
Selecting r out of n objects (symbols):
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Partitioning n objects into groups of size n1, n2, ...nk:µ
n

n1, n2, ...nk

¶
(when groups of the same size are considered distinct). Also, the number of permutations of
n1 a’s, n2 b’s, ...

For a specific RANDOM EXPERIMENT, we should be able to construct the
corresponding samples space of simple events.
There are three important types of random experiments with equally likely simple

events:
1. Randomly permuting (arranging) n objects, ether in a row (n! simple events) of in a
circle, with (n− 1)! simple events.

2. Rolling a regular ‘die’ with k sides, n times (kn equally likely simple events - ordered
n-tuples).

3. Dealing k ‘cards’ out of n (sample space consists of Cn
k unordered ‘hands’).

For any of these, Pr(A) = #(A)
#(Ω) , where A is any event.

To deal with events in general, we use rules of Boolean algebra.
Two distributive laws:

(A ∩B) ∪ (C ∩D) =
(A ∪ C) ∩ (A ∪D ∩ (B ∪ C) ∩ (B ∪D)

and
(A ∪B) ∩ (C ∪D) =
(A ∩C) ∪ (A ∩D) ∪ (B ∩ C) ∪ (B ∩D)
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and two De’Morgan’s laws:
A ∩B ∩ C = Ā ∪ B̄ ∪ C̄
A ∪B ∪ C = Ā ∩ B̄ ∩ C̄

Rules of Probability
Pr(Ā) = 1− Pr(A)

Pr(A ∩ B̄) = Pr(A)− Pr(A ∩B)
Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Potential mistakes (‘notationally’ speaking)
A ∩B ∪ C
Pr(A) ∩ Pr(B)
Pr(A+B)

Maxim: Probability of any Boolean expression can be always reduced to a linear
combination of probabilities of the individual events and of their ‘simple’ (no bars, no
unions, no duplicates) intersections.
This is because we know how to simplify the probability of:

• a union of any number of events:
Pr(G ∪H) = Pr(G) + Pr(H)− Pr(G ∩H),

• a complement: Pr(Ḡ) = 1− Pr(G),
• an intersection of several complements (De Morgan makes them into a single
complement),

• an intersection with a complement:
Pr(G ∩ H̄) = Pr(G)− Pr(G ∩H),

• an intersection of unions is changed into unions of intersections by distributive law,

• an intersection with duplicates - remove the duplicates: P (A ∩B ∩A) = Pr(A ∩B).
A systematic application of these rules is guaranteed to work. The remaining formulas,

such as A ∩ Ā = ∅, will speed up the process.

Know how to :
• Draw a probability tree of a simple 2 or three-stage experiment, use product rule to
compute the probability of each path.

• Compute the conditional probability of B given that A has happened, for any A and B
(some of these probabilities are very simple - when B follows A, just let A happen),
otherwise

Pr(B|A) = Pr(A ∩B)
Pr(A)
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• A special case: in a multi-stage experiment, compute the conditional probability of
something which happened at an early stage(s), given what happened later (Bayes’ rule).

• Apply the formula of total probability, using a convenient partition
Pr(B) = Pr(A1) Pr(B|A1) + Pr(A2) Pr(B|A2) + ...

Mutual independence of k events (which we should be able to establish, on our own,
based on the description of the experiment and the definition of the events), implies:

Pr(A1 ∩ Ā3 ∩A7 ∩ Ā12) = Pr(A1) · Pr(Ā3) · Pr(A7) · Pr(Ā12)
(all together, 3k − 1− 2k of these, i.e. 4 for two events, 20 for three, 72 for four, etc.).
Also: any Boolean combination of a group of these is independent of a Boolean

combination of the others (none of which may come from the first group).
Final rule: probability of intersection of independent events equals the product of

individual probabilities. Thus, we can compute the probability of any Boolean combination
of independent events, based on the individual probabilities.

RANDOM VARIABLE (RV for short) is defined by assigning, to each simple event, a
single number (in this chapter, almost always an integer). Recall, for comparison, that an
event is defined by assigning, to each simple event, a Boolean value (‘yes’, I am an element
of A, ‘no’, I am outside of A). Note that, ifX is a RV,X = 3 defines an event.
Distribution of a RV is a table with two rows: the RV’s possible values, and the

corresponding probabilities (we should be able to build it).
Probability function is an expression, say f(i), which enables us to compute the

probability of X = i for each possible i (the range of possible values of i must be properly
specified).
Probability generating function P (z) =

P
All i f(i) × zi. Differentiating, and

substituting z = 1, yields the factorial moments.
Once we have the distribution of X, we can answer any question concerning X (and

forget the experiment it came from).

