
• First-order ODF
Separable:

y0 = h(x) · g(y)Z
dy

g(y)
=

Z
h(x)dx+ C

Scale-independent:

y0 = g
³y
x

´
y(x) = x · u(x)

Linear:

y0 + g(x) · y = r(x)

y(x) = c(x) · e−
R
g(x)dx

Bernoulli:

y0 + f(x) · y = r(x) · ya
y = u

1
1−a

Exact:

∂f

∂x
dx+

∂f

∂y
dy = 0

f(x, y) = C

’Nearly’ exact:
P (x, y)dx+Q(x, y)dy = 0

has integrating factor F , given by:

d lnF

dx
=

∂P
∂ y
− ∂Q

∂ x

Q

when RHS contains no y, or

d lnF

dy
=

∂Q
∂ x
− ∂P

∂ y

P



when RHS contains no x.

Clairaut:

y = xy0 + g(y0)
y = xC + g(C) regular family of solutions

y = xp+ g(p)
x = −g0(p)

¾
singular solution

• Second-order ODE
Missing y: Solve for y0.

Missing x: Solve for y0 as a function of y.

Linear:
y00 + f(x)y0 + g(x)y = r(x)

Solve homogeneous version (if you can), getting two basic solutions y1 and
y2, then get yp by VP. General solution : y = Ay1 +By2 + yp.

with constant coefficients (meaning f and g): Solve characteristic polynomial,
then y1 = eλ1x, etc. (know how to deal with complex and duplicate roots).
Also know how to deal with r(x) = P (x) · eαx, where P (x) is a polynomial
in x, by technique of Undetermined Coefficients (UC).

Cauchy:
x2y00 + a x y0 + b y = r(x)

by introducing new independent variable t = lnx. Basic solutions to homo-
geneous version are of the xm type; know how to set up the corresponding
characteristic polynomial for possible values of m.

• Higher-order linear ODE with constant coefficients
Simple extension of the 2nd-order case (only the characteristic polynomial
becomes a bit more difficult to solve, but we have Maple). Understand the
VP and UC techniques. Also, the Cauchy variant.

• Set of linear, 1st-order, constant-coefficient equations
y0 = Ay + r(x)

Basic solutions of homogeneous version are: q ·eλx, where λ and q are eigen-
values and corresponding eigenvectors of A (know how to deal with complex



and duplicate eigenvalues). When r(x) = P(x) · eαx, we can construct yp by
the UC technique (αmust not coincide with any λ). Otherwise, we construct
yp by VP:

y(p) = Y
Z
Y−1 · r(x) dx

• Power-Series Technique
Be able to solve a 2nd order, linear, homogeneous differential equation by
substituting

y =
∞X
i=0

cix
i,

deriving a recurrence formula for the ci’s, solving for the first handful of these,
and identifying the pattern if possible. I would usually give you c0 = y(0)
and c1 = y0(0).

• Method of Frobenius
is used when the coefficients of the previously described equation contain
x and/or x2 in the denominator. Find and solve the indicial equation for r,
substitute

y =
∞X
i=0

cix
i+r

and follow the same steps as in the previous case. This time, I would usually
ask only for the first basic solution (with the bigger r).

• Be able to (in the same type of equation) introduce a new dependent variable,
followed by introducing a new independent variable. The equation should
then turn into an equation (usually Bessel) for which the solution is known.

• A point, vector, straight line and plane in 3D, and how are they represented
in Cartesian (usual) coordinates. Dot and cross product (of two vectors),
and how they can help to establish the (shortest) distance between two
’objects’ (points, straight lines, planes - take all combinations). For the line-
plane and plane-plane combination, the shortest distance is 0 unless they
are parallel (can you tell whether they are?). Areas of triangles and volumes
of tetrahedrons. Vector can also be multiplied by a scalar (elementwise).



• Curves
Be able to parametrize at least a straight line (in 3D) and a circle (in one
of the coordinate planes). For a given curve (in its parametric form - seen
as a motion of a particle), find velocity, speed, acceleration (tangential and
normal). Also (at a given point) curvature and torsion.

• Gradient of a scalar field, and divergence and curl of a vector field. Find a
normal vector to a f(x, y, z) = c surface. Directional derivative of a scalar
field.

• Type I Line Integrals
One must first parametrize the curve, than do:Z

C

f(x, y, z) ds =

Z t2

t1

f(r(t))|ṙ(t)| dt

(independent of parametrization).

Curve’s length

L =

Z
C

ds

center of mass 
R
C

x ds

L
,

R
C

y ds

L
,

R
C

z ds

L


and moment of inertia

M

L

Z
C

d(x, y, z)2 ds

where d(x, y, z) is the distance from a given axis (shortest distance from
[x, y, z] to a straight line - remember?) and M is the curve’s mass (when
they tell you that the curve has a unit mass density, take M

L
= 1).

Average value of f(x, y, z) over a curveR
C

f(x, y, z) ds

L



• Type II line integrals
One must first parametrize the curve, then do:Z

C

g(x, y, z) • dr =
Z t2

t1

g(r(t)) • ṙ(t) dt

(also independent of parametrization).

Path independent when curl(g) = 0, in which case

bZ
a

g(x, y, z) • dr = f(b)− f(a)

where a and b are two given points, and f(x, y, z) is such that its gradient
equals g (be able to find f). Over a closed curve, this integral would have
to equal to 0 (right?).

