
SPECIAL DISCRETE DISTRIBUTIONS

Bernoulli

Consider an experiment with only two possible outcomes (Success and Failure) which

happen with the probability of p and q ≡ 1− p respectively

We define a random variable X as the number of successes one gets. Its distribution is

obviously

X = 0 1

Prob: q p

implying: E(X) = p, Var(X) = p− p2 = pq, P (z) = q + pz.

Binomial

The experiment consists of n independent rounds (trials) of the Bernoulli type. The

sample space consists of all n-letter words built of letters S and F. These are not equally

likely, the probability of each is piqn−i where i is the number of S’s and n− i is the number

of F ’s. We also know that there is
¡
n
i

¢
‘words’ with exactly i S’s. Thus, the probability that

X, the total number of successes, will have the value of i isµ
n

i

¶
piqn−i

where i = 0, 1, 2, ... , n − 1, n. They do add up to 1:
nP
i=0

¡
n
i

¢
piqn−i = (p + q)n (check).

Symbolically, we denote this distribution B(n, p). Clearly, it has two parameters, n and p.

There are three ways of deriving E(X):

1. ‘Algebraically’, by struggling with
nP
i=0

i · ¡n
i

¢
piqn−i.

2. ‘Statistical’ argument: X ≡ X1 + X2 + ..... + Xn, where Xi are independent, identi-

cally distributed (IID), all having the Bernoulli distribution. Thus: E(X) = E(X1) +

E(X2) + .....+ E(Xn) = p+ p+ ....+ p = np
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3. Using PGF, which, for the same reason equals (q+pz)·(q+pz)· ... ·(q+pz) = (q+pz)n.
One differentiation yields: n(q + pz)n−1p|z=1 = np.

Similarly, we can compute Var(X), by using the ’statistical’ approach (easiest): Var(X) =Var(X1)+Var(

...+Var(Xn) = pq + pq + ...+ pq = npq

There is no ‘compact’ formula for the distribution function F (i). This means that the

probability of a range of values can be computed only by adding the individual probabil-

ities. For example, if n = 20 and p = 1
6
, Pr(X ≥ 10) =

¡
20
10

¢
(1
6
)10(5

6
)10 +

¡
20
11

¢
(1
6
)11(5

6
)9 +¡

20
12

¢
(1
6
)12(5

6
)8 + ...+

¡
20
0

¢
(1
6
)20(5

6
)0 = 0.05985%.

Your main task will be first to recognize a binomial RV when you see one.
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Geometric

This distribution is based on the same kind of experiment, where the trials are performed,

repeatedly, until the first success appears. The random variable (let’s call it X again) is

now the total number of trials. The sample space looks like this: S, FS, FFS, FFFS, ...

(infinite), the individual probabilities are: p, qp, q2p, q3p, ... In general, we have

Pr(X = i) = pqi−1

where i = 1, 2, 3, ... Again, they do add up to 1: p(1 + q + q2 + q3 + ...) = p
1−q =

p
p
= 1.

Symbolic notation: G(p), having one parameter p. Its histogram looks like this:

To compute E(X), we can try the algebraic approach: p(1 + 2q + 3q2 + 4q3 + ...), which

is not so easy. On the other hand, the PGF equals:
∞P
i=1

zi · pqi−1 = zp
∞P
i=1

(zq)i−1 = pz[1 +

zq + (zq)2 + (zq)3 + ...] =
pz

1− qz
. Differentiating with respect to z: p

(1−qz)2
¯̄̄
z=1

= p
p2
=

1

p
.

One more differentiation yields: 2pq
(1−qz)3

¯̄̄
z=1

= 2q
p2
, implying:

Var(X) = 2(1−p)
p2

+
1

p
− (1

p
)2 = (1−p)

p2
= 1

p

³
1
p
− 1
´
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The standard deviation is the square root of this,.e.g. the number of trials to get the first 6

has the mean of 6 and standard deviation equal to
√
6× 5 = 5.477.