In addition to probability function f(i), we can also define (less important) distribution
function F (k) =

Pk
i=L f(i) (same range, equivalent information - be able to build a table

of values).
Bivariate distribution: is a 2D table of all possible values of both X and Y, and their

joint probabilities, i.e. Pr(X = i ∩ Y = j).
Marginal (regular) distribution ofX is obtained from a bivariate distribution by adding

the probabilities in each ‘row’ (column). Note that this summation is over the conditional
range of Y , when it’s done ‘symbolically’.
Independence of 2 or more RVs (a natural concept) can be established based on

two conditions: (i) f(i, j, ..) is ‘separable’, and (ii) all ranges are ‘marginal’. The joint
distribution thus becomes redundant (can be constructed from the individual ‘marginals’).
Conditional distribution of Y given X = i is constructed by ‘re-normalizing’ the

probabilities of the ith row (column). It has all properties of a regular distribution. WhenX
and Y are independent, conditional distribution is the same as the corresponding marginal
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(i.e. ignore, or remove, the condition). This is the same as what we had for events:
Pr(A ∪B | C ∩ D̄) = Pr(A ∪B) when A, B, C andD are (mutually) independent.
Transforming a RV, e.g. U ≡ (X − 1)2 defines a new RV U. To find its distribution, add

a new row of U values to the X distribution (a table), then list all unique values of U (and
their total probabilities) in a separate table (from the smallest to the largest).
Transforming X and Y into U = g(X,Y ): Using the bivariate table of X-Y

probabilities, compute and insert (under a slash) the values of U. Then collect the unique
values and their total probabilities in a usual ‘neat’ table.

EXPECTED VALUE (mean):

E(X) = µx =
X
All i

i× Pr(X = i)

E[g(X)] =
X
All i

g(i)× Pr(X = i) 6= g(µx)

We can bypass the distribution of Y ≡ g(X).
Exception (linear transformation):

E[aX + b] = aµx + b

Similarly (bivariate case)

E[h(X,Y )] =
X

All i and j

h(i, j)× Pr(X = i ∩ Y = j) 6= h(µx, µy)

Exception (linear case):
E[aX + bY + c)] = aµx + bµy + c

even whenX and Y are not independent (commonly, we are simply adding several RVs).
This can be extended to a linear combination of any number of RVs.

• Independence implies that
E(X · Y ) = E(X) · E(Y )

and also
E[g(X) · h(Y )] = E[g(X)] · E[h(Y )]

• Univariate moments are simple E(Xk), central E[(X − µ)k] and factorial
E [X(X − 1)(X − 2)..(X − k + 1)]

• The most important of these are the mean µ ≡ E(X) and the variance
Var(X) ≡ E[(X − µ)2] = E[X2]− µ2.

• Standard deviation is σ ≡ pVar(X) represents a typical (but not quite the average)
distance between random values ofX and the theoretical mean µ.

• Important formula: Var(aX + b) = a2Var(X).

• Bivariate moments: The only important one is the (1st, 1st) central moment, called
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covariance betweenX and Y :
Cov(X,Y ) ≡ E[(X − µx) · (Y − µy)] = E(X · Y )− µx · µy

• Basic properties: Cov(X,Y ) =Cov(Y,X), Cov(X,X) =Var(X), and when X and Y
are independent, Cov(X,Y ) = 0 (not necessarily reverse).

• Correlation coefficient:
ρxy ≡

Cov(X,Y )

σx · σy
(dimensionless).

• Important formula:
Var(a1X1 + a2X2 + ...anXn + c) = a21Var(X1) + a22Var(X2) + ...

...+ a2kVar(Xk) + 2a1a2Cov(X1,X2) + 2a1a3Cov(X1,X3) + ...

