIMITS** (LOWER AND UPPER - NOTE THAT THEY LEAVE GAPS), THE **MIDPOINT** VALUES (14.5, 24.5, ...) ARE CLASS **MARKS**. CLASS LIMITS CAN BE EXTENDED TO CLASS BOUNDARIES, THUS: (9.5-19.5, 19.5-29.5, ...) WHICH 'MEET' (NO GAPS) AND GIVE THE RANGE OF <u>ACTUAL</u> SALARIES CONTRIBUTING TO EACH CLASS (THESE ARE SOMETIMES INSERTED AS AN EXTRA COLUMN).

RELATIVE FREQUENCIES ARE COMPUTED BY DIVIDING EACH OF THE REGULAR FREQUENCIES *f* BY THEIR TOTAL (THE SAMPLE **SIZE** *n*).

SIMILARLY, WE CAN ALSO COMPUTE CUMULATIVE (RUNNING SUM) FREQUENCIES, AND CUMULATIVE RELATIVE FREQUENCIES.

CLASS LIMITS SHOULD BE CHOSEN SENSIBLY (WHEN IT IS UP TO US) - TO END UP WITH 5-15 CLASSES - BASED ON THE SMALLEST AND LARGEST OBSERVATION. GRAPHICALLY, THE INFORMATION OF A FREQUENCY TABLE CAN BE DISPLAYED IN A **HISTOGRAM** (A KIND OF BAR GRAPH), THE BARS CENTERED ON THE CLASS MARKS, EXTENDING FROM ONE BOUNDARY TO THE NEXT (NO GAPS) - SEE FIG. 2-8.

HISTOGRAMS CAN BE OF DIFFERENT SHAPES, YOUR TEXTBOOK MENTIONS FIVE POSSIBILITIES: (APPROXIMATELY) SYMMETRICAL, LEFT OR RIGHT SKEWED, (APPROXIMATELY) UNIFORM, BIMODAL.

ALTERNATELY (TO HISTOGRAM), CONNECTING THE CLASS MARK (*x*) - FREQUENCY (*y*) POINTS BY STRAIGHT-LINE SEGMENTS TO GET THE **FREQUENCY POLYGON** (WE USUALLY ADD AN EXTRA ZERO-FREQUENCY CLASS ON EITHER SIDE)- FIG. 2-17.

PLOTTING THE <u>CUMULATIVE</u> (RELATIVE) FREQUENCIES IN THIS MANNER (HERE, *x* MUST BE THE CORRESPONDING <u>UPPER</u> CLASS <u>BOUNDARY</u>), WE GET A SO CALLED **OGIVE -** FIG. 2-18, 2-20. BASED ON THE LATTER, WE CAN EASILY ESTIMATE THE PERCENTAGE OF PEOPLE WITH A SALARY LESS THAN, SAY \$27,000 PER YEAR.

AND <u>REVERSE</u>, I.E. ESTIMATE THE SALARY WHICH 25% OF PEOPLE EXCEED.

STEM-AND-LEAF DISPLAY IS SIMILAR TO (FASTER AND LESS 'FORMAL' THEN) A HISTOGRAM.

WE START WITH THE ORIGINAL DATA <u>LIST</u>, DESIGNATE THE LAST DIGIT (OR LAST TWO DIGITS) AS 'LEAF' (THE REST ARE 'STEM') AND TALLY THE DATA IN A MANNER OF FIG. 2-24.

EXAMPLE: 3.9 5.4 5.5 4.2 3.6 3.0 4.5 5.9 4.4 2.9 4.1 5.4 5.1 2.0 4.6 4.2 3.5 4.7 5.9 5.5 2.8 6.0 2.6 2.4 3.2 4.9 4.9 5.6 4.9 2.5 908645
96052
2541627999
45941956
0

DOT PLOT IS A SIMPLE GRAPHICAL REPRESENTATION OF THE INDIVIDUAL OBSERVATIONS: 3.8, 2.5, 6.3, 7.2, 4.9, 6.3, 5.5, 5.1, 3.6, 4.0

Dotplot for C1

Rel. $cum. f$	7.4%	20.2%	44.7%	77.7%	94.7%	100.0%
Cumulat.f	L	19	42	73	89	94
Relative f	7/94=7.4%	12.8%	24.5%	33.0%	17.0%	5.3%
Midpoint	24.5	34.5	44.5	54.5	64.5	74.5
Boundaries	19.5 -29.5	29.5 - 39.5	39.5 - 49.5	49.5 - 59.5	59.5 - 69.5	69.5 - 79.5
Frequency	L	12	23	31	16	5
Limits	20 - 29	30 - 39	40 - 49	50 - 59	69 - 69	70 - 79

ROUNDED OFF TO THE NEAREST THOUSAND, HAVE BEEN SALARIES OF 94 EMPLOYEES (OF A SPECIFIC COMPANY), TALLIED TO YIELD THE ABOVE FREQUENCY TABLE

တ

FIND THE PERCENTAGE OF EMPLOYEES WHOSE SALARY IS LESS THAN 55000:

$$44.7 + 33 \times \frac{55 - 49.5}{59.5 - 49.5} = 66.15\%$$

80% OF ALL EMPLOYEES HAVE A SALARY SMALLER THAN? (THIS IS CALLED THE 80th PERCENTILE):

$$59.5 + 10 \times \frac{80 - 77.7}{17} = \$60850$$