{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Tim es" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Warning" -1 7 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2 2 1 1 1 3 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output " -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 } 3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot" -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT 256 11 "Cylindrical" }{TEXT -1 110 " container (base = A, height = 1, a = 2A; the last wo can be alwa ys achieved by proper length and mass units)." }{MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 75 "This implies: V=A.h which leads t o A.h'=2.A.sqrt(h), or 2.dh/sqrt(h)=dt " }}{PARA 0 "" 0 "" {TEXT -1 72 "which, by a proper choice of time units (container empty at t=1), \+ yields" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "sqrt(h)=1-t;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#/*$%\"hG#\"\"\"\"\"#,&F'F'%\"tG!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 125 "In a sence (with proper units) , this solution is fully general and applies to any cylinder - this tr ick is called re-scaling." }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "solve(%,h);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#, (\"\"\"F$*&\"\"#F$%\"tGF$!\"\"*$)F'F&F$F$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 25 "simplifying: h=(1-t)^2" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "plot((1-t)^2,t=0..1);" }}{PARA 13 " " 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6%-%'CURVESG6$7S7$$\"\"!F)$ \"\"\"F)7$$\"3emmm;arz@!#>$\"3QAV'f23)o&*!#=7$$\"3[LL$e9ui2%F/$\"3DA`u \"=h8?*F27$$\"3nmmm\"z_\"4iF/$\"3'z#p0?Is'z)F27$$\"3[mmmT&phN)F/$\"3%Q uv5m\"f)R)F27$$\"3CLLe*=)H\\5F2$\"3L?'**)*G1:,)F27$$\"3gmm\"z/3uC\"F2$ \"33$Rnze'ygwF27$$\"3%)***\\7LRDX\"F2$\"34>GQ)Q3fI(F27$$\"3]mm\"zR'ok; F2$\"3#\\a2XGXx%pF27$$\"3w***\\i5`h(=F2$\"31_\"4`$))o*f'F27$$\"3WLLL3E n$4#F2$\"3/j=U#G,5D'F27$$\"3qmm;/RE&G#F2$\"3?u`$GI:<&fF27$$\"3\")***** \\K]4]#F2$\"3eg<\"GguNi&F27$$\"3$******\\PAvr#F2$\"3kkD'e.[MI&F27$$\"3 )******\\nHi#HF2$\"3-g]3hE#Q+&F27$$\"3jmm\"z*ev:JF2$\"3)e\"pq&o\"GRZF2 7$$\"3?LLL347TLF2$\"3>]Nuvq1MWF27$$\"3,LLLLY.KNF2$\"3YZ*R%)fdM=%F27$$ \"3w***\\7o7Tv$F2$\"3j2A&)R36,RF27$$\"3'GLLLQ*o]RF2$\"3-1;p$*eTfOF27$$ \"3A++D\"=lj;%F2$\"34MK&)>&HJS$F27$$\"31++vV&RzR344>s#F27$$ \"3cmm;/T1&*\\F2$\"3U,,9K$Q\\]#F27$$\"3&em;zRQb@&F2$\"3U#)4=#G2\"*G#F2 7$$\"3\\***\\(=>Y2aF2$\"3_VJx-194@F27$$\"39mm;zXu9cF2$\"389[f5l/B>F27$ $\"3l******\\y))GeF2$\"3oixycw\")R9DK:%e2(*F/7$$\"3?mm\"zpe*zqF2$\"3hJD(e?Tm_)F/7$$\"3%)*****\\#\\' QH(F2$\"3xc_9Wq;BtF/7$$\"3GKLe9S8&\\(F2$\"3I8u*[g`VF'F/7$$\"3R***\\i?= bq(F2$\"3A?-&=qYYE&F/7$$\"3\"HLL$3s?6zF2$\"3_G'=lKbIO%F/7$$\"3a***\\7` Wl7)F2$\"3p$G*Q$RN)4NF/7$$\"3#pmmm'*RRL)F2$\"35n1nMgvvFF/7$$\"3Qmm;a<. Y&)F2$\"3Sh;*)fO-9@F/7$$\"3=LLe9tOc()F2$\"3=qmBcAiY:F/7$$\"3u******\\Q k\\*)F2$\"3.BG%=/[K5\"F/7$$\"3CLL$3dg6<*F2$\"3MgKT$*zupo!