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Confidence interval, sample-size formula
and test statistic, concerning:

Population mean : (large sample, n>30):

Replace s by F if available (rare).

EXAMPLE: A random sample of 55 from a specific
population yields the mean of 73.5 and standard
deviation of 13.2 .
i) Construct 90% confidence interval for the population
mean:
         73.5 ± 1.645×13.2÷  = 73.5 ± 2.9355
Answer:                (70.57, 76.43)

ii) How many more observations would we need to be
within 1 unit of the correct answer (using the same level
of confidence)?
                      (1.645×13.2÷1)2 = 471.498
Answer:   472 - 55 = 417  

iii) Test H0: : = 75 against H1: : < 75 using " = 1%
Critical value: -2.326
Computed value: (73.5-75)× ÷13.2 = - 0.84355
Not enough evidence to reject H0.
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Small sample: Need Normal population, use tn-1
instead of z.

EXAMPLE: Consider the following (random independent)
sample: 72, 81, 69, 77, 73, from a specific Normal
population.
i) Construct a 80% confidence interval for :.

Gx = 372,  Gx2 = 27764,  = 372 ÷ 5 =74.4 x

= = 4.669s= −27764 372 5
4

2 / 872
4
.

74.4 ± 1.533×4.669÷  = 74.4 ± 3.20 or (71.20, 77.60)5

ii) Test H0: : = 75 against H1: : < 75 using " = 1%
Critical value: -3.747
Computed value: (74.4 -75)× ÷4.669 = - 0.2875
Not enough evidence to reject H0.

Population proportion p ( ):np nq$ , $> >5 5

     

EXAMPLE: In a sample of 72 Brock students, 37 use a
bus to get to school.
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i) The 95% CI for the proportion of all Brock students who

use bus is: = 0.514 ± 0.115   or   37

72
196 37 72 37

723
± × × −. ( )

(39.9%, 62.9%)

ii) How many students (in total) do we need to sample to
reduce the margin of error to ± 3%?

 = 1066.3    ie.  1067( )37 72 37
72

196 003
2

2× − × ÷( ) . .

iii) Test H0: p = ½ against H1: p… ½ using  " = 5%
Critical values:  ± 1.96    Computed (observed) value of the

test statistic:    (cannot reject H0).
37
72

1
2

1
4

1
72

02357
−

×
= .

Difference in population means (large samples)

EXAMPLE: A sample of 49 adult Canadian males had an
average (sample mean) height of 179.2 cm, with the
standard deviation of 7.4 cm. For a sample of 55 females,
the average height was 167.8 cm, with the standard
deviation of 9.4 cm.
i) Construct a 90% CI for the difference between the
corresponding population means (male - female):
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   =   11.4 ± 2.7    or     1792 1678 1645 74
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(8.7 cm,14.1 cm)

ii) Test H0: :1 = :2 against  H1:  :1 > :2 using  " = 1%
The critical value is 2.326, the computed value of the test
statistic:

Conclusion: Yes, this represents a highly significant
evidence that the female population mean is smaller than
that of the male population.

Small samples (at least one # 30):    Both
populations must be Normal and have the same
standard deviation F. Also, use t instead of z.

and

EXAMPLE: Same as before, except now our male sample
consists of only 172, 181, 177, 183, 169 cm, and the female
sample is: 162, 158, 174, 171 cm.
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i) Same as before.
             Gx1 = 882, Gx1

2 = 155724,  Gx2 = 665,  Gx2
2 = 110725

This implies that         and x x1 2
882
5

665
4 1015− − == .

So, we have:

      or1015 1895 02 025 30795
7 1015 445. . . . . . .± × + × = ±

   (5.70, 14.60) cm

ii) Same as before.
Critical value of t is 2.998, computed value of the test statistic is:

Conclusion: Now, we cannot reject the null hypothesis !!

Difference in population proportions (both
samples ‘large’ in the  > 5,   > 5 sense).np$ nq$
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EXAMPLE: Out of a random sample of 51 Brock female students,
28 use bus to get to school, whereas for a sample of 42 male
students the number is only 18.
i) Construct an 80% CI for the populations’ difference:

= 0.1204 ± 0.1325   or
28

51

18
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1282

28 23
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18 24

423 3
− ± ×

×
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×
.

                                                                        ( -1.21%, 25.92%)

ii) Test, using 5% level of significance, whether the two population
proportions are the same, against the pF > pM alternate.

Critical value (zc) is 1.645, the computed value of the test statistic

is:   = 1.15601204
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Conclusion: We don’t have sufficient evidence to prove that the
proportion of female students who use bus is higher than that of
their male counterparts (at 5% level of significance).

Test for :d (the population mean of paired
differences).                       Test statistic:

EXAMPLE: A random sample of 7 cars was tested in terms of the
distance travelled on one litre of regular, and one litre of high-
octane gasoline. The results are given in the following table:
regular 7.31 11.23 8.60 9.42 10.08 10.70 8.18

hi-oct. 7.53 11.02 8.88 9.38 9.99 10.54 7.92
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difference -0.22 0.21 -0.28 0.04 0.09 0.16 0.26

We have to assume that the distribution of these differences is (at
least approximately) Normal.

H0:  :d = 0         H1:  :d … 0 " = 5%

Critical values:   ±2.447   (Using t with 6 df.)

To compute the test statistic, we first need     Gd = 0.26     and      
Gd2 = 0.2738

Then:    
0 26
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Conclusion: No statistical evidence that either type of gasoline
would be more economical than the other (at any practical level of
significance).

Regression:

       b = SPxy  / SSx     and     a =  y b x− ⋅
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Best (least-squares) straight (regression) line:

                           y = bAx + a 

Prediction interval for a new value of y taken
at xo:

Point estimate:

Residual standard
error:

PI:

(Use t distribution with n-2 df.)

To test  H0:  $ = 0 against ..... ,   use  

(same distribution).
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Correlation coefficient: 

Coefficient of determination:     r2 (in %)