...+ 2an−1anCov(Xn−1,Xn)

Special case:
Var(X1 +X2 + ...Xn) = Var(X1) +Var(X2) + ....+Var(Xn) +

+2Cov(X1,X2) + 2Cov(X1,X3) + ...+ 2Cov(Xn−1,Xn)

And, more special yet: When all X’s are independent, and drawn from the same
distribution (IID RVs), such as playing n rounds of the same game:

Var(X1 +X2 + ...Xn) = n · V ar(X)
• Distributive law of covariance

• Moment generating function (can get from P (z) by z → et):
Mx(t) = E(etX)

E(Xk) = dkMx(t)
dtk

¯̄̄
t=0

MX+Y+Z(t) =Mx(t) ·My(t) ·Mz(t) need independence

MX1+X2+...+Xn(t) =Mx(t)
n IID case

MaX+b(t) = ebt ·Mx(at)

• Conditional expected value, variance, moment generating function, etc. uses the
corresponding conditional distribution (everything else is the same).

• Probability generating function (only for integer-valued RVs):
Px(z) ≡ E(zX) = p0 + p1z + p2z

2 + p3z
3 + ...

Its main property (shared with moment generating function) is:
PX1+X2+X3(z) = P1(z) · P2(z) · P3(z)

when X1, X2, X3 are mutually independent. This time, the result can be (Taylor)
expanded, where the coefficient of zi is equal to Pr(X1 +X2 +X3 = i), which would
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be very difficult (if not practically impossible) to find otherwise.

Themost COMMON DISTRIBUTIONS of integer-valued RVs:

Name f(i) Range Mean Var PGF
B ¡

n
i

¢
piqn−i 0..n np npq (q + pz)n

NB ¡
i−1
k−1
¢
pkqi−k k..∞ k

p
k
p

³
1
p − 1

´ ³
pz
1−qz

´k
HG

¡
K
i

¢¡
N−K
n−i

¢¡
N
n

¢ × nK
N nK(N−K)

N2
N−n
N−1 ×

PS Λi

i! e
−Λ 0..∞ Λ Λ eΛ(z−1)

Only for NB we were able to find

F (i) = 1−
k−1P
j=0

¡
i
j

¢
pjqi−j

(all others, we must add individual probabilities).

Multinomial distribution is a simple extension of binomial. Instead of S and F, each
trial can result in one of three (four, ...) possible outcomes, andX, Y and Z count how many
of them happen in n independent trials. The individual marginals are all binomial (with
obvious parameters). We need only two extra formulas:

fxyz(i, j, k) = Pr(X = i ∩ Y = j ∩ Z = k) =
¡

n
i,j,k

¢
pixp

j
yp

k
z

for any i, j, k ≥ 0 such that i + j + k = n. The tricky part now is to figure out which
combinations of i, j and k contribute to the event whose probability we need (winning a
series of games, etc.).
The PGF of aX+ bY + c is (pxza+pyz

b+pz)
n×zc, where a, b and cmust be integers.

Finally
Cov(X,Y ) = −npxpy

For U = U0 + T and V = V0 + T where U0. V0 and T are multinomial (but U and V
are not), we get the following extension:

Cov(U, V ) = −n(pupv − puv)

To compute Pr(U = 3 ∩ V = 5), we must first express it in terms of U0, V0 and T.

Multivariate Hypergeometric (box with red, blue and green marbles):

fxyz(i, j, k) =

¡
K1

i

¢¡
K2

j

¢¡
K3

k

¢¡
N
n

¢
Cov(X,Y ) = −n · K1

N · K2

N · N−nN−1
Cov(U, V ) = −n(K1

N · K2

N − K12

N ) · N−nN−1
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CONTINUOUS RVs
Key concept: probability density function

f(x) =
dF (x)

dx
It must be non-negative, and integrate (over all values) to 1. Often, we are given f(x) and
have to find F (x) by integrating f(x).

Expected value: Everything is same as with discrete RVs, only summation changes to
integration. Old formulas still apply:

Var(X) = E(X2)− E(X)2
E(aX + bY + c) = aE(X) + bE(Y ) + c

Var(aX + bY + c) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

Moment Generation function:
Mx(t) = E(etX)

Common continuous distributions:

Name f(x) Range Mean Var MGF

Uniform 1
b−a a..b a+b

2
(b−a)2
12

ebt−eat
t(b−a)

Exponential 1
β e
−x/β 0..∞ β β2 1

1−β·t

Gamma xk−1
(k−1)!βk e

−x/β 0..∞ kβ kβ2
³

1
1−β·t

´k
Exponential distribution describes time till the next arrival (from now). Also:

time between consecutive arrivals, and time till the first arrival after 10:30