#?7$$\"3Immmm xGp$*F2$\"3Y:Kw7#zz(RFdy7$$\"3A++D\"oK0e*F2$\"3+RJ*\\JG&f " 0 "" {MPLTEXT 1 0 55 "h20:=1/ 5.: #height corresponding to last 20% of volume" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 105 "t100:=1: t80:=1-sqrt(h20): (t100-t80)/t100* 100:\n#percentage of time to discharge the last 20% of volume:" }}} {EXCHG {PARA 0 "" 0 "" {TEXT 257 7 "Conical" }{TEXT -1 50 " container \+ (height = 1, 'lid' area = A, a= 2/5.A)," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 55 "V=A.h^3/3, similarly (with full re-scaling) leading to;" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "h^(5/2 )=1-t;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/*$)%\"hG#\"\"&\"\"#\"\"\",& F*F*%\"tG!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "solve(%,h )[1];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$),&\"\"\"F&%\"tG!\"\"#\"\"# \"\"&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "plot((1-t)^(2/5) ,t=0..1); # height against time" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6%-%'CURVESG6$7Y7$$\"\"!F)$\"\"\"F)7$$\"3emmm;arz @!#>$\"3an3'3_MA\"**!#=7$$\"3[LL$e9ui2%F/$\"3!zY69e5\\$)*F27$$\"3nmmm \"z_\"4iF/$\"3S<]()yx%ou*F27$$\"3[mmmT&phN)F/$\"3G!4R)R\"zpl*F27$$\"3C LLe*=)H\\5F2$\"3C4>%QVuic*F27$$\"3gmm\"z/3uC\"F2$\"3W\")z8)[65[*F27$$ \"3%)***\\7LRDX\"F2$\"3IEJGRu\\\"R*F27$$\"3]mm\"zR'ok;F2$\"3Uu!z.YbvH* F27$$\"3w***\\i5`h(=F2$\"36XcZnfZ-#*F27$$\"3WLLL3En$4#F2$\"33t7FgE6.\" *F27$$\"3qmm;/RE&G#F2$\"3(4`K,uDU,*F27$$\"3\")*****\\K]4]#F2$\"34&pTb_ gD\"*)F27$$\"3$******\\PAvr#F2$\"3)*)oc-%op3))F27$$\"3)******\\nHi#HF2 $\"3'R;wRNOoq)F27$$\"3jmm\"z*ev:JF2$\"3bQyv_Jw7')F27$$\"3?LLL347TLF2$ \"3QU^UDc&))\\)F27$$\"3,LLLLY.KNF2$\"3f2L_*[P0S)F27$$\"3w***\\7o7Tv$F2 $\"3)f\\'y0O&RG)F27$$\"3'GLLLQ*o]RF2$\"3Wl4ohPmy\")F27$$\"3A++D\"=lj;% F2$\"3MK?KBXvg!)F27$$\"31++vV&RY2 aF2$\"3,+p$)>tADtF27$$\"39mm;zXu9cF2$\"3#p8$yRN9\">(F27$$\"3l******\\y ))GeF2$\"3#3$H%Ghl&[qF27$$\"3'*)***\\i_QQgF2$\"3Sy&fG*[w/pF27$$\"3@*** \\7y%3TiF2$\"3Wv'4$R\">7w'F27$$\"35****\\P![hY'F2$\"3OjWnFRG'f'F27$$\" 3kKLL$Qx$omF2$\"3*R9Z`4&HB)G)[F27$$\"3Qmm;a<.Y&)F2$\"3L9^d9T /CYF27$$\"3=LLe9tOc()F2$\"3%)yye:.(QM%F27$$\"3u******\\Qk\\*)F2$\"3o1H +$R!3gSF27$$\"3CLL$3dg6<*F2$\"3')frF'GvIp$F27$$\"3ImmmmxGp$*F2$\"3&zJ8 -h'z5LF27$$\"3A++D\"oK0e*F2$\"3Mz#Rb+9C\"GF27$$\"3C+++]oi\"o*F2$\"3&eO 3T;*o=DF27$$\"3A++v=5s#y*F2$\"3o&H;#e!e<;#F27$$\"3;+D1k2/P)*F2$\"3v\"4 _Shxn#>F27$$\"35+]P40O\"*)*F2$\"3b%*G\"3D1$Q;F27$$\"3k]7.#Q?&=**F2$\"3 ii+![PC-Y\"F27$$\"31+voa-oX**F2$\"3#=K(oiRgT7F27$$\"3[\\PMF,%G(**F2$\" 3QN2Xw%)f4%*F/7$F*F(-%'COLOURG6&%$RGBG$\"#5!\"\"F(F(-%+AXESLABELSG6$Q \"t6\"Q!F]]l-%%VIEWG6$;F(F*%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 57 "plot((1-t)^(6/5),t=0..1); # Relative volume agains t time" }}{PARA 13 "" 1 "" {GLPLOT2D 496 496 496 {PLOTDATA 2 "6%-%'CUR VESG6$7S7$$\"\"!F)$\"\"\"F)7$$\"3emmm;arz@!#>$\"3Vu***fj2!R(*!#=7$$\"3 [LL$e9ui2%F/$\"3#e:^Z5jG^*F27$$\"3nmmm\"z_\"4iF/$\"3QR;\\:pgf#*F27$$\" 3[mmmT&phN)F/$\"3NS\"pH!G$e+*F27$$\"3CLLe*=)H\\5F2$\"3O9\\EYFWa()F27$$ \"3gmm\"z/3uC\"F2$\"3/0!