NINTH LECTURE SUMMARY

REGRESSION AND CORRELATION

HERE, WE STUDY RELATIONSHIP BETWEEN TWO VARIABLES (EACH ON AN INTERVAL SCALE) USUALLY CALLED X (EXPLANATORY) AND Y (RESPONSE).

ASSUMPTIONS:

- RELATIONSHIP IS LINEAR (FOLLOWING A STRAIGHT LINE)
- RESIDUALS (RANDOM DEVIATIONS OF INDIVIDUAL Y VALUES FROM THIS STRAIGHT LINE) ARE NORMALLY DISTRIBUTED

SAMPLE HAS A FORM OF A TABLE, E.G.

<mark>(°C) X</mark>	-10	-5	0	5	10	15
Y (\$)	56	49	36	18	6	-11

(Y IS DAILY NET PROFIT OF A TEENAGE ENTREPRENEUR SELLING HOT CHOCOLATE, X IS THE CORRESPONDING DAY'S AVERAGE TEMPERATURE).

THE DATA CAN BE DISPLAYED GRAPHICALLY IN SO CALLED SCATTER DIAGRAM:

TO ANSWER ALL POTENTIAL QUESTIONS, WE FIRST COMPUTE

Ex, Ey, Ex², Ey², Ex@

THEN CONVERT THEM TO

$$SS_{y} = \Sigma y^{2} - \frac{(\Sigma y)^{2}}{n} \qquad SP_{xy} = \Sigma x \cdot y - \frac{(\Sigma x) \cdot (\Sigma y)}{n}$$

HAVING COMPUTED THESE FIVE BASIC QUANTITIES, WE CAN NOW FIND THE REGRESSION COEFFICIENTS (INTERCEPT AND SLOPE) OF THE BEST (LEAST SQUARES, REGRESSION) STRAIGHT LINE:

$$b = \frac{SP_{xy}}{SS_x}$$
 (SLOPE FIRST) $a = \overline{y} - b \cdot \overline{x}$

NOTE THAT THIS LINE MUST PASS THROUGH THE $(\overline{x}, \overline{y})$ POINT.

NEXT, WE NEED TO COMPUTE RESIDUAL STANDARD DEVIATION (TYPICAL MAGNITUDE OF THE RESIDUALS) BY:

$$s_r = \sqrt{\frac{SS_y - b \cdot SP_{xy}}{n - 2}}$$

WHERE **RESIDUALS** ARE DEFINED AS $y_i - (a+b \Re_i)$

THE PREDICTION INTERVAL (ALSO CALLED CONFIDENCE INTERVAL FOR PREDICTION) FOR A NEW Y OBSERVATION, TAKEN AT X = x_0 (A SPECIFIC NUMBER) IS:

$$a+b\cdot x_0 \pm t_c \cdot s_r \cdot \sqrt{1+\frac{1}{n}+\frac{(x_0-\overline{x})^2}{SS_x}}$$

WHERE *t*_c IS THE CORRESPONDING CRITICAL VALUE OF THE STUDENT DISTRIBUTION, USING *n* - 2 DEGREES OF FREEDOM.

SAMPLE CORRELATION COEFFICIENT IS COMPUTED BY

(ALWAYS BETWEEN -1 AND 1).

COEFFICIENT OF DETERMINATION: r² (PERCENTAGE REDUCTION OF THE ORIGINAL *y* VARIANCE).

TWO TESTS

H₀: \$ = 0 WHERE \$ IS THE SLOPE OF THE <u>POPULATION</u> STRAIGHT LINE

TEST STATISTIC: $\frac{b}{s_r} \cdot \sqrt{SS_x}$ (USE t_{n-2})

H₀: D = 0 WHERE D IS THE <u>POPULATION</u> CORRELATION COEFFICIENT

TEST STATISTIC: $\frac{r \cdot \sqrt{n-2}}{\sqrt{1-r^2}}$ (USE t_{n-2})

ONE CAN SHOW THAT THE TWO TEST STATISTICS (THUS THE TWO TESTS) ARE IDENTICAL.