
EXPECTED VALUE of a RV

corresponds to the average value one would get for the RV when repeating the experiment,

independently, infinitely many times. More accurately, consider a Random Independent

Sample (RIS) of n values of X (e.g. 0, 1, 1, 0, 2, 1, 2, 1, 1, 0) and the corresponding

Sample Mean X̄ ≡
Pn

j=1Xj

n
≡ P

All i
i×fi

¡
= 0× 3

10
+ 1× 5

10
+ 2× 2

10
= 0.9

¢
, where fi are the

observed relative frequencies (of each possible value). We know that, as n (the sample

size) increases, each fi tends to the corresponding Pr(X = i).This implies that, in the same

limit, X̄ tends to
P
All i

i · Pr(X = i), which we denote E(X) and call the expected (mean)

value of X (so, in the end, the expected value is computed from the theoretical probabilities,

not by doing the experiment). Note that
P
All i

i · Pr(X = i) is a ‘weighted’ average of all

possible values of X by their probabilities. And, as we have two names for it, we also have

two alternate notations, E(X) is sometimes denoted µx (the Greek ‘mu’).

EXAMPLES:

• WhenX is the number of dots in a single roll of a die, we get E(X) = 1+2+3+4+5+6
6

= 3.5

(for a symmetric distribution, the mean is at the centre of symmetry - for any other

distribution, it is at the ‘center of mass’). Note that the name ‘expected’ value is

somehow misleading.

• Let Y be the larger of the two numbers when rolling two dice. E(Y ) = 1 × 1
36
+ 2 ×

3
36
+ 3× 5

36
+ 4× 7

36
+ 5× 9

36
+ 6× 11

36
= 1+6+15+28+45+66

36
= 161

36
= 4.472̄.

• Let U have the following (arbitrarily chosen) distribution:

U = 0 1 2 3 4

Prob: 0.3 0.2 0.4 0 0.1

E(U) = 0.2 + 0.8 + 0.4 = 1.4.
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What happens to the expected value of X when we transform it, i.e. define a new RV

by: U ≡ X
1+X

, or g(X) in general?

The main thing to remember is that, in general, the mean does not transform accordingly,

i.e. µu 6= µx
1+µx

, etc. This is also true for a transformation of X and Y, i.e. E[h(X,Y )] 6=
h(µx, µy).

But (at least one good news), to find the expected value of g(X), h(X,Y ), ..., we can

bypass constructing the new distribution (which was a tedious process) and use:

E[g(X)] =
X
All i

g(i)× Pr(X = i)

E[h(X,Y )] =
X
All i,j

h(i, j)× Pr(X = i ∩ Y = j)

EXAMPLE:

Based on U , we defineW = |U−2|3 and compute E(U) = 8×0.3+1×0.2+0×0.4+8×0.1 =
3.4. Clearly, it would have been a mistake to use |1.4− 2|3 = 0.216 (totally wrong).
We can also get the correct answer the ‘long’ way (just to verify the ‘short’ answer), by

first finding the distribution of W :

W = 8 1 0 8

U = 0 1 2 4

Prob: 0.3 0.2 0.4 0.1

implying
W = 0 1 8

Prob: 0.4 0.2 0.4
. Based on this, E(W ) = 0.2 + 3.2 = 3.4 (check).

Exception: Linear Transformations

Only for these, we can find the mean of the new RV by simply replacing X by µx, thus:

E(a ·X + c) = a · µx + c
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Proof: E(a ·X + c) =
P
All i
(a · i+ c)fx(i) = a

P
All i

i× fx(i) + c
P
All i

fx(i) = a · µx + c ¥

EXAMPLE: E(2U − 3) = 2× 1.4− 3 = −0.2

Expected values related to a bivariate distribution

When a bivariate distribution is given, the easiest way to compute the individual expected

values (of X and Y ) is through the marginals.

EXAMPLE:

X =

1 2 3

Y = 0 0.1 0 0.3 0.4

1 0.3 0.1 0.2 0.6

0.4 0.1 0.5

we compute E(X) = 1× 0.4 + 2× 0.1 + 3× 0.5 = 2.1 and E(Y ) = 0× 0.4 + 1× 0.6 = 0.6.

This is how we also deal with an expected value of g1(X) and/or g2(Y ).