*G'HTC_)F27$$\"3%)***\\7LRDX\"F2$\"3)R$Go#z@LG )F27$$\"3]mm\"zR'ok;F2$\"3gR/9?)Gs.)F27$$\"3w***\\i5`h(=F2$\"3Kn/wo'oJ z(F27$$\"3WLLL3En$4#F2$\"31Ig@FaWVvF27$$\"3qmm;/RE&G#F2$\"3,Y^m5bc+mF27$$\"3jmm\"z*ev:JF2$\"3o[ ;$=$4#*)Q'F27$$\"3?LLL347TLF2$\"3io-/-*p(QhF27$$\"3,LLLLY.KNF2$\"3*z-E 1$y()y%F27$$\"3GLLeR\"3Gy%F2$\"3?nfb %**=1e%F27$$\"3cmm;/T1&*\\F2$\"3K^rkh'4zN%F27$$\"3&em;zRQb@&F2$\"3+]*z %R.dGTF27$$\"3\\***\\(=>Y2aF2$\"3JgKC_/kIRF27$$\"39mm;zXu9cF2$\"3\")>< \\oLs=PF27$$\"3l******\\y))GeF2$\"3DIWH1z)=]$F27$$\"3'*)***\\i_QQgF2$ \"3!oQBtR+>H$F27$$\"3@***\\7y%3TiF2$\"3uGal8%H34$F27$$\"35****\\P![hY' F2$\"3c[@Rql5qGF27$$\"3kKLL$Qx$omF2$\"3ih+Tut:uEF27$$\"3!)*****\\P+V)o F2$\"3Swez'=avY#F27$$\"3?mm\"zpe*zqF2$\"3%[Q#)>P%z#G#F27$$\"3%)*****\\ #\\'QH(F2$\"3Gg[]jSi$3#F27$$\"3GKLe9S8&\\(F2$\"3C5*[=%=2**=F27$$\"3R** *\\i?=bq(F2$\"3vF:'zx7$4M7.())*F/7$$\"3=LLe9tOc()F2$\"3_ayyB)Rl>)F/7$$ \"3u******\\Qk\\*)F2$\"3=WGqd\"RFp'F/7$$\"3CLL$3dg6<*F2$\"3T/z(QR8p.&F /7$$\"3ImmmmxGp$*F2$\"3\"3rVD0)3HOF/7$$\"3A++D\"oK0e*F2$\"3.Gdm#QFXA#F /7$$\"3A++v=5s#y*F2$\"3xscGABB55F/7$F*F(-%'COLOURG6&%$RGBG$\"#5!\"\"F( F(-%+AXESLABELSG6$Q\"t6\"Q!F_[l-%%VIEWG6$;F(F*%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "h20:=fsolve(5/6*h^3=1/6); # height of the last 20% of water" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$h20G$ \"+wa.[e!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 81 "t100:=1: t80 :=1-h20^(5/2.): (t100-t80)/t100*100.;\n# percentage of time to empty: " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+s4K:E!\")" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 258 14 "Hem i-spherical" }{TEXT -1 78 " container: Volume, when water level is h ( and radius R) is: Pi multiplied by " }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 75 "int(R^2-x^2,x=R-h..R): simplify(%); # by slicing the cone into 'thin' disks" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&%\"RG\"\"\")%\"hG\"\"#F&F&*&#F&\"\"$F&*$)F(F,F&F&!\"\"" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 78 "Full container has volume of Pi*2/ 3*R^3. We now make R=1 (by choice of units);" }}{PARA 0 "" 0 "" {TEXT -1 64 "20% of volume is thus Pi*2/15, which corresponds to following h :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "fsolve(h^2-h^3/3=2/15) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6%$!+c%fwX$!#5$\"+8@+;RF%$\"+Md;aH! \"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "h20:=%[2]; #the o ther two roots are clearly spurious" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%$h20G$\"+8@+;R!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "wit h(plots): # choosing a = Pi*14/15" }}{PARA 7 "" 1 "" {TEXT -1 50 "War ning, the name changecoords has been redefined\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 57 "implicitplot(10/7*h^(3/2)-3/7*h^(5/2)=1-t,t=0 ..1,h=0..1);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6$ -%'CURVESG6X7$7$$\"35+++++++S!#>$\"3gqD]&))R-j*!#=7$$\"\"!F0$\"3A+++++ ++5!