Selecting r out of n objects (symbols):

Order matters \rightarrow Duplication allowed \downarrow	Yes	No
No	P_r^n	C_r^n
Yes	n^r	C_r^{n+r-1}

Binomial formula

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$$

Multinomial formula

$$(x+y+z)^n \sum_{\substack{i,j,k \ge 0\\ i+j+k=n}} \binom{n}{i,j,k} x^i y^j z^k$$

Partitioning n objects into groups of size $n_1, n_2, ... n_k$:

$$\binom{n}{n_1, n_2, \dots n_k}$$

(when groups of the same size are considered *distinct*). Also, the number of permutations of $n_1 a$'s, $n_2 b$'s, ...

For a specific **RANDOM EXPERIMENT**, we should be able to construct the corresponding samples space of simple events.

There are *three* important types of random experiments with equally likely simple events:

- 1. Randomly permuting (arranging) n objects, ether in a row (n! simple events) of in a circle, with (n 1)! simple events.
- 2. Rolling a regular 'die' with k sides, n times (k^n equally likely simple events ordered n-tuples).
- 3. Dealing k 'cards' out of n (sample space consists of C_k^n unordered 'hands').

For any of these, $\Pr(A) = \frac{\#(A)}{\#(\Omega)}$, where A is any event. To deal with events in general, we use **rules of Boolean algebra**. Two distributive laws:

$$(A \cap B) \cup (C \cap D) =$$
$$(A \cup C) \cap (A \cup D \cap (B \cup C) \cap (B \cup D)$$

and

$$\begin{aligned} (A \cup B) \cap (C \cup D) = \\ (A \cap C) \cup (A \cap D) \cup (B \cap C) \cup (B \cap D) \end{aligned}$$

and two De'Morgan's laws:

$$\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$$
$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

Rules of Probability

$$Pr(A) = 1 - Pr(A)$$

$$Pr(A \cap \overline{B}) = Pr(A) - Pr(A \cap B)$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Potential mistakes ('notationally' speaking)

 $A \cap B \cup C$ $\Pr(A) \cap \Pr(B)$ $\Pr(A + B)$

Maxim: Probability of *any* Boolean expression can be always reduced to a linear combination of probabilities of the individual events and of their 'simple' (no bars, no unions, no duplicates) intersections.

This is because we know how to simplify the probability of:

- a *union* of any number of events: $Pr(G \cup H) = Pr(G) + Pr(H) - Pr(G \cap H),$
- a complement: $Pr(\bar{G}) = 1 Pr(G)$,
- an *intersection* of *several complements* (De Morgan makes them into a single complement),
- an *intersection* with a *complement*: $Pr(G \cap \bar{H}) = Pr(G) - Pr(G \cap H),$
- an intersection of unions is changed into unions of intersections by distributive law,
- an *intersection* with *duplicates* remove the duplicates: $P(A \cap B \cap A) = Pr(A \cap B)$.

A systematic application of these rules is *guaranteed* to work. The remaining formulas, such as $A \cap \overline{A} = \emptyset$, will speed up the process.

Know how to :

- Draw a **probability tree** of a simple 2 or three-stage experiment, use **product rule** to compute the probability of each path.
- Compute the conditional probability of *B* given that *A* has happened, for *any A* and *B* (*some* of these probabilities are very simple when *B* follows *A*, just let *A* happen), otherwise

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

- A special case: in a multi-stage experiment, compute the conditional probability of something which happened at an early stage(s), given what happened later (**Bayes' rule**).
- Apply the formula of total probability, using a convenient partition

$$\Pr(B) = \Pr(A_1) \Pr(B|A_1) + \Pr(A_2) \Pr(B|A_2) + \dots$$

Mutual independence of k events (which we should be able to establish, *on our own*, based on the description of the experiment and the definition of the events), implies:

$$\Pr(A_1 \cap \bar{A}_3 \cap A_7 \cap \bar{A}_{12}) = \Pr(A_1) \cdot \Pr(\bar{A}_3) \cdot \Pr(A_7) \cdot \Pr(\bar{A}_{12})$$

(all together, $3^k - 1 - 2k$ of these, i.e. 4 for two events, 20 for three, 72 for four, etc.). Also: any Boolean combination of a *group* of these is independent of a Boolean

combination of the *others* (none of which may come from the first group).

