
SPECIAL CONTINUOUS DISTRIBUTIONS

Uniform

X can have values only in an (a, b) interval, all those values are ‘equally likely’. This

means: f(x) =
1

b− a
when a < x < b. F (x) =

x− a

b− a
(same range) E(X) = 1

b− a

bR
a

x dx =

a+ b

2
(we could have used symmetry), E(X2) =

1

b− a

bR
a

x2 dx =
a2 + ab+ b2

3
, implying:

Var(X) =
a2 + ab+ b2

3
−
µ
a+ b

2

¶2
=
(b− a)2

12
and

σ =
b− a

2
√
3

The µ±σ interval of length
b− a√
3
contains

1√
3
= 57.74% of total probability (µ±2σ already

covers the whole range). Symbolic notation: U(a, b).
Exponential

distribution relates to the ‘arriving customers’ experiment, where λ (say, per minute) is the

average arrival rate. This time, X is the time from now (set to time 0) till the arrival of the

first customer. To find its PDF, we subdividing each minute into k subintervals, assuming

that the probability of an arrival during any one of these is p = λ
k
. We then introduce a

geometric-type RV Y which counts the number of these subintervals till the first arrival.

Obviously

Pr(X ≤ x) ' Pr(Y ≤ xk) = 1− ¡1− λ
k

¢xk
where k = 0, 1, 2, ... All we need to do to get the distribution function of X is to take the

limit of the last expression as k →∞. Thus

F (x) = 1− e−xλ

when x > 0. In this context, it is common to introduce a new parameter β = 1
λ
(the average
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time between consecutive arrivals), which means that

F (x) = 1− exp(−x
β
)

Based on this

f(x) = F 0(x) =
1

β
e−

x
β

when x > 0.We can now computeM(t) = 1
β

∞R
0

e−
x
β ·etx dx = 1

β

∞R
0

e−x(
1
β
−t) dx = 1

β( 1
β
−t) =

1
1−β t ,

whose Taylor expansion (in terms of t) is 1+ βt+ β2t2+ β3t3+ β4t4+ ... This yields µ = β,

Var(X) = 2β2 − β2 = β2, σ = β, skewness: E(X3)−3µE(X2)+2µ3

σ3
= 6β3−3×2β3+2β3

β3
= 2, and

kurtosis E(X
4)−4µE(X3)+6µ2E(X2)−3µ4

σ4
= 24β4−4×6β4+6×2β4−3β4

β4
= 9.

The exponential distribution shares, with the geometric distribution (from which it was

derived), the ’memory-less’ property of Pr(X − a > x|X > a) = Pr(X > x), i.e. given we

have been waiting, unsuccessfully, for time a, the probability that the first arrival will take

longer than x from now is the same as when we started waiting. Proof: Pr(X − a > x|X >

a) = Pr(X>x+a∩X>a)
Pr(X>a)

= Pr(X>x+a)
Pr(X>a)

=
exp(−x+a

β )
exp(− a

β )
= exp

³
−x

β

´
= Pr(X > x). ¥

The potential applications of this distribution include: time intervals between consecutive

phone calls, accidents, fishes caught, etc. (all those discussed in connection with the Poisson

distribution).

E(β) will be our symbolic notation for the exponential distribution with the mean of β.

Another important characteristic of a continuous distribution is the median, denoted µ̃

and defined as a solution to F (µ̃) = 1
2
(the point which ‘splits’ the PDF in two halves, each

having the same 50% probability). For the exponential distribution, it equals to β ln 2 =

0.6931β, which is substantially smaller than µ. This means that: if it takes, on the average,

1 hour to catch a fish, 50% of all fishes are caught in less than 41 min. and 35 sec.(not a

contradiction).
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Consider n independent RVs (say , X1, X2,....Xn), all exponentially distributed, with the

same mean β.What is the distribution of Y ≡ min(X1,X2, ....Xn)? B Pr(Y > y) = Pr(X1 >

y∩X2 > y∩....∩Xn > y) = Pr(X1 > y)·Pr(X2 > y)·...·Pr(Xn > y) =
³
e−

y
β

´n
= e−

ny
β . This

implies that the distribution function of Y equals 1−e−ny
β when y > 0. This clearly identifies

the distribution of Y as exponential with the mean of β
n
(things happen n times faster

now). When the individual means are distinct (say: β1, β2, ...βn) the result is (similarly) an

exponential distribution with the mean of

1
1/β1+1/β2+....+1/βn

Gamma

distribution relates to the previous experiment, except now X is the time of the kth arrival

(from ‘now’, when we set time to 0). X is clearly a sum of k independent RVs of the

exponential type, each having the mean of β.This immediately implies that E(X) = kβ,

Var(X) = kβ2 andM(t) = 1
(1−β t)k . Going back to our discussion of the Poisson distribution,

we realize that we already know

Pr(X > x) =
³
1 + λx+ (λx)2

2
+ (λx)3

3!
+ ... + (λx)k−1

(k−1)!
´
e−λx

(the probability of fewer than k arrivals before time x), where λ = 1
β
. Differentiating

F (x) = 1− Pr(X > x) with respect to x yields:

xk−1e−
x
β

βk(k − 1)!
when x > 0. We can verify the correctness of this answer by computing the corresponding

MGF: M(t) = 1
βk(k−1)!