Only when the new variable is defined by h(X,Y ), we have ‘weigh-average’ the whole

table. For example: E(X · Y ) = 1× 0× 0.1 + 2× 0× 0 + 3× 0× 0.3 + 1× 1× 0.3 + 2× 1×
0.1 + 3× 1× 0.2 = 1.1

More EXAMPLES:

• E [(X − 1)2] = 02 × 0.4 + 12 × 0.1 + 22 × 0.5 = 2.1

• E £ 1
1+Y 2

¤
= 1

1+02
× 0.4 + 1

1+12
× 0.6 = 0.7

• E
h
(X−1)2
1+Y 2

i
(multiplying the last two results would be wrong). Here it may help to first

build the corresponding table of the (X−1)2
1+Y 2

values:
0 1 4

0 1
2
2
. Answer: 1.2 + 0.05 +

0.4 = 1.65
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For Linear Transformation (of two RVs) we get:

E(a ·X + b · Y + c) = a · µx + b · µy + c

Proof: E(aX+ bY +c) =
P
i

P
j

(a× i+b× j+ c)fxy(i, j) = a
P
i

i×fx(i)+ b
P
j

j×fy(j)+c =

a · E(X) + b · E(Y ) + c Note that X and Y need not be independent !

EXAMPLE: Using the previous bivariate distribution, E(2X − 3Y + 4) is simply
2× 2.1− 3× 0.6 + 4 = 6.4

The previous formula easily extends to any number of RVs (again, not necessarily inde-

pendent!)

E(a1X1 + a2X2 + ...+ akXk + c) =

a1E(X1) + a2E(X2) + ...+ akE(Xk) + c

¥

Can Independence help (in other cases of expected value)?

Yes, the expected value of a product of RVs equals the product of the individual expected

values, but ONLY when these RVs are independent:

E(X · Y ) = E(X) · E(Y )

Proof:

E(X · Y ) =P
i

P
j

i× j × fx(i)× fy(j) =

µP
i

i× fx(i)

¶
×
ÃP

j

j × fy(j)

!
= E(X) · E(Y ) ¥

The statement can actually be made more general: When X and Y are independent

E [g1(X) · g2(Y )] = E [g1(X)] · E [g2(Y )]

Moments of a RV
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There are two types of ‘moments’, Simple Moments

E(Xk)

and Central Moments

E
£
(X − µx)

k
¤

where k is an integer.

Special cases: The 0th moment is identically equal to 1. The first simple moment is

µx (yet another name for it!). The second simple moment is E(X2) 6= µ2x, etc. The first

central moment is identically equal to 0. The second central moment E [(X − µx)
2] must be

≥ 0 (averaging non-negative quantities cannot result in a negative number). It is of such
importance that it gets its own name: the variance of X, denoted Var(X). When doing

the computation ‘by hand’, it helps to realize that E [(X − µx)
2] = E(X2)− µ2x.

As a measure of the spread of the distribution of X values, we take σx ≡
p
Var(X)

and call it the standard deviation of X. For all distributions, the (µ− σ, ρ+ σ) interval

should contain the ‘bulk’ of the distribution, i.e. anywhere from 50 to 90% (in terms of the

corresponding histogram).

Finally, skewness is defined as
E [(X − µx)

3]

σ3x
(it measures to what extent is the distri-

bution non-symmetric, or ‘skewed’), and kurtosis as
E [(X − µx)

4]

σ4x
(it measures the degree

of ‘flatness’, 3 being its typical value, higher for ‘peaked’, smaller for ‘flat’ distributions).

These are a lot less important than the mean and variance (later, we will understand why).

EXAMPLES:

• X is the number of dots when rolling one die: µx =
7
2
, Var(X) = 12+22+32+42+52+62

6
−¡

7
2

¢2
= 35

12
implying σx =

q
35
12
= 1.7078. Note that 3.5±1.708 contains 66.7% of the dis-

tribution. Skewness, for a symmetric distribution, is always equal to 0, kurtosis can be
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computed from E [(X − µ)4] = (−2.5)4+(−1.5)4+(−0.5)4+0.54+1.54+2.54
6

= 14. 729 ⇒kurtosis
=
14.729

(35
12
)2
= 1. 7314 (‘flat’).

• For
U = 0 1 2 4

Prob: 0.3 0.2 0.4 0.1
µu = 1.4, Var(U) = 0

2×0.3+12×0.2+22×0.4+42×

0.1−1.42 = 1.44⇒σu =
√
1.44 = 1.2. From E [(U − µu)

3] = (−1.4)3×0.3+ (−0.4)3×
0.2 + 0.63 × 0.4 + 2.63 × 0.1 = 1.008, the skewness is

1.008

1.23
= 0.583̄ (long right tail),

and from E [(U − µu)
4] = (−1.4)4×0.3+ (−0.4)4×0.2+ 0.64×0.4+ 2.64×0.1 = 5.7792

the kurtosis equals 5.7792
1.24

= 2.787

When X is transformed to Y = g(X), we already know that there is no general ‘shortcut’

for computing E(Y ). This (even more so) applies to the variance of Y, which also needs to

be computed ‘from scratch’. But, we did manage to simplify the expected value of a linear

transformation of X (i.e., of Y = aX + c). Is there any direct conversion of Var(X) into

Var(Y ) in this (linear) case?