Final rule: probability of *intersection* of *independent* events equals the *product* of individual probabilities. Thus, we can compute the probability of *any* Boolean combination of *independent* events, based on the *individual* probabilities.

RANDOM VARIABLE (RV for short) is defined by assigning, to each simple event, a **single number** (in this chapter, almost always an integer). Recall, for comparison, that an **event** is defined by assigning, to each simple event, a Boolean value ('yes', I am an element of A, 'no', I am outside of A). Note that, if X is a RV, X = 3 defines an *event*.

Distribution of a RV is a *table* with two rows: the RV's possible values, and the corresponding probabilities (we should be able to build it).

Probability function is an expression, say f(i), which enables us to *compute* the probability of X = i for each possible *i* (the **range** of possible values of *i must* be properly specified).

Probability generating function $P(z) = \sum_{\text{All } i} f(i) \times z^i$. Differentiating, and substituting z = 1, yields the *factorial moments*.

Once we have the distribution of X, we can answer *any* question concerning X (and forget the experiment it came from).

In addition to *probability function* f(i), we can also define (less important) **distribution** function $F(k) = \sum_{i=L}^{k} f(i)$ (same range, equivalent information - be able to build a *table* of values).

Bivariate distribution: is a 2D table of all possible values of both X and Y, and their *joint* probabilities, i.e. $Pr(X = i \cap Y = j)$.

Marginal (regular) **distribution** of X is obtained from a *bivariate distribution* by adding the probabilities in each 'row' (column). Note that this summation is over the *conditional range* of Y, when it's done 'symbolically'.

Independence of 2 or more RVs (a natural concept) can be established based on two conditions: (i) f(i, j, ...) is 'separable', and (ii) all ranges are 'marginal'. The joint distribution thus becomes *redundant* (can be constructed from the individual 'marginals').

Conditional distribution of Y given $X = \mathbf{i}$ is constructed by 're-normalizing' the probabilities of the \mathbf{i}^{th} row (column). It has all properties of a regular distribution. When X and Y are *independent*, conditional distribution is the same as the corresponding marginal

(i.e. *ignore*, or remove, the condition). This is the same as what we had for *events*: $Pr(A \cup B | C \cap \overline{D}) = Pr(A \cup B)$ when A, B, C and D are (mutually) independent.

Transforming a RV, e.g. $U \equiv (X - 1)^2$ defines a new RV U. To find its distribution, add a new row of U values to the X distribution (a table), then list all *unique* values of U (and their total probabilities) in a separate table (from the smallest to the largest).

Transforming X and Y into U = g(X, Y): Using the bivariate table of X-Y probabilities, compute and insert (under a slash) the values of U. Then collect the *unique* values and their *total* probabilities in a usual 'neat' table.

EXPECTED VALUE (mean):

$$\begin{split} \mathbb{E}(X) &= & \mu_x = \sum_{\text{All } i} i \times \Pr(X=i) \\ \mathbb{E}[g(X)] &= & \sum_{\text{All } i} g(i) \times \Pr(X=i) \neq g(\mu_x) \end{split}$$

We can bypass the distribution of $Y \equiv g(X)$.

Exception (linear transformation):

$$\mathbb{E}[aX+b] = a\mu_x + b$$

Similarly (bivariate case)

$$\mathbb{E}[h(X,Y)] = \sum_{\text{All } i \text{ and } j} h(i,j) \times \Pr(X = i \cap Y = j) \neq h(\mu_x,\mu_y)$$

Exception (linear case):

$$\mathbb{E}[aX + bY + c)] = a\mu_x + b\mu_y + c$$

even when X and Y are *not* independent (commonly, we are simply *adding* several RVs). This can be extended to a linear combination of *any* number of RVs.