∞R
0

xk−1e−
x
β · ext dx = 1

βk(k−1)!
∞R
0

xk−1e−x(
1
β
−t) dx = 1

βk(k−1)! ·
(k−1)!
( 1
β
−t)k =

1
(1−βt)k (check).

EXAMPLES:
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• If X ∈ γ(4, 20 min.), find Pr(X < 30 min.) = 1− e−
30
20 [1 + 30

20
+

( 30
20
)2

2
+

( 30
20
)3

3!
] = 6.56%,

and Pr(X > 2 hr.) = e−
120
20 [1 + 6 + 62

2
+ 63

6
] = 15.12%. Or, by Maple, more directlyZ 30

0

x3 exp(− x
20
)

3! · 204 = 6.564%Z ∞

120

x3 exp(− x
20
)

3! · 204 = 15.12%

• A fisherman whose average time for catching a fish is 35 minutes wants to bring home
exactly 3 fishes. What is the probability he will need between 1 and 2 hours? B Pr(1

hr.< X < 2 hrs) = F (120 min.)− F (60 min.) = e−
60
35 [1 + 60

35
+

( 60
35
)2

2
]− e−

120
35 [1 + 120

35
+

( 120
35
)2

2
] = 41.92%. More directly:Z 120

60

x2 exp(− x
35
)

2 · 353 = 41.92%

• If a group of 10 fishermen goes fishing, what is the probability that the second catch
of the group will take less than 5 min. Assume the value of β = 20 min. for each

fisherman; also assume that the one who catches the first fish continues fishing. B

This is equivalent to having a single super-fisherman who catches fish at a 10 times

faster rate, i.e. βgroup = 2 min. Answer: 1− e−
5
2 (1 + 5

2
) = 71.27%. More directly:Z 5

0

x · exp(−x
2
)

22
= 71.27%

For large k, the gamma distribution is approximately Normal.

EXAMPLE: Phone calls arrive at the rate of 12.3/hour. What is the probability that

the 50th phone call will arrive after 1 p.m. if the office opens at 8 a.m. B If X is the time

of the arrival of the 50th phone call, in hours (setting our time to 0 at 8 a.m.) we have to

find Pr(X > 5 hr.). The distribution of X is γ(50, 1
12.3

hr.) which implies that the answer

is approximately equal to 1√
2π×50/12.3

R∞
5
exp[− (x−50/12.3)2

2×50/12.32 ]dx = 5.19%. Alternate solution:
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We can also introduce Y as the number of phone calls received during the 8 a.m.-1 p.m.

time interval. Its distribution is Poisson, with Λ = 5 × 12.3 = 61.5. The question can be

reformulated as Pr(Y < 50) ' 1√
61.5×2π

R 49.5
−∞ exp[− (y−61.5)2

2×61.5 ]dy = 6.30%. (the exact answer is

5.91%).

Central Limit Theorem

Let us investigate the distribution of

Z ≡ X̄ − µ
σ√
n

which has the expected value of 0 and standard deviation of 1, for any value of n (so that

we can take the limit n→∞).
Realizing that Z can be also written as

Pn
i=1

³
Xi−µ
σ
√
n

´
, we can easily construct its MGF

(by finding the MGF of a single Xi−µ
σ
√
n
≡ Y, and raising it to the power of n).

We know that, in general, My(t) = 1+E(Y )t+E(Y 2) t
2

2
+E(Y 3) t

3

3!
+E(Y 5) t

4

4!
+ ..., which,

in this particular case reads:

1 +
t2

2n
+

α3t
3

6n3/2
+

α4t
4

24n2
+ ...

where α3 and α4 is the skewness and kurtosis of the sampled distribution. This implies that

Mz(t) =

µ
1 +

t2

2n
+

α3t
3

6n3/2
+

α4t
4

24n2
+ ...

¶n

Taking the n→∞ limit, we get

Mz(t) −→
n→∞

et
2/2

Thus, we get a rather unexpected result: the distribution of Z has (for large enough n) the

same symmetric shape, not in the least affected by the shape of the original distribution

form which the sample is taken.

We now have to start looking for a RV whose MGF is exp(t2/2).
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