The answer is ’yes’, and we can easily derive the corresponding formula: Var(aX + c) =

E [(aX + c)2]−(aµx+c)2 = E [a2X2 + 2acX + c2]−(aµx+c)2 = a2E(X2)−a2µ2x = a2Var(X).

This implies that

σaX+c = |a| · σX

Moments - the bivariate case

Firstly, there will be the individual moments of X (and, separately, Y ), which can be

established based on the corresponding marginal distribution.

Are there any other (joint) moments? Yes, and again we have the simple moments

E(Xk · Y m) and the central moments E
£
(X − µx)

k · (Y − µy)
m
¤
. The most important of
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these is the first,first central moment called the covariance of X and Y :

Cov(X,Y ) = E
£
(X − µx) · (Y − µy)

¤ ≡ E(X · Y )− µx · µy

It is obviously ‘symmetric’, i.e. Cov(X,Y ) =Cov(Y,X) and it becomes zero when X and Y

are independent (but not necessarily the other way round).

Based on Cov(X,Y ), one can define the Correlation Coefficient between X and Y

by:

ρxy =
Cov(X,Y )

σx · σy
(Greek letter ‘rho’). Its value must be always between −1 and 1.
Proof: Obviously,

Var(X − bY ) = Var(X)− 2bCov(X,Y ) + b2Var(Y ) ≥ 0

for any value of b, including

b = Cov(X,Y )
Var(Y )

This implies that

Var(X)− 2Cov(X,Y )
Var(Y ) Cov(X,Y ) + Cov(X,Y )2

Var(Y )2 Var(Y )

= Var(X)− Cov(X,Y )2

Var(Y ) ≥ 0

which, after dividing by Var(X) yields

1 ≥ ρ2

¥
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EXAMPLE: For one of our previous distributions

X =

1 2 3

Y = 0 0.1 0 0.3 0.4

1 0.3 0.1 0.2 0.6

0.4 0.1 0.5

we

get µx = 2.1, µy = 0.6, Var(X) = 5.3−2.12 = 0.89, Var(Y ) = 0.6−0.62 = 0.24, Cov(X,Y ) =

0.3 + 0.2 + 0.6− 2.1× 0.6 = −0.16 (may be negative), and ρxy =
−0.16√
0.89×0.24 = −0.3462 ¥

One can also show that ρaX+c,bY+d =
Cov(aX+c,bY+d)
σaX+c·σbY+d = a·b·Cov(X,Y )

|a|·|b|·σX ·σY = ±ρxy (linear trans-
formation does not change the value of ρ, but it may change its sign - can you tell when?).

Linear Combination of RVs

Starting with X and Y , let’s see whether we can simplify the expression for Var(aX +

bY + c) = E [(aX + bY + c)2] − ¡aµx + bµy + c
¢2
= a2E(X2) + b2E(Y 2) + 2abE(X · Y ) −

a2µ2x − b2µ2x − 2abµxµy =

a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

Independence eliminates the last term.

This result can be easily extended to a linear combination of any number of random

variables:

Var(a1X1 + a2X2 + ...akXk + c) =

a21Var(X1) + a22Var(X2) + ....+ a2kVar(Xk) +

2a1a2Cov(X1, X2) + 2a1a3Cov(X1, X3) + ...

...+ 2ak−1akCov(Xk−1, Xk)

Mutual independence (if present) eliminates the last row of
¡
k
2

¢
covariances.
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And finally a formula for a covariance of one linear combination of RVs against another:

Cov (a1X1 + a2X2 + ..., b1Y1 + b2Y2 + ...) =

a1b1Cov(X1, Y1) + a1b2Cov(X1, Y2)

+a2b1Cov(X2, Y1) + a2b2Cov(X2, Y2) + ...

(I will call this the distributive law of covariance).

Sample Mean and its distribution

Consider a random independent sample of size n from an arbitrary distribution. We know

that the sample mean

X̄ =

Pn
i=1Xi

n

is itself a RV with its own distribution. Regardless how that distribution looks like, its

expected value must be the same as the expected value of the distribution from which we

sample. Proof: E(X̄) = 1
n
E(X1) +

1
n
E(X2) + ....+ 1

n
E(Xn) =

1
n
µ+ 1

n
µ+ ...+ 1

n
µ = µ ¥

That’s why X̄ is often used as an estimator of µ, when its value is unknown.

Similarly, Var(X̄) = ( 1
n
)2Var(X1)+ (

1
n
)2Var(X2)+ ...+( 1

n
)2Var(Xn) = (

1
n
)2σ2+( 1

n
)2σ2+

...+( 1
n
)2σ2 = σ2

n
where σ is the standard deviation of the original distribution. This implies

that

σX̄ =
σ√
n

The standard deviation of X̄ (sometimes called the standard error of X̄) is
√
n times smaller

than that of the original distribution. Note that the standard error tends to zero as sample

size increases.

Now, how about the shape of the X̄-distribution, how does it relate to the shape of the

sampled distribution? The surprising answer is: it doesn’t. For n bigger than say 5, the
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distribution of X̄ quickly approaches the same regular shape, regardless of how the original

distribution looked like.

Now, consider a random independent sample of size n from a bi-variate distribution,

where (X1, Y1), (X2, Y2), ... (Xn, Yn) are the individual pairs of observations. Then, Var(X1+

X2 + ....+Xn) =Var(X1)+Var(X2) + ...+Var(Xn) ≡ nVar(X) and, similarly, Var(
nP
i=1

Yi) =

nVar(Y ). Similarly, Cov(
nP
i=1

Xi,
nP
i=1

Yi) =Cov(X1, Y1)+Cov(X2, Y2)+...+Cov(Xn, Yn) = nCov(X,Y ).

All this implies that the correlation coefficient between
nP
i=1

Xi and
nP
i=1

Yi equals
nCov(X,Y )√

nVar(X)·
√

nVar(Y )
≡

ρxy (the correlation between a single X and Y pair). The same is true for the corresponding

sample means X̄ ≡
Pn

i=1Xi

n
and Ȳ ≡

Pn
i=1 Yi
n

, why?

Conditional expected value

is, simply put, an expected value computed using the corresponding conditional distribution,

e.g.

E(X|Y = 1) =
X
i

i× fx(i | Y = 1)

etc.

EXAMPLE: Using our old bivariate distributions X =

1 2 3

Y = 0 0.1 0 0.3 0.4

1 0.3 0.1 0.2 0.6

0.4 0.1 0.5

E(X|Y =

1) is constructed based on the corresponding conditional distribution

X|Y = 1 1 2 3

Prob: 3
6

1
6

2
6
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by the usual process: 1 · 3
6
+ 2 · 1

6
+ 3 · 2

6
= 1.83̄ (note that this is different from E(X) = 2.1

calculated previously). Similarly E(X2|Y = 1) = 12 · 3
6
+ 22 · 1

6
+ 32 · 2

6
= 4.16̄. These imply

that Var(X|Y = 1) = 4.16̄−1.83̄2 = 0.8056. Also, E( 1
X
|Y = 1) = 1

1
· 3
6
+ 1
2
· 1
6
+ 1
3
· 2
6
= 0.694̄.

When values of a RV are only integers (the case of most of our examples so far), we

define its probability generating function (PGF) by

P (z) =
P
All i

zi · Pr(X = i)

where z is a parameter.

Differentiating k times and substituting z = 1 yields

dkP (z)

dzk

¯̄̄̄
z=1

= E[X · (X − 1) · ... · (X − k + 1)]

(the so called kth factorial moment). For mutually independent RVs, we also get

PX+Y+Z(z) = Px(z) · Py(z) · Pz(z)

Furthermore, given P (z), we can recover the distribution by Taylor-expanding P (z) - the

coefficient of zi is Pr(X = i).

EXAMPLES:

• For the distribution of our last example, we get P (z) =
∞P
i=1

zi · (1
2
)i = z

2
· 1
1− z

2
= z

2−z

(note that this can be also obtained from the MGF by et → z).

P 0(z) =
2

(2− z)2

¯̄̄̄
z=1

= 2

P 00(z) =
4

(2− z)3

¯̄̄̄
z=1

= 4

giving us the mean of 2 (check) and the variance of 4 + 2− 22 = 2 (check).

11



• What is the distribution of the total number of dots when rolling 3 dice? Well, the
PGF of X1, X2 and X3 (each) is

z + z2 + z3 + z4 + z5 + z6

6

since they are independent RVs, the PGF of their sum is simplyµ
z + z2 + z3 + z4 + z5 + z6

6

¶3
Expanding (easy in Maple), we get: 1

216
z3+ 1

72
z4+ 1

36
z5+ 5

108
z6+ 5

72
z7+ 7

72
z8+ 25

216
z9+

1
8
z10 + 1

8
z11 + 25

216
z12 + 7

72
z13 + 5

72
z14 + 5

108
z15 + 1

36
z16 + 1

72
z17 + 1

216
z18 ¥

Note that a RV can have infinite expected value (not too common, but it can happen).

EXAMPLE: Suppose you flip a coin till the first head appears, and you win $2 if this

takes only one flip, $4 if it takes two flips, $8 if it takes 3 flips, etc. (the amount always

doubles - i.e. you get $2 for each of the first flips, $4 for the third, $8 for the fourth, etc.).

What is the expected value of your win?

Clearly, you win Y = 2X dollars. E(Y ) = 2 · 1
2
+4 · 1

22
+8 · 1

23
+ ... = 1+1+1+ .... =∞.
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