• Independence implies that

$$\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$$

and also

$$\mathbb{E}[g(X) \cdot h(Y)] = \mathbb{E}[g(X)] \cdot \mathbb{E}[h(Y)]$$

- Univariate moments are simple $\mathbb{E}(X^k)$, central $\mathbb{E}[(X \mu)^k]$ and factorial $\mathbb{E}[X(X 1)(X 2)..(X k + 1)]$
- The most important of these are the mean μ ≡ E(X) and the variance Var(X) ≡ E[(X − μ)²] = E[X²] − μ².
- Standard deviation is $\sigma \equiv \sqrt{Var(X)}$ represents a *typical* (but not quite the average) distance between random values of X and the theoretical mean μ .
- Important formula: $Var(aX + b) = a^2 Var(X)$.
- Bivariate moments: The only important one is the $(1^{st}, 1^{st})$ central moment, called

covariance between *X* and *Y*:

$$\operatorname{Cov}(X,Y) \equiv \mathbb{E}[(X-\mu_x)\cdot(Y-\mu_y)] = \mathbb{E}(X\cdot Y) - \mu_x\cdot\mu_y$$

- Basic properties: Cov(X, Y) =Cov(Y, X), Cov(X, X) =Var(X), and when X and Y are *independent*, Cov(X, Y) = 0 (not necessarily reverse).
- Correlation coefficient:

$$\rho_{xy} \equiv \frac{\mathrm{Cov}(X,Y)}{\sigma_x \cdot \sigma_y}$$

(dimensionless).

• Important formula:

$$Var(a_1X_1 + a_2X_2 + \dots a_nX_n + c) = a_1^2Var(X_1) + a_2^2Var(X_2) + \dots \\ \dots + a_k^2Var(X_k) + 2a_1a_2Cov(X_1, X_2) + 2a_1a_3Cov(X_1, X_3) + \dots \\ \dots + 2a_{n-1}a_nCov(X_{n-1}, X_n)$$

Special case:

$$Var(X_1 + X_2 + ..., X_n) = Var(X_1) + Var(X_2) + ... + Var(X_n) + + 2Cov(X_1, X_2) + 2Cov(X_1, X_3) + ... + 2Cov(X_{n-1}, X_n)$$

And, more **special** yet: When all X's are *independent*, and drawn from the *same distribution* (IID RVs), such as playing n rounds of the same game:

 $\operatorname{Var}(X_1 + X_2 + \dots X_n) = n \cdot \operatorname{Var}(X)$

- Distributive law of covariance
- Moment generating function (can get from P(z) by $z \rightarrow e^t$):

$$M_{x}(t) = \mathbb{E}(e^{tX})$$

$$\mathbb{E}(X^{k}) = \left.\frac{d^{k}M_{x}(t)}{dt^{k}}\right|_{t=0}$$

$$M_{X+Y+Z}(t) = M_{x}(t) \cdot M_{y}(t) \cdot M_{z}(t) \quad need \ independence$$

$$M_{X_{1}+X_{2}+...+X_{n}}(t) = M_{x}(t)^{n} \qquad \text{IID case}$$

$$M_{aX+b}(t) = e^{bt} \cdot M_{x}(at)$$

- **Conditional expected value**, variance, moment generating function, etc. uses the corresponding conditional distribution (everything else is the same).
- **Probability generating function** (only for *integer-valued* RVs):

$$P_x(z) \equiv \mathbb{E}(z^X) = p_0 + p_1 z + p_2 z^2 + p_3 z^3 + \dots$$

Its main property (shared with moment generating function) is:

$$P_{X_1+X_2+X_3}(z) = P_1(z) \cdot P_2(z) \cdot P_3(z)$$

when X_1 , X_2 , X_3 are mutually *independent*. This time, the result can be (Taylor) *expanded*, where the coefficient of z^i is equal to $Pr(X_1 + X_2 + X_3 = i)$, which would

be very difficult (if not practically impossible) to find otherwise.

Name	f(i)	Range	Mean	Var	PGF
B	$\binom{n}{i}p^{i}q^{n-i}$	0n	np	npq	$(q+pz)^n$
\mathcal{NB}	$\binom{i-1}{k-1}p^kq^{i-k}$	$k\infty$	$\frac{k}{p}$	$\frac{k}{p}\left(\frac{1}{p}-1\right)$	$\left(\frac{pz}{1-qz}\right)^k$
HG	$\frac{\binom{K}{i}\binom{N-K}{n-i}}{\binom{N}{n}}$	×	$n\frac{K}{N}$	$n \frac{K(N-K)}{N^2} \frac{N-n}{N-1}$	×
\mathcal{PS}	$\frac{\Lambda^i}{i!}e^{-\Lambda}$	0∞	Λ	Λ	$e^{\Lambda(z-1)}$

The most COMMON DISTRIBUTIONS of integer-valued RVs:

Only for \mathcal{NB} we were able to find

$$F(i) = 1 - \sum_{j=0}^{k-1} {i \choose j} p^j q^{i-j}$$

(all others, we must add individual probabilities).