• Double Integrals ZZ
R

f(x, y) dxdy

(dxdy is sometimes, quite appropriately, replaced by dA, denoting an in-
finitesimal area) are evaluated by converting them into two consecutive uni-
variate (i.e. having a single variable, the usual) integrals, the first (inner)
with respect to x (with conditional limits which may depend on y), the sec-
ond with respect to y (with marginal, ’shadow’ limits). Or the other way
round (the two results must be the same).

Area of R
A =

ZZ
R

dxdy

its center of mass 
RR
R

x dxdy

A
,

RR
R

y dxdy

A


and moment of inertia

M

A

ZZ
R

d(x, y)2dxdy



whereM is the total mass, and d is the distance from axis of rotation. Unit
mass density means M

A
= 1.

Volume ZZ
R

h(x, y) dxdy

where h(x, y) is the (3D) object’s ’thickness’ (in the z direction), and R is
its ’shadow’ in the x-y plane.

• Type I Surface Integrals
One must first parametrize the surface, then do:ZZ

S

f(x, y, z) dA =

ZZ
R

f(r(u, v))|ru × rv| dudv

(independent of parametrization).

Surface’s area
A =

ZZ
S

dA

center of mass 
RR
S

x dA

A
,

RR
S

y dA

A
,

RR
S

z dA

A


and moment of inertia

M

A

ZZ
S

d(x, y, z)2 dA

where d(x, y, z) is the distance from a given axis, and A is the surface’s mass
(when they tell you that the surface has a unit mass density, take M

L
= 1).

Average value of f(x, y, z) over a surface

f̄ ≡

RR
S

f(x, y, z) dA

A

• Type II Surface integrals



One must first parametrize the surface, then do:ZZ
S

g(x, y, z) • dA =
ZZ
R

g(r(u, v)) • (ru × rv) dudv

(also independent of parametrization).

• Triple (volume) integrals
are only of one (scalar) type, namelyZZZ

V

f(x, y, z)dV

where V is a 3D region. They can be converted into three consecutive
univariate integrals. To start with, say, the dz integration, one has to solve
the equation(s) for the surface (sides) of V for z, to get the integral’s limits.
One then has to project V into the x-y plane, and integrate the result of the
dz integration over this projection (a usual 2D integral).

The integration is sometimes simplified by introducing (three) new variables,
say θ, φ and r - the so called spherical coordinates being most common.
Don’t forget that dxdydz must be replaced by the Jacobian, multiplied by
dθdφdr (for spherical coordinates, the Jacobian is r2 sin θ).

Using triple integrals, one can find a volume, center of mass, moment of
inertia of any 3D region. Also, an everage value of f(x, y, z) over such
region.

• Gauss (divergence) Theorem
There is an interesting connection between a Type-II surface integral over a
closed surface, and a volume integral of the corresponding divergence (over
the 3D region enclosed by the surface):ZZ

Sc

g • dA ≡
ZZZ
V

Div(g) dV

• Stokes Theorem



Similarly, there is a connection between a Type-II line integral over a closed
curve Cd, and a (Type-II) surface integral of the corresponding curl (over
any surface with Cd as boundaries):I

Cd

g • dr ≡
ZZ
S

Curl(g) • n dA

• Analytic functions - Differentiation
Understand the four basic operations (+, -, *, /) on complex numbers,
also polar representation of a complex number. Also the fact that complex
numbers can be seen as vectors in 2D.

Be able to evaluate a complex expression (or a function, at a specific z), ez,
Ln(z), and n

√
z in particular.

Be able to tell when a function of z is analytic (easy - it must not contain
conjugation, Re, Im, or |..|), and where are its singularities and branch
points. Its derivative is then the same as if z were real. An analytic function
of z = x + iy can be written as u(x, y) + i v(x, y), where both u and v are
harmonic (be able to find v given u, or u given v, based on Rieman-Cauchy
equations).

• Complex Integration
To evaluate Z

C

f(z) dz

we have to parametrize C, i.e. find z(t) which takes us through C when t
varies from t1 to t2, and then computeZ t2

t1

f(z(t)) ż(t) dt

(thus evaluating two ordinary integrals, as the integrand consists of Re and
Im parts - both real functions of t).

This is necessary only when f(z) is not analytic. For fully analytic (entire)
functions, we can do insteadZ

C

f(z) dz = F (z)|z2z=z1



where F (z) is the usual antiderivative (indefinite integral) of f(z), found as
if z were real, and z1 and z2 are the initial and final points of C. This type
of integral is thus path independent.

• Contour Integration
When f(z) is an analytic function with a few singularities, we can eval-
uate I

C

f(z) dz

over any closed path (traversed counterclockwise) by finding the residue of
each singularity inside C, and multiplying their sum by 2πi.

The residue of f(z) at z0 is found by

lim
z→z0

(z − z0)f(z)

(with the help of L’Hopital rule, if necessary), when dealing with a first-order
singularity (most common), and

limz→z0[(z − z0)
mf(z)](m−1)

(m− 1)!
for an mth-order singularity. The value of m can be established by starting
the above computation with m = 1, and moving to a higher m each time
we get an infinite answer.

This can help evaluating real integrals of the following typeZ ∞

−∞

P (x)

Q(x)
dx

where P and Q are two polynomials (the degree of Q must be higher than
that of P by at least 2, and Q must have no real roots), andZ 2π

0

R(sin t, cos t)dt

where R is a rational function (whose denominator must have no real roots).