This time it is easy to find the distribution function F (i).We first compute Pr(X > i) =

pqi + pqi+1 + pqi+2 + ... = pqi(1 + q + q2 + ....) = pqi

1−q = qi, resulting in

F (i) = Pr(X ≤ i) = 1− qi

where i = 1, 2, 3, .... Thus, for example, the probability that it will take at least 10 rolls to

get the first 6 is 1− F (9) = (5
6
)9 = 19.38%. Similarly, the probability that it will take more

than 18 rolls is (5
6
)18 = 3.756%.

The geometric distribution is memoryless: Given that X > k, the conditional distribu-

tion of X − k is the same G(p) of the original X.
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Negative Binomial

distribution is a simple extension of the geometric distribution, where X is now the number

of trials till (and including) the kth success. Obviously, it can be expressed a sum of k

independent random variables of the geometric type: X = X1 +X2 + .... +Xk. This yields

immediately (the ‘statistical’ argument)

E(X) =k
p

and

Var(X) = k
p
· (1

p
− 1)

Similarly, the new PGF is obtained by raising the old (geometric) PGF to the power of k:

( pz
1−qz )

k. The symbolic name will be NB(k, p), there are clearly two parameters, k and p.

To get the individual probabilities Pr(X = i) takes a bit more ingenuity. To get the kth

success in the ith roll, we need: (i) k − 1 successes, in any order, during the first i− 1 rolls,
and (ii) a success in the kth roll.. The probability of this happening is:

¡
i−1
k−1
¢
pk−1qi−k · p =

¡
i−1
k−1
¢
pkqi−k ≡ ¡i−1

i−k
¢
pkqi−k

where i = k, k + 1, k + 2, ... It helps to display these in an explicit table:

X = k k + 1 k + 2 k + 3 ...

Prob: pk kpkq
¡
k+1
2

¢
pkq2

¡
k+2
3

¢
pkq3 ...

To verify that they add up to 1, we proceed as follows: 1 ≡ pk(1−q)−k = pk
£
1− ¡−k

1

¢
q +

¡−k
2

¢
q2 − ¡−k

3

¢
q3 + .

pk
£
1 + kq +

¡
k+1
2

¢
q2 +

¡
k+2
3

¢
q3 + ...

¤
.

We can now easily deal with questions like: what is the probability that it will take

exactly 5 flips of a coin to get the third head:
¡
4
2

¢
(1
2
)3(1

2
)5−3 = 18.75%, and: what is the

probability of requiring exactly 10 rolls to get the second six:
¡
9
1

¢
(1
6
)2(5

6
)8 = 5.814%].
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To be able to answer questions like: ‘what is the probability that we will need more than

10 rolls to get a second 6’, we realize that this is the same as the probability of getting, in

the first 10 rolls, fewer than 2 (i.e. 0 or 1) sixes, i.e.: (5
6
)10 +

¡
10
1

¢
(5
6
)9(1

6
)1 = 48.45%.

In general,

Pr(X > i) =
k−1P
j=0

¡
i
j

¢
pjqi−j

Hypergeometric

distribution relates to the following experiment: Suppose there are N objects, K of which

have some special property (such as being red marbles, spades, aces, defective items, women),

etc., the remaining N − K objects will be called ‘ordinary’. Of these N objects, n are

randomly selected, without replacement. Let X be the number of ’special’ objects found in

the sample.

The sample space consists of a list of all possible ways of selecting n objects out of N

(order irrelevant). We know that the total number of these is
¡
N
n

¢
and that they are equally

likely. We also know (having solved many questions of this type) that
¡
K
i

¢ · ¡N−K
n−i

¢
of these

‘simple events’ contains exactly i ‘special’ objects. Thus

Pr(X = i) =

¡
K
i

¢ · ¡N−K
n−i

¢¡
N
n

¢
wheremax(0, n−N+K) ≤ i ≤ min(n,K). The formula which verifies that these probabilities
add up to 1 is called hypergeometric (we must skip this).