Multinomial distribution is a simple extension of binomial. Instead of S and F, each trial can result in one of *three* (four, ...) possible outcomes, and X, Y and Z count how many of them happen in n independent trials. The individual marginals are all *binomial* (with obvious parameters). We need only two extra formulas:

$$f_{xyz}(i,j,k) = \Pr(X = i \cap Y = j \cap Z = k) = \binom{n}{i,j,k} p_x^i p_y^j p_z^k$$

for any $i, j, k \ge 0$ such that i + j + k = n. The tricky part now is to figure out which combinations of i, j and k contribute to the event whose probability we need (winning a series of games, etc.).

The PGF of aX + bY + c is $(p_x z^a + p_y z^b + p_z)^n \times z^c$, where a, b and c must be integers. Finally

$$\operatorname{Cov}(X,Y) = -np_x p_y$$

For $U = U_0 + T$ and $V = V_0 + T$ where U_0 . V_0 and T are multinomial (but U and V are not), we get the following extension:

$$\operatorname{Cov}(U, V) = -n(p_u p_v - p_{uv})$$

To compute $Pr(U = 3 \cap V = 5)$, we must first express it in terms of U_0, V_0 and T.

Multivariate Hypergeometric (box with red, blue and green marbles):

$$f_{xyz}(i,j,k) = \frac{\binom{K_1}{i}\binom{K_2}{j}\binom{K_3}{k}}{\binom{N}{n}}$$
$$\operatorname{Cov}(X,Y) = -n \cdot \frac{K_1}{N} \cdot \frac{K_2}{N} \cdot \frac{N-n}{N-1}$$
$$\operatorname{Cov}(U,V) = -n(\frac{K_1}{N} \cdot \frac{K_2}{N} - \frac{K_{12}}{N}) \cdot \frac{N-n}{N-1}$$

CONTINUOUS RVs

Key concept: probability density function

$$f(x) = \frac{dF(x)}{dx}$$

It must be non-negative, and integrate (over all values) to 1. Often, we are given f(x) and have to find F(x) by integrating f(x).

Expected value: Everything is same as with discrete RVs, only summation changes to integration. *Old formulas still apply*:

$$\begin{aligned} &\operatorname{Var}(X) &= & \mathbb{E}(X^2) - \mathbb{E}(X)^2 \\ & \mathbb{E}(aX + bY + c) &= & a\mathbb{E}(X) + b\mathbb{E}(Y) + c \\ & \operatorname{Var}(aX + bY + c) &= & a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y) + 2ab\operatorname{Cov}(X, Y) \end{aligned}$$

Moment Generation function:

$$M_x(t) = \mathbb{E}(e^{tX})$$

Common continuous distributions:

Name	f(x)	Range	Mean	Var	MGF
Uniform	$\frac{1}{b-a}$	<i>ab</i>	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{t(b-a)}$
Exponential	$\frac{1}{\beta}e^{-x/\beta}$	0∞	β	β^2	$\frac{1}{1-\beta \cdot t}$
Gamma	$\frac{x^{k-1}}{(k-1)!\beta^k}e^{-x/\beta}$	0∞	$k\beta$	$k\beta^2$	$\left(\frac{1}{1-\beta \cdot t}\right)^k$

Exponential distribution describes time till the next arrival (from now). Also: time between consecutive arrivals, and time till the first arrival after 10:30 (any specific time).

n people fishing independently is the same as one person fishing at a rate equal to the sum of the individual rates.

Gamma distribution describes time till the k^{th} arrival (from 'now').

CENTRAL LIMIT THEOREM:

Let X have any distribution whatsoever, with a mean of μ and standard deviation of $\sigma.$ Then

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}}$$

has, in the $n \to \infty$ limit, the **standardized Normal** distribution, which has the MGF of $\exp(\frac{t^2}{2})$ and PDF of

$$f(z) = \frac{\exp(-\frac{z^2}{2})}{\sqrt{2\pi}}$$

(not analytically integrable, but Maple can handle it).