NORMAL APPROXIMATION

Standardized Normal Distribution

Standardized implies that its mean is equal to 0 and the standard deviation is equal to 1. We will always use Z as a name of this RV, $\mathcal{N}(0,1)$ will be our symbolic notation for the corresponding distribution.

In the last chapter we discovered that, when sampling from 'almost' any distribution, $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}$ has a sampling distribution whose MGF is $e^{\frac{t^2}{2}}$. We will show that this corresponds to: $f(z) = c \cdot e^{-\frac{z^2}{2}}$, where $-\infty < z < \infty$. c is a constant whose value is a reciprocal of $I \equiv \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz$. It is actually easier (an understatement) to compute: $I^2 = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx \times \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy = \iint_{x-y \text{ plane}} e^{-\frac{x^2+y^2}{2}} dx dy = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^2}{2}r} dr d\varphi = 2\pi \int_{0}^{\infty} e^{-u} du = 2\pi$. Thus $I = \sqrt{2\pi}$ and $c = \frac{1}{\sqrt{2\pi}}$: $f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} - \infty < z < \infty$

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z}{2}} \qquad -\infty < z <$$

(a symmetric 'bell-shaped' curve):

To verify that this is the correct answer: $M(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} \cdot e^{zt} dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}+zt} dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}+zt} dz$

 $\frac{1}{\sqrt{2\pi}}e^{\frac{t^2}{2}}\int_{-\infty}^{\infty}e^{-\frac{(z-t)^2}{2}}dz = \frac{1}{\sqrt{2\pi}}e^{\frac{t^2}{2}}\int_{-\infty}^{\infty}e^{-\frac{u^2}{2}}du = e^{\frac{t^2}{2}} \text{ (check). From the expansion } M(t) = 1 + \frac{t^2}{2} + \frac{\left(\frac{t^2}{2}\right)^2}{2} + \dots$ we can immediately establish that $\mu = 0$ (all *odd* moments equal to 0), $\sigma = 1$, and the kurtosis of Z is equal to 3. There is no 'analytic' expression for F(x), but Maple has no difficulty evaluating any probability we need numerically, e.g. $\Pr(-1.3 < Z < 0.5) = \frac{1}{\sqrt{2\pi}} \int_{-1.3}^{0.5} \exp(-\frac{z^2}{2}) dz = 0.5947$

General Normal distribution

We define Z as the following linear transformation of Z

$$X = \sigma Z + \mu$$

where $\sigma > 0$ and μ are two constants. From what we know about linear transformations, $\mathbb{E}(X) = \mu$, $\operatorname{Var}(X) = \sigma^2$, and $M_x(t) = e^{\mu t} M_z(\sigma t) = e^{\frac{\sigma^2 t^2}{2} + \mu t}$. The shape of the PDF remains the same, only the scale changes.

EXAMPLE: If $M(t) = e^{-2t+t^2}$, what is the distribution? Answer: $\mathcal{N}(-2,\sqrt{2})$.

Note that any further linear transformation of $X \in \mathcal{N}(\mu, \sigma)$, such as Y = aX + b, keeps the result Normal. Also: when X_1 and X_2 are *independent* Normal RVs with any (mismatched) parameters, i.e. $X_1 \in \mathcal{N}(\mu_1, \sigma_1)$ and $X_2 \in \mathcal{N}(\mu_2, \sigma_2)$, then their sum $X_1 + X_2$ is also Normal, which follows from $M_{X_1+X_2}(t) = e^{(\mu_1+\mu_2)t + \frac{\sigma_1^2+\sigma_2^2}{2}t^2}$.

To find $f_x(x)$, we do this: $F_x(x) = \Pr(X < x) = \Pr(\sigma Z + \mu < x) = \Pr(Z < \frac{x-\mu}{\sigma}) = F_z\left(\frac{x-\mu}{\sigma}\right)$. Differentiating with respect to x yields: $f_x(x) = \frac{1}{\sigma}f_z\left(\frac{x-\mu}{\sigma}\right) =$

$$\frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{(x-\mu)^2}{2\sigma^2}\right) \qquad -\infty < x < \infty$$

EXAMPLE: Knowing that $f(x) = \frac{1}{3\sqrt{2\pi}} \exp(-\frac{x^2+4x+4}{18})$, identify the distribution. Answer: $\mathcal{N}(-2,3)$.

Computing probabilities is easy. EXAMPLE: If $X \in \mathcal{N}(17,3)$, $\Pr(10 < X < 20) = \frac{1}{3\sqrt{2\pi}} \int_{10}^{20} \exp\left(-\frac{(x-17)^2}{2\times 3^2}\right) dx = 0.8315$

For a Normally distributed RV, the $\mu \pm \sigma$ interval contains 68.26% of the total probability, $\mu \pm 2\sigma$ contains 95.44%, and $\mu \pm 3\sigma$ raises this to a 'near certain' 99.74% (for any practical purpose, the range is 'finite').

Applications of Central Limit Theorem:

Finally, we can apply our knowledge that the distribution of $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ is, approximately, $\mathcal{N}(0,1)$, the bigger *n*, the better the approximation. This can be re-stated as: $\bar{X} \in \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$ or, equivalently: $X_1 + X_2 + \dots + X_n \in \mathcal{N}(n\mu, \sqrt{n\sigma})$.

EXAMPLES:

• Roll a die 100 times, what is the probability of getting more than 20 sixes? $\triangleright X$ has the binomial distribution with n = 100 and $p = \frac{1}{6}$. Since n is 'large', its distribution will be quite close to $\mathcal{N}(\frac{50}{3}, \sqrt{\frac{125}{9}})$. Thus $\Pr(20 < X_{\text{Binomial}}) \approx \Pr(20.5 < X_{\text{Normal}}) = \frac{1}{\sqrt{125/9 \times 2\pi}} \int_{20.5}^{\infty} \exp(-\frac{(x-50/3)^2}{2 \times 125/9}) dx = 15.18\%$ (the exact answer is 15.19% - in this case, one would expect to be within 0.5% of the exact answer). Note the continuity correction, clear from:

• If X has the Poisson distribution with $\lambda = 35.14$, approximate $\Pr(X \leq 30)$. Since $X \in \mathcal{N}(35.14, \sqrt{35.14})$, $\Pr(X_{\text{Normal}} < 30.5) = \frac{1}{\sqrt{35.14 \times 2\pi}} \int_{-\infty}^{30.5} \exp(-\frac{(x-35.14)^2}{2 \times 35.14}) dx = 21.69\%$ (the exact answer is 22.00%).

- Consider rolling a die repeatedly until obtaining 100 sixes. What is the probability that this will happen in fewer than 700 rolls? \triangleright The exact distribution of X is Negative Binomial, with $p = \frac{1}{6}$ and k = 100. $\Pr(X_{\text{Normal}} < 699.5) = \frac{1}{\sqrt{3000 \times 2\pi}} \int_{-\infty}^{699.5} \exp(-\frac{(x-600)^2}{2\times 3000}) dx =$ 96.54% (the exact answer is 96.00%).
- If 5 cards are deal from a standard deck of 52, repeatedly and independently 100 times, what is the probability of dealing at least 50 aces in total? \triangleright We need $\Pr(X_1 + X_2 + \ldots + X_{100} \ge 50)$, where the X_i 's are independent, hypergeometric, with N = 52, K = 4 and n = 5 ($\mu = \frac{5}{13}$ and $\sigma = \sqrt{\frac{5}{13} \times \frac{12}{13} \times \frac{47}{51}}$ each). For their sum, $\mu_{\text{sum}} = \frac{500}{13}$ and $\sigma_{\text{sum}} = \sqrt{\frac{500}{13} \times \frac{12}{13} \times \frac{47}{51}} = \sqrt{\frac{94000}{2873}}$. The answer is, approximately, $\frac{1}{\sqrt{94000/2873 \times 2\pi}} \int_{49.5}^{\infty} \exp(-\frac{(s-500/13)^2}{2\times 94000/2873}) ds = 2.68\%$ (the exact answer is 3.00%).

- Consider a random independent sample of size 200 form the uniform distribution $\mathcal{U}(0,1)$. Find $\Pr(0.49 \leq \bar{X} \leq 0.51)$. \triangleright We know that $\bar{X} \in \mathcal{N}\left(0.5, \sqrt{\frac{1}{12 \times 200}}\right)$, which implies that the above probability is, approximately, $\frac{1}{\sqrt{2\pi/2400}} \int_{0.49}^{0.51} \exp\left(-\frac{(\bar{x}-.5)^2}{2/2400}\right) d\bar{x} = 37.58\%$.(the exact answer is 37.56% the approximation is now a lot more accurate for two reasons: the uniform distribution is continuous and symmetric).
- Consider a random independent sample of size 100 from

X =	-1	0	1	2
Prob:	$\frac{3}{6}$	$\frac{2}{6}$	0	$\frac{1}{6}$

What is the probability that the sample total will be negative (losing money, if this represents a game)? \triangleright First we compute the distribution's $\mu = -\frac{1}{6}$ and $\operatorname{Var}(X) = \frac{3+4}{6} - \frac{1}{36} = \frac{41}{36}$, then we introduce $S = \sum_{i=1}^{100} X_i$ and find $\mu_s = -\frac{100}{6}$ and $\sigma_s = \sqrt{\frac{4100}{36}}$. Answer: $\Pr(S < 0) \approx \frac{1}{\sqrt{4100/36 \times 2\pi}} \int_{-\infty}^{-0.5} \exp(-\frac{(s+100/6)^2}{2 \times 4100/36}) ds = 93.51\%$. (the exact value is 93.21%).

• Pay \$10 to play the following game: 5 cards are dealt from a standard deck, and you receive \$10 for each ace and \$5 for each king, queen and jack. First, find the expected value and standard deviation of your net win. $\triangleright W = 10X + 5Y - 10$ (where X is the number of aces dealt, Y correspondingly counts the total of kings, queens and jacks). This implies that $\mu_w = 10 \times \frac{5}{13} + 5 \times \frac{5 \times 3}{13} - 10 = -\frac{5}{13}$ dollars, $Var(W) = 5(10^2 \cdot \frac{1}{13} \cdot \frac{12}{13} + 5^2 \cdot \frac{3}{13} \cdot \frac{10}{13} - 2 \cdot 10 \cdot 5 \cdot \frac{1}{13} \cdot \frac{3}{13})\frac{47}{51} = 44.988$ and $\sigma_w = \sqrt{44.988} = \6.7073 . Secondly, compute the (approximate) probability of losing more that \$50 after 170 rounds of this game. \triangleright Defining $S \equiv \sum_{i=1}^{170} W_i$, we get $\mu_s = -65.385$ and $\sigma_s = 6.7073 \times \sqrt{170} = 87.452$. Thus, $\Pr(S < -50) \approx \Pr(S_{\text{Normal}} < -52.5) = \frac{1}{87.452\sqrt{2\pi}} \int_{-\infty}^{-52.5} \exp(-\frac{(t+65.385)^2}{2 \times 87.452^2}) dt = \frac{1}{2} + \frac{10}{2} + \frac{10}{$

55.86% (the exact answer is 56.12% - not bad considering that the individual proba-

bilities are still well over 2%). Note the unusual continuity correction!