#<7$7$$\"3=+++++++!)F*$\"3wY1wfCTm#*F-7$$\"3ncB;s(HrK%F*$\"33/++++ ++'*F-7$7$F;$\"3'H++++++g*F-F'7$7$$\"3%**************>\"F-$\"3sE$RlA?w !*)F-7$$\"3\"\\kC')R:7t)F*$\"3i-++++++#*F-7$7$FJ$\"3],++++++#*F-F57$7$ $\"3-+++++++;F-$\"3'\\p4dMjIb)F-7$$\"3!RJ20j=.K\"F-$\"3E-++++++))F-7$F X7$FE$\"3$yKRlA?w!*)F-7$7$$\"35+++++++?F-$\"3I85mw$=??)F-7$$\"3Cu_T7,O t++++++S)F-7$7$Fbo$\"3!3++++++S)F-7$$\"3I+++++++;F-FV7$7$$\"3 =+++++++CF-$\"39hzsY,#Q&yF-7$$\"3BG2gp4EJAF-$\"3U+++++++!)F-7$7$Fdp$\" 3a,++++++!)F-F\\o7$7$$\"3E+++++++GF-$\"3k5(RVuXy](F-7$$\"3cW!))4*3*Hp# F-$\"3?,++++++wF-7$FbqF^p7$7$$\"31+++++++KF-$\"3#yXdAx*\\jrF-7$$\"3-++++++?(F-7$7$F_r$\"3%3++++++?(F-7$F^q$\"3v6(RVuXy](F -7$Fiq7$$\"3I=2&4L:uX$F-$\"32#G\\!pYeUpF-7$7$$\"3')*************f$F-$ \"3C:#>Z!y@?oF-F[s7$7$$\"3m**************RF-$\"3_J&4\")f>sZ'F-7$$\"3< \\LZ[#eNi$F-$\"3Q*************z'F-7$7$F]t$\"3[+++++++oF-Fas7$7$$\"3Y** ***********R%F-$\"3M'\\.0*fuLhF-7$$\"3]Ur&G9d+4%F-$\"39+++++++kF-7$7$F \\u$\"3-*************R'F-7$$\"37**************RF-$\"3SI&4\")f>sZ'F-7$7 $$\"3s)************z%F-$\"3CEOa#=B\"*y&F-7$$\"3S;F!>)>pbXF-$\"3w****** ********fF-7$7$$\"3'er->)>pbXF-FbvFft7$7$$\"31*************>&F-$\"3*HY %p68hUaF-7$$\"3YIls'o0\">]F-$\"3a+++++++cF-7$7$F_w$\"3U*************f& F-7$F[v$\"37DOa#=B\"*y&F-7$7$Few$\"3WaHh8AP$4&F-7$$\"3?8'p?tW)yaF-Fjv7 $7$$\"3I9'p?tW)yaF-FjvFiv7$7$Fbv$\"3@6Mi=bUSZF-7$$\"3b)*>\\_EMLfF-$\"3 #)*************z%F-7$7$$\"3W(*>\\_EMLfF-$\"3E*************z%F-F[x7$7$F ^u$\"353=FMhe#Q%F-7$$\"3['=k(G!**3Q'F-Fgt7$FhyFfx7$7$F^u$\"3a2=FMhe#Q% F-7$$\"3Mzc&QFbrf'F-$\"3D?V9EZ%G?%F-7$7$Fct$\"3)pTU-R;z,%F-F`z7$7$Fer$ \"3hzJ9HRWWOF-7$$\"3i:Nx\"=_'>oF-Fhs7$F][lFfz7$7$Feq$\"3Gp8U=V0gKF-7$$ \"3%o&G9dGaZsF-Fbs7$Fe[l7$$\"3u*************>(F-$\"30zJ9HRWWOF-7$7$Fjp $\"37CP[XxNhGF-7$$\"3)4\\&HvXEiwF-Fjq7$7$$\"3))*[&HvXEiwF-FjqFb[l7$7$F do$\"3DpHJVrWVCF-7$$\"3%p'=DRM>h!)F-F^q7$F]]lF_\\l7$7$Fen$\"3ww(eb-%o) *>F-7$$\"3U8,!y07*)z)F-F]o7$Fe]l7$$\"3iv>Jn(H(*y)F-$\"3=E!)oK-F5?F-7$7 $$\"3nH_`)p%GT%)F-F_pFi]l7$7$$\"3cG_`)p%GT%)F-F_pFj\\l7$7$FP$\"34.n:N> [0:F-7$$\"3%***********fH\"*F-FT7$7$$\"3$))*********fH\"*F-FTFb]l7$7$F A$\"3-(e#e>pV:$*F*7$$\"32?b^kC`F%*F-FE7$Fe_l7$FLFh^l7$7$F1F/7$$\"3q7dG 9d3())*F-F(7$F\\`l7$$\"37)3$feTAr(*F-$\"3/]\"pSTexG'F*7$7$$\"3[_aGd\"4 Xo*F-F6F``l7$7$$\"3g`aGd\"4Xo*F-F6Fb_l-%'COLOURG6&%$RGBG\"\"\"F0F0-%+A XESLABELSG6$%\"tG%\"hG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 70 "Relati ve volume against time would be more difficult to plet - try it!" } {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 103 "t100:= 1: t80:=1-10/7*h20^(3/2)+3/7*h20^(5/2): (t100-t80)/t100*100;\n# time \+ to empty tha last 20% volume" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+O* =&*3$!\")" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 4 "Q54:" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 332 "restart: # speed of A+B->C reaction is proportional to the remaining amount of\nfirst rea ctant, (a-y), in moles, and of the second reactant, (b-y),\nand a cons tant k (a function of temperature, which we keep fixed),\nwhere y is t he amount (in moles) of the resulting compound.