
RANDOM VARIABLES (Discrete Case)

When each outcome (simple event) of a random experiment is assigned a number (in this

chapter, an integer), this defines a random variable (RV). In the same experiment, we

can define several random variables, and call them X, Y, Z, etc. (capital letters from the

end of the alphabet).

EXAMPLE: Using the experiment of rolling two dice, we can define X as the total

number of dots, and Y as the larger of the two numbers. This means assigning numbers to

individual simple events in the following fashion:

X:

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

Y :

1 2 3 4 5 6

2 2 3 4 5 6

3 3 3 4 5 6

4 4 4 4 5 6

5 5 5 5 5 6

6 6 6 6 6 6

¥

Note the difference between events and random variables: an event is effectively assigning,

to each outcome, of either ’yes’ or ’no’ (a Boolean value).

(Probability) Distribution of a RV

is a table (or formula) giving us the information about (i) all possible values of the RV

(ii) and their individual probabilities. Thus, for example, our X and Y have the following
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(probability) distributions:

X = 2 3 4 5 6 7 8 9 10 11 12

Pr:
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

and

Y = 1 2 3 4 5 6

Pr:
1

36

3

36

5

36

7

36

9

36

11

36

The probabilities must add up to 1.

Eventually, we will find it more convenient to express the same information using a

formula (called probability function) instead of a table. Thus, for example the distribution

of X can be specified by: Pr(X = i) ≡ fx(i) =
6− |i−7|
36

, where i = 2, 3, ...12. Similarly:

Pr(Y = i) ≡ fy(i) =
2i−1
36

, where i = 1, 2, ...6. Formulas become more convenient when

dealing with RVs having too many (sometimes infinitely many) values.

Thus, for example, if we go back to the experiment of flipping a coin till a head appears,

and define X as the total number of tosses, we have a choice of either

X = 1 2 3 4 ..... i .....

Pr: 1
2

1
22

1
23

1
24

..... 1
2i

.....

or fx(i) = 1
2i
, where i = 1, 2, 3,......

Sometimes it’s useful to have a graph (histogram) of a distribution. Probabilities are
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usually displayed as vertical bars, each centered on the actual value.

1 2 3 4 5 6

0.05

0.1

0.15

0.2

0.25

0.3

Y

Distribution Function of a RV is defined by: Fx(k) = Pr(X ≤ k) i.e. a table or a

formula providing cumulative probabilities. Thus, using our previous example:

Y = 1 2 3 4 5 6

F :
1

36

4

36

9

36

16

36

25

36
1

Obviously, F (k) cannot decrease with increasing k, and the last value must be equal to

1 (when there is no last value, it is the limit which must equal to 1).

EXAMPLE: For the total number of tosses to get the first head, we get

F (k) =
kP
i=1

(1
2
)i = 1− (1

2
)k, where k = 1, 2, 3,... Note that lim

k→∞
F (k) = 1.

Multivariate (or joint) distribution

of several RV’s.. When there are only two of them (the bi-variate case), all we need is a

two-dimensional table which spells out, for every possible pair of values, the corresponding

probability. Alternately, these probabilities can be computed from a joint probability

function f(i, j) ≡ Pr(X = i ∩ Y = j), and the range of possible i and j values (this can

get tricky).
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EXAMPLE: A coin is flipped three times, X is the total number of tails, Y is the number

of heads up to the first tail.

Outcome: Prob: X: Y :

HHH 1
8

0 3

HHT 1
8

1 2

HTH 1
8

1 1

HTT 1
8

2 1

THH 1
8

1 0

THT 1
8

2 0

TTH 1
8

2 0

TTT 1
8

3 0

The joint distribution of X and Y follows:

Y =

X =
0 1 2 3

0 0 0 0 1
8

1 1
8

1
8

1
8
0

2 2
8

1
8
0 0

3 1
8
0 0 0

Note that once we know the joint distribution of X and Y, we don’t need to know what

experiment it came from.

The joint distribution function is defined as F (i, j) = Pr(X ≤ i∩ Y ≤ j). We won’t use it

much.

Marginal distribution ofX (and, similarly, of Y ) is, effectively the ordinary (univariate)

distribution of X (as if Y never existed). It can be obtained from the bivariate (joint) dis-
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tribution by adding the probabilities in each row (total probability formula), e.g.:

Y =

X =
0 1 2 3

0 0 0 0 1
8

1
8

1 1
8

1
8

1
8
0 3

8

2 2
8

1
8
0 0 3

8

3 1
8
0 0 0 1

8

Similarly, one can find the marginal distribution of Y by adding the probabilities in each

column.

A bivariate distribution is often given to us via the corresponding joint probability

function. At this level, we try to convert that information into an explicit table when-

ever possible (tables are easier to deal with).

EXAMPLE: Consider the following bivariate probability function of two random variables

X and Y :

fxy(i, j) = c · (2i+ j2) where
0 ≤ i ≤ 2 (Marginal range)

i ≤ j ≤ 4− i (Conditional range)

Find the value of c, the marginal distribution of Y and (based on this) Pr(Y ≤ 2).
Solution:

Y = 0 1 2 3 4

X = 0 0c 1c 4c 9c 16c

1 × 3c 6c 11c ×
2 × × 8c × ×

which clearly implies that c = 1
58
, the marginal distribution of Y is

Y = 1 2 3 4

Pr
4

58

18

58

20

58

16

58
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and Pr(Y ≤ 2) = 22
58
= 37.93%. Note that the ranges could be ‘reversed’, thus: 1 ≤ j ≤ 4

(marginal) and 0 ≤ i ≤ 2− |j − 2| (conditional).

Another EXAMPLE of ‘reversing’ two ranges of a bivariate distribution: 0 ≤ i ≤ 2

(marginal) and i ≤ j ≤ i + 2 (conditional) can be also expressed as: 0 ≤ j ≤ 4 (marginal)
and max(0, j − 2) ≤ i ≤ min(2, j) (conditional). Verify that these two (seemingly different)
sets of inequalities describe the same set of i, j values.

Independence of X and Y is almost always a consequence of ‘natural’ independence.

It means that Pr(X = i ∩ Y = j) =Pr(X = i)×Pr(Y = j) for every possible combination

of i and j. This implies that, when X and Y are independent, their individual, marginal

distributions is all we need.

All of these concepts can be extended to three or more RVs. This time, explicit tables

are no longer practical, and we have to rely on joint probability functions

fxyz(i, j, k) ≡ Pr(X = i ∩ Y = j ∩ Z = k)

Stipulating the permissible ranges of i, j and k now gets even more tricky:.there are 6

distinct ways of doing that, can you see why?

Based on fxy(i, j), we should be able to tell instantly whether the corresponding RVs

are independent or not. They are, if and only if both of the following conditions are met:

(i) fxy(i, j) can be written as a product of a function of i times a function of j (let’s call

such function ‘separable’), and (ii) the i and j ranges are (algebraically) independent of each

other (i.e. in each range, both limits are fixed numbers). This extends easily to the case of

3 or more RVs.

EXAMPLES:
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1. f(i, j) = i+j
24
, where 1 ≤ i ≤ 3 and 1 ≤ j ≤ i, clearly implies that X and Y are not

independent (both conditions violated).

2. f(i, j, k) = i·j·k
108

, where 1 ≤ i ≤ 3, 1 ≤ j ≤ 3 and 1 ≤ k ≤ 2. Yes, X, Y and Z are

independent (it is easy to establish the corresponding marginals).

Conditional Distribution of X, given that Y has been observed to have a specific

value, which we denote j (no longer a ‘variable’) is defined via its conditional probability

function as follows

fx(i | Y = j) ≡ Pr(X = i|Y = j) = Pr(X = i ∩ Y = j)
Pr(Y = j)

where i varies over its conditional range, given the value of j. In practice, this means

pulling out the corresponding row (column) of the bivariate table, and ‘re-normalizing’ its

probabilities (each is divided by their total).

Note that conditional distributions have all the properties of ordinary distributions.

EXAMPLE: Using our original example, we can easily construct
Y |X = 2 0 1

Prob: 2
3

1
3

by

taking the probabilities in the X = 2 row, and dividing each of them by the corresponding

marginal probability of X = 2. The values with zero probability should be discarded.

Similarly:
X |Y = 0 1 2 3

Prob: 1
4

2
4

1
4

Things get more tricky when dealing with three (or more) RVs. One can define a

conditional distribution of one, given values of the other two, say:

Pr(X = i |Y = j ∩ Z = k) = fxyz(i, j,k)

fyz(j,k)
≡ fx(i | Y = j, Z = k)

or a conditional (joint) distribution of two of them, given a value of the third:

Pr(X = i ∩ Y = j |Z = k) = fxyz(i, j,k)

fz(k)
≡ fxy(i, j | Z = k)
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Mutual independence implies that all conditional distributions are the same as the

corresponding marginal distribution (i.e. ignore/remove the condition). For example, when

X, Y and Z are mutually independent, fx(i |Y = j) ≡ fx(i), fx(i |Y = j, Z = k) ≡ fx(i), etc.

Transforming RVs

When X is a random variable, any ‘transformation’ of X (i.e. an expression involving

X, such as
X

2
+ 1) defines a new random variable (say V ), with its own distribution.

EXAMPLE: If X has a distribution given by
X = 0 1 2 3

Prob: 1
8

3
8

3
8

1
8

then, to build a

distribution of V = X
2
+ 1, one simply replaces the first-row values of the previous table,

thus:
V = 1 3

2
2 5

2

Prob: 1
8

3
8

3
8

1
8

Similarly, if the new RV is U = (X − 2)2 (one can define any number of new RVs based

on the same X), using the same approach the new table looks:
U = 4 1 0 1

Prob: 1
8

3
8

3
8

1
8

Here

we don’t like the duplication of values and their general ‘disorder’, so the same table should

be presented as:
U = 0 1 2 3 4

Prob: 3
8

4
8
0 0 1

8

¥

The most important is the so called linear transformation of X, i.e.

Y = aX + b

where a and b are two constants. Note that the shape (in terms of a histogram) of the

Y -distribution is the same as that of X, only the horizontal scale has different tick marks

(the new random variable is effectively the old random variable on a new scale - when X is

temperature in Celsius, Y ‘transforms’ it to Fahrenheit).
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Transforming Two RVs (into a single one)

EXAMPLE: If X and Y have the distribution of our old bivariate example, and W =

|X − Y |, we can easily construct the (univariate) distribution of W by first building a table

which shows the value of W for each X, Y combination:

Y =

X =
0 1 2 3

0 0i 0 1i 0 2i 0 3i 1
8

1 1i 1
8
0i 1

8
1i 1

8
2i 0

2 2i 2
8
1i 1

8
0i 0 1i 0

3 3i 1
8
2i 0 1i 0 0i 0

and then collect the probabilities of each unique value ofW, from the smallest to the largest,

to yield

W = 0 1 2 3

Prob: 1
8

3
8

2
8

2
8

Transforming RVs is a lot more fun in the continuous case.
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