Note that when the sampling is done with replacement, the correct distribution is binomial

(with p = K
N
).

To derive E(X), we use the ‘statistical’ approach: X = X1 + X2 + ... +Xn, where Xi

is the number of ‘special’ objects obtained in the ith ‘draw’ (clearly, of Bernoulli type, with

p = K
N
). Note that this time the Xi’s are not independent!
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The expected value ofX is easy: E(X) = E(X1)+E(X2)+ .....+E(Xn) =
K
N
+K

N
+...+K

N
=

n · K
N

(an exact analog of the binomial np formula).

To establish Var(X),we use:
nP
i=1

Var(Xi)+2
P
i<j

Cov(Xi, Xj) = n·Var(X1)+2
¡
n
2

¢·Cov(X1,X2)

as all variances, and all covariances, must have the same value. We already know that

Var(Xi) =
K
N
· N−K

N
(the pq formula of Bernoulli distribution). To find Cov(X1, X2) we first

build their joint distribution:

X1=
X2=

0 1

0 N−K
N

· N−K−1
N−1

K
N
· N−K
N−1

1 N−K
N

· K
N−1

K
N
· K−1
N−1

from which it easily follows that E(X1 ·X2) =
K (K−1)
N (N−1) . This implies: Cov(X1,X2) =

K (K−1)
N (N−1)−¡

K
N

¢2
= −K (N−K)

N2(N−1) . This enables us to complete the previous computation:

Var(X) = nK (N−K)
N2 − n(n− 1)K (N−K)

N2(N−1)

= n · K
N
· N−K

N
· N−n
N−1

The first three factors are the analog of npq, reduced by a ‘correction factor’ of N−n
N−1 . Note

that, when n = 1, this factor is equal to 1 (check), and when n = N, it becomes 0 (X has

then a degenerate distribution with only one possible value).

Symbolically, we denote this distribution HG(N,K, n).

7



EXAMPLE: There are 30 red and 70 blue marbles in a box. If 10 marbles are randomly

drawn (without replacement), what is the probability that exactly 4 of these are red? Answer:

(304 )×(706 )
(10010 )

= 20.76%. With replacement :
¡
10
4

¢× 0.34 × 0.76 = 20.01%.
Poisson

distribution relates to the following type of experiment: Suppose customers arrive (to a gas

station), randomly, at a steady rate of λ (say 1.2) per minute. Let X be the number of

customers who will arrive during the next T (say 3) minutes. Based on this, the mean value

of X should be λT ≡ Λ (=3.6).

We start by dividing T into n subintervals (36 intervals of 5 seconds, say), taking the

probability of a single arrival during each subinterval to be p = Λ
n
, independent of what

happens in other subintervals. With this kind of model, X has the binomial distribution

with n and p, implying that

Pr(X = i) =
¡
n
i

¢ ¡
Λ
n

¢i ¡
1− Λ

n

¢n−i
where i = 0, 1, 2, ..., n (note that X has the correct mean). What’s wrong with this model,

and how do we fix it? Well, in a real situation, more than one customer can arrive during

5 seconds. To prevent this from happening, we increase the value of n. Only in the n→∞
limit, we reach the perfect answer: lim

n→∞
¡
n
i

¢ ¡
Λ
n

¢i ¡
1− Λ

n

¢n−i
= Λi

i!
lim
k→∞

n
n
· n−1

n
· n−2

n
· ... · n−i+1

n
·¡

1− Λ
n

¢n−i
= Λi

i!
· lim
k→∞

¡
1− Λ

n

¢n−i
= Λi

i!
· e−Λ. Thus

Pr(X = i) =
Λi

i!
e−Λ

where i = 0, 1, 2, ... (all non-negative integers). We can easily verify that these probabil-

ities add up to 1:
³
1 + Λ+ Λ2

2
+ Λ3

3!
+ ..

´
e−Λ = eΛ · e−Λ = 1. The corresponding PGF is

e−Λ
∞P
i=0

Λi

i!
zi = eΛ(z−1). Differentiating the PGF with respect to z: Λ exp[Λ(z − 1)]|z=1 = Λ,
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as expected. One more differentiation yields: Λ2 exp[Λ(z − 1)]|z=1 = Λ2. This implies that

Var(X) = Λ2 + Λ− Λ2 = Λ (same as the mean!).

PS(Λ) will be our symbolic notation for this distribution, which has only one parameter!

If we have two independent RVs, both of the Poisson type, say X1 ∈ PS(Λ1) and
X2 ∈ PS(Λ2), the PGF of X1 + X2 is clearly e(Λ1+Λ2)(z−1). Can you identify the result-

ing distribution?

EXAMPLE: Customers arrive at an average rate of 3.7/hour.

• What is the probability of exactly 1 arrival during the next 15 min.? Λ = Tλ =

1
4
× 3.7 = 0.925 (make sure to use same units). Answer: e−0.925 × 0.925

1!
= 36.68%.

• What is the probability of at least 4 arrival during the next 30 min. Answer: 1 −
Pr(X ≤ 3) = 1− (1 + 1.85 + 1.852

2
+ 1.853

6
)e−1.85 = 11.69%.

• If the store opens at 8:00 what is the probability that their second customer arrives
between 8:20 and 8:45 ? Define A: at least two arrivals by 8:45, and B: at least

two arrivals by 8:20. We need Pr(A ∩ B̄) = Pr(A) − Pr(B) since B ⊂ A. Answer:£
1− e−Λ1(1 + Λ1)

¤− £1− e−Λ2(1 + Λ2)
¤
where Λ1 = 3

4
×3.7 = 2.775 and Λ2 = 1

3
×3.7 =

1.23̄, i.e. e−1.23̄ × 2.23̄− e−2.775 × 3.775 = 41.52%.

Multivariate distributions

Multinomial

is an extension of the binomial distribution, in which each trial can result in 3 (or more)

possible outcomes (say W, L, T ). The trials are still repeated, independently, n times, but

now we need three RVs X, Y and Z, which count the total number of outcomes each type,

respectively.
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The sample space consists of 3n simple events, there are exactly
¡

n
i,j,k

¢
of these having

exactly i W ’s, j L’s and k T ’s, each of them having the same probability of pix p
j
y p

k
z , implying

Pr(X = i ∩ Y = j ∩ Z = k) =
¡

n
i,j,k

¢
pix p

j
y p

k
z

for any non-negative integers i, j, k which add up to n. This formula can be easily extended

to the case of 4 or more possible outcomes.

Each marginal distribution is obviously binomial.

EXAMPLES:

• A team plays a series of 10 games. The probability of winning a game is 0.40, losing

a game: 0.55, and tying a game: 0.05. What is the probability of finishing with 5

wins, 4 losses and 1 tie? Answer:
¡
10
5,4,1

¢×0.45×0.554×0.05 = 5.90%. Supplementary:
What is the probability that they win the series (more wins than losses)? Answer:

Pr(X > 5) + Pr(X = 5) − Pr(X = 5 ∩ Y = 5) + Pr(X = 4) − Pr(X = 4 ∩ Y ≥
4) + Pr(X = 3 ∩ Y < 3) + Pr(X = 2 ∩ Y < 2) Pr(X = 1 ∩ Y = 0) = 23.94%.

• Roll a die 18 times, what is the probability of getting 3 ones, twos, ..., sixes (the most
likely outcome)? Answer:

¡
18

3,3,3,3,3,3

¢
(1
6
)18 = 0.135%. Why is it so small?

Now, what is the covariance between X and Y . We use our ‘statistical’ approach:

X = X1+X2+ ....+Xn and Y = Y1+Y2+ ....+Yn, so that Cov(X,Y ) =
nP
i=1

nP
j=1

Cov(Xi, Yj) =

nP
i=1

Cov(Xi, Yi)+
nP
i6=j
Cov(Xi, Yj). The second set of covariances yields zero (independence), to

get the first, we need Cov(X1, Y1), since the rest have the same value. Let’s build a table of

the distribution:

X1=
Y1=

0 1

0 pz px

1 py 0

which implies: Cov(X1, Y1) = E(X1 ·Y1)−E(X1)·E(Y1) =
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0− px · py = −pxpy. Thus, finally:

Cov(X,Y ) = −npx py

EXAMPLES:

• Continuing the first example, what is the covariance between the number of wins and
the number of losses (in a 10 game series)? Answer: −10× 0.40× 0.55 = −2.2 .

• Rolling a die 18 times, what is the covariance between the number of 3’s and the
number of 6’s obtained? Answer: −18× 1

6
× 1

6
= −0.5 .

• 10 dice are rolled and we are paid $5 for each six, but have to pay $6 for each one.
What is the expected value and the standard deviation of our net win? Introduce X

for the (total) number of 6’s and Y for the number of 1’s, our net win is 5X − 6Y. Its
expected value is 5× 10× 1

6
− 6× 10× 1

6
= −1.6̄, its variance equals: 52× 10× 1

6
× 5

6
+

(−6)2× 10× 1
6
× 5

6
+ 2× 5× (−6)× (−10)× 1

6
× 1

6
= 101.38̄. Answer: −1.667± 10.069

dollars.

• A die is rolled 18 times, U is the number of ’small’ outcomes (meaning ≤ 3), V is the

number of even outcomes (2, 4 and 6). Find Cov(U, V ). Introduce U0 = U − T and

V0 = V −T , where T counts the ‘overlap’ outcomes (number of 2’s, in this case). Then
Cov(U, V ) =Cov(U0 + T, V0 + T ) =Cov(U0, V0)+Cov(U0, T )+Cov(T, V0)+Var(T ) =

−n(pu − pt)(pv − pt) − n(pu − pt)pt − npt(pv − pt) + npt(1 − pt) = −n(pupv − pt) ≡
−n(pupv − puv). Answer: −18× (12 × 1

2
− 1

6
) = −1.5

Multivariate Hypergeometric

is an extension of the hypergeometric distribution, when having thee (or more) types of

objects, e.g. red, blue and green marbles or hearts, diamonds, spades and clubs, etc. We now
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assume that the total number of objects of each type isK1, K2 andK3 whereK1+K2+K3 =

N. The sample space will still consist of
¡
N
n

¢
possible selections of n of these, all equally likely.

We also know that
¡
K1

i

¢ × ¡K2

j

¢ × ¡K3

k

¢
of these will contain exactly i objects of Type 1, j

objects of Type 2 and k objects of Type 3. Thus,

Pr(X = i ∩ Y = j ∩ Z = k) =

¡
K1

i

¢¡
K2

j

¢¡
K3

k

¢¡
N
n

¢
where i, j, k are non-negative integers not bigger than K1, K2 and K3 respectively, which

add up to n.

The marginal distribution of X (Y, Z) is the ordinary hypergeometric with obvious

parameters.

The covariance between X and Y again follows by taking X = X1 +X2 + ...+Xn and

Y = Y1 + Y2 + ... + Yn: Cov(X,Y ) =
nP
i=1

Cov(Xi, Yi) +
nP
i6=j
Cov(Xi, Yj) = n×Cov(X1, Y1) +

n(n− 1)×Cov(X1, Y2). Now we need the joint distribution of X1 and Y1:

X1=
Y1=

0 1

0 N−K1−K2

N
K1

N

1 K2

N
0

which implies: Cov(X1, Y1) = 0− K1

N
· K2

N
, and that of

X1=
Y2=

0 1

0 rest K1

N
· N−1−K2

N−1

1 K2

N
· N−1−K1

N−1
K1

N
· K2

N−1

which similarly yields: Cov(X1, Y2) =
K1K2

N (N−1) − K1

N
· K2

N
= K1K2

N2 (N−1) . Putting it together:

Cov(X,Y ) = −nK1K2

N2 + n(n− 1) K1K2

N2 (N−1) = −nK1

N
K2

N
N−n
N−1 . Note that this is like the multi-

nomial covariance of −npx py, further multiplied by the correction factor of the old Var(X)
formula.
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One can easily extend this covariance formula to the important ’overlapping’ case of U

and V :

Cov(U, V ) = −n ¡K1

N
K2

N
− K12

N

¢
N−n
N−1

where K1 and K2 is the number of objects contributing to U and V respectively, and K12 is

the number contributing to both.

EXAMPLES:

• Pay $15 to play the following game: 5 cards are dealt from the ordinary deck of 52

and you get paid $20 for each ace, $10 for each king and $5 for each queen. Find

the expected value of your net win, and its standard deviation. We introduce X,

Y and Z for the number of aces, kings and queens dealt. The net win is: W =

20X + 10Y + 5Z − 15, which has the expected value of 20E(X) + 10E(Y ) + 5E(Z)−
15 = 20 × 5 × 4

52
+ 10 × 5 × 4

52
+ 5 × 5 × 4

52
− 15 = −1.538 and variance equal to

202Var(X)+102Var(Y )+52Var(Z)+2×20×10×Cov(X,Y )+2×20×5×Cov(X,Z)+2×
10×5×Cov(Y, Z) = [5×(400+100+25)× 1

13
× 12
13
−5×(400+200+100)× 1

13
× 1
13
]× 47

51
=

152.69 Answer: −1.538± 12.357 dollars.

• Five cards are dealt, and we get $1 for each spade and $2 for each diamond, but we have
to pay $10 for each ace. Find the expected value and standard deviation of the net win.

Introduce X, Y and U for the number of spades, diamonds and aces. W = X + 2Y −
10U , the corresponding expected value is 5× 13

52
+ 2× 5× 13

52
− 10× 5× 4

52
= −0.09614

and Var(W ) = 5× [1
4
× 3

4
+22× 1

4
× 3

4
+(−10)2× 1

13
× 12

13
−2×2× 1

4
× 1

4
]× 47

51
= 35.886.

Answer: −0.0961± 5.9905 dollars

‘Mixed’ EXAMPLES:
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• A die is rolled 5 times and we are paid $2 for each dot obtained, then a coin is flipped 10
times and we have to pay $7 for each head shown. Find the expected value and standard

deviation of the game’s net win. B Let X1, X2, ....X5 represent the number of dots

obtained in each roll, and Y be the total number of heads shown. Then W = 2(X1 +

X2+ ...+X5)−7Y , having the expected value of 2(3.5+ 3.5+ ....+ 3.5)+7×10× 1
2
= 0

(a fair game) and Var(W ) = 22× (35
12
+ 35
12
+ ...+ 35

12
)+72×10× 1

2
× 1
2
= 180.83̄. Answer:

0± 13.45 dollars.

• Pay $35, then roll a die until the 3rd six is obtained and be paid $2 for each roll. Find
µw and σw, where W is your net win. B This time we introduce only X: the number

of rolls to get the 3rd six. Obviously W = 2X − 35,with the mean of 2× 3
1
6

− 35 = 1
and Var(W ) = 22 × 3 × 6 × 5. Answer: 1 ± 18.97 dollars. Supplementary: What
is the expected value and standard deviation of the net win after 15 rounds of this

game? B The games are obviously played independently of each other, therefore

E(W1+ W2+ ....+W15) = 15µw and Var(W1+ W2+ ...+W15) = 15Var(W ). Answer:

15± 73.485 dollars.
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