EIGHT LECTURE SUMMARY

TEST FOR : 1 - : 2

 $H_0: :_1 - :_2 = 0$ (EQUIVALENTLY, $:_1 = :_2$)

TEST STATISTIC: (STANDARD NORMAL)

ASSUMPTION: SAMPLES LARGE AND INDEPENDENT OF EACH OTHER

TEST FOR: 1 -: 2 (SMALL SAMPLES)

WE NEED TWO EXTRA ASSUMPTIONS: i) BOTH POPULATIONS ARE NORMAL ii) AND HAVE THE SAME F

THE TEST STATISTIC THAN CHANGES TO $\overline{x_1 - \overline{x}_2}$ $\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \cdot \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$ AND HAS THE *t* DISTRIBUTION WITH $n_1 + n_2 - 2$ DEGREES OF FREEDOM

TEST FOR $p_1 - p_2$

ASSUMPTIONS: LARGE <u>INDEPENDENT</u> SAMPLES

H₀: $p_1 = p_2$ THE USUAL NULL HYPOTHESIS TEST STATISTIC: $\hat{p}_1 - \hat{p}_2$ $\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \cdot \sqrt{\hat{p} \cdot \hat{q}}}$

WHERE \hat{p} IS THE <u>POOLED</u> SAMPLE PROPORTION, AND $\hat{q} \equiv 1 - \hat{p}$

WHEN H₀ IS TRUE, THE TEST STATISTIC HAS (APPROXIMATELY) THE STANDARD NORMAL DISTRIBUTION (Y CRITICAL VALUES).

PAIRED - DIFFERENCE TEST

For each subject, <u>two</u> observations are taken (usually 'before' and 'After'), and we test whether the **Mean Population Difference** μ_d is **EQUAL TO ZERO** (NULL HYPOTHESIS), AGAINST ONE OF THE THREE ALTERNATIVES. We must first compute the DIFFERENCES d_i (and forget the ORIGINAL DATA).

TEST STATISTIC:

 $\frac{\overline{d}}{\frac{S_d}{\sqrt{n}}} = \frac{\overline{d}}{\frac{S_d}{\sqrt{n}}} \sqrt{n}$

HAS THE *t* DISTRIBUTION WITH *n* - 1 DEGREES OF FREEDOM (STANDARD NORMAL WHEN *n* IS LARGE).

ASSUMPTION: THE <u>DIFFERENCES</u> FOLLOW A NORMAL DISTRIBUTION (NEEDED FOR SMALL *n* ONLY).

EXAMPLE:

The label states that a bottle of Spring Water contains 1000 ml of our favourite drink. Having a closer look at a few bottles on a supermarket shelf makes it obvious that the exact amount differs from bottle to bottle. So, what the label must mean is that the <u>average</u> amount of water per bottle is 1000 ml. We decided to test this claim at the 5% level of significance, collected a random <u>independent</u> sample of a huge shipment of Spring Water (technically, only this shipment is then our population), and obtained the following results:

995, 1002, 1003, 994, 999, 990, 1000, 987, 1005, 991, 996, 990

 H_0 : = 1000 (THE SHIPMENT'S MEAN VALUE IS 1000 mL)

 H_1 : < 1000 (THE MEAN VALUE IS LESS THAT 1000 MI)

BEFORE WE CAN COMPUTE THE TEST STATISTIC, WE

NEED: $\overline{x} = \frac{11952}{12} = 996$ AND $\frac{s}{\sqrt{n}} = \sqrt{\frac{11904566 - 11952^2 / 12}{11 \times 12}} = 1.68325$

The value of the test statistic is thus $\frac{996-1000}{1.68325}$ = -2.376, well below the critical value of -1.645

The corresponding P value equals 0.018 (based Minitab's output - we can do this on our own only when n > 30). This, being smaller than 0.0500, leads to the same conclusion (it is also more informative, telling us that we can reject $H_{\rm 0}$ even at 2% level of significance - the lower the " , that more 'strongly' we reject).

CONCLUSION: WE HAVE A STATISTICALLY SIGNIFICANT EVIDENCE THAT, IN THIS PARTICULAR SHIPMENT, SPRING WATER COMPANY HAS SHORTCHANGED ITS CUSTOMERS.

Note that, if the sample mean turned out to be bigger than 1000, $H_{\rm 0}$ would automatically 'pass' the test.