\nThis explains the y'= k(a-y)(b-y) equation. We solve it by:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "sol:=int(1/(a-y)/(b-y),y)=k*t+C;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$solG/,&*&,&%\"bG!\"\"%\"aG\"\"\"F*-%#lnG6#,&F+F*%\"y GF,F,F,*&F(F*-F.6#,&F)F*F1F,F,F*,&*&%\"kGF,%\"tGF,F,%\"CGF," }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 82 "where C must be chosen to meet th e obvious initial-value condition y(0)=0, thus:" }{MPLTEXT 1 0 0 "" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "solve(eval(sol,\{t=0,y=0\} ),C);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&,&-%#lnG6#,$%\"aG!\"\"F+- F'6#,$%\"bGF+\"\"\"F0,&F/F+F*F0F+F+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 59 "Substituting this C back into the general solution yields: " } {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "y:=solv e(eval(sol,\{C=%\}),y);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"yG**%\" bG\"\"\"%\"aGF',&-%$expG6#,&*(%\"kGF'%\"tGF'F&F'!\"\"*(F/F'F0F'F(F'F'F 'F'F1F',&*&F*F'F(F'F'F&F1F1" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 88 "To get the solution for the a=b case (most common - why?), we compute th e b -> a limit:" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 65 "limit(y,b=a); # solution for a=b, as a limit of the a <>b solution" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#**%\"kG\"\"\"%\"tGF%% \"aG\"\"#,&F%F%*(F$F%F&F%F'F%F%!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 122 "Back to the a-not-equal-to-b case: When a>b, y(t) must ten d, in the t -> infinity limit, to b (why?), which is does:" } {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "assume( a>b,k>0);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "limit(y,t=infi nity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%#b|irG" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 65 "assume(a " 0 "" {MPLTEXT 1 0 20 "li mit(y,t=infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%#a|irG" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 103 "Finally, building the a=b soluti on from the y'=k.(a-y)^2 equation (getting the same answer as before: " }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "rest art: # solution for a=b, from the y'=k(a-y)^2 equation" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "sol:=int(1/(a-y)^2,y)=k*t+C;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$solG/*&\"\"\"F',&%\"aGF'%\"yG!\"\"F +,&*&%\"kGF'%\"tGF'F'%\"CGF'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "solve(eval(sol,C=1/a),y); # agrees with the previous answer" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#**%\"kG\"\"\"%\"tGF%%\"aG\"\"#,&*(F$F% F&F%F'F%F%F%F%!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "limi t(%,t=infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%\"aG" }}}}{MARK " 47" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }