1 Basicalgebra

A few formulas:

(a+b)? = a®+2ab+b?
(a+b)® = a4+ 3ad%b+ 3ab® + b

The coefficients follow from RSCAL'S TRIANGLE, the expansion is callegiNOMIAL .
Also:
a> v = (a—D0)(a+b)
a® b = (a—Db)(a®+ab+b?)

(do you know how to continue)?

Algebraic rules: Both additionandmultiplication individually, areCOMMUTATIVE
and ASSOCIATIVE (the important implication is that we don’t need parentsaeshen
multiplying 3 or more terms).

Considered together, they follow tiesTRIBUTIVE law, namely

(a+b+c)(d+e+ f+h)=
ad+ae+af +ah+bd+be+bf + bh+ cd+ ce+ cf + ch
(each term from the first set of parentheses multiplies ezrch of the second set, for the

total of 3 x 4 terms) What if we have 3 or more sets of parentheses to nyitipl
Note that division and exponentiation are neither comriugtattor associative.

Polynomial: A sum of several powers of a variable (sgymultiplied by aCOEFFICIENT,
e.0.3 — 2z + 422 — 5z3. The highest power is the polynomiat&EGREE We should know
how to add, multiply and raise polynomials to an integer pofluew about division?). We
often need to deal with large-size polynomials - that’s wieyuge Maple.

Exponentiation and related rules:

A B _ _A+B
(aA)B aAB
Also note that
(a*)? #a*?)
(not associative).
Logarithm (baseu) is the solution to

a®=A
denoted
x=log, A



(i.e. it is theINVERSE FUNCTIONtO exponentiation). Whea = e (= 2.7183...), this is
written as

z=InA
and calledNATURAL LOGARITHM. Its basic rules are:
In(A-B) = InA+InB

In(Af) = B-lnA

2 Geometric (and other) series

Thefinite version is
. 1— aNJrl
l+at+a®+a®+.. +a¥ = .
—a
valid for all « # 1, (we don't needu = 1, correct?) and positive integé¥. Would you
remember the proof?

Can be extended fafinite series, but only whefu| < 1 (the issue 0£ONVERGENCBE:
. 1
l+a+a*+a®+a*+..=
1—-a
There is one more infinite series (we will call it, informaltle EXPONENTIAL SERIEQ
worth knowing:

2 aS a4

a
1+a+?+—|+—|+...:ea
(this is how one ‘discovers’). The denominators are call€dCTORIALS.

3 Somecalculus

Differentiation of aFuNCTION of (say)x. Note on terminology: Welifferentiate(never
say ‘derive’) a function, but the answer is called the fumts DERIVATIVE.

The mainformulas are
d

-’ = f@-a)
d;‘lx(emxfa)) _ BP0

whereq and are two constantsi(is not necessarily an integer). An alternatgation is
(eP?)" = BeP7, but here it must benderstoodvhat the independent variable is

There are three basiales of differentiation (thePRODUCT, QUOTIENT andCHAIN
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rule), symbolically:
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(f(z) - g(2)) : g
G@)::f@ﬁ@—ﬂ@d@
9(x) ?
f(g(@)) f'(g(x)) - g(x)
wheref’(g(x)) implies thatf is differentiated with respect to its whole argument, g.x).
The product rule can be extended to the second derivativeeywhd:

(f()-g(2))" = f"(2) - g(x) + 2f'(2) - g'(2) + f(2) - g (2)
(f(x)-g(@)" = f"(x) - g(z) + 3f"(2) - g'(x) + 3f'(2) - g" () + f(x) - g"" ()

etc. (Pascal’s triangle again).

The important point is that any function can be differemiibany number of times (we
use Maple).

Taylor (Maclaurin) Expansion of a function:

2 3 4
F@) = FO) + - f10)+ 5 - £1(0) + 57 - £(0) + 7 - FD(0) +

This is how one would prove our ‘exponential series’. And twore examples:

In(1+2z)=2—2%/2+23/3 —at/4+ ..
1 2 3 4

1= =l+z+z"+z°+2"+ ..

(this is an alternate proof of the infinite-geometric-sef@mula).

Basic limits (whenn — o0)
One should know how to deal with a rational expression (gceyhighest degree of
numerator and denominator):
2n? +3
lim 2— =
n—oo M 4n +
We will also need one rather special and |mportant limit, elgm

1 n
lim (1 + —) =e
n—oo n

b n
lim (1 +24 — + ) =¢" = exp(a)
n—o0 n n

(introducing an alternate, Maple-like notation #d1). Note that the coefficient (and higher)
does not affect the answer.

and its generalization

L'Hopital rule (to deal with the% case):

T _1q T _1q / x 0
lim < = lim (e ) = lim & =&
z—0 X z—0 ([L’)/ z—0 1 1




Integration
Basic formulas foindefinite (i.e. finding ‘antiderivative’) integration

/(era)de = M p#—1

B+1
dz
/ = In|z +q
T+a
B(z—a)
Bla—a)gy = &
e T =
/ ;

and techniques, such as
Change of variable:
36 (224 3)8
2 5.9 = / Sdy = (y + =
/(x +3)° -2z dx (y +3)°dy 5 5

By-part integration:
/ln(ac) dx = /1 ‘In(z) doz = /(x)' ‘In(z) de =z - In(x) — /x - (In(z)) dz
= x-ln(x)—/x-édx:x-ln(x)—/1dx:x-ln(x)—x

Know how to convert these to a specifiefinite integral, e.g.

1
/ In(x) de = z - In(z) — x|i_0 =-1- 1ir%x -In(z)
0 B =

In(z))’ 1
S N ) L N S () |
z—0 (%) =0 =3 z—0

(represents arezbovethe z axis).

Not all functions are ‘analytically’ integrable (we canretpress the result as a
combination of the usual functions), but most definite iri¢sycan be evaluatetumerically
(remember Simpson'’s rule?).

4 Two-dimensional geometry

We need to understand just one concept - how do we desonidhematicallya
two-dimensionategion, such as the following triangle:
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We can chose one of the followirggjuivalentways of doing it:

1. 0 <y <1-—z (thecONDITIONAL range of the, values), wher® < z < 1 (followed
by theMARGINAL range of possible values @) — visualize this as the triangle being
filled with vertical segmentghe marginal range being tipeojection of the triangle into
thex axis.

2. 0 <z <1 -y (conditionalz-range), wher® < y < 1 (marginaly-range) we are now
filling’ the triangle with horizontalsegments.

The fact that we can get the second description from the €isdthy thex < y
interchange is only a coincidence (the region is a mirrorgienaf itself with respect to the
45° straight line).

Now, visualize the region described by< y < 1 — 22 (vertical segments), where
0 < z < 1. How would the 'horizontal’ description look like? Answer:< z < /1 — y2,
where0 < y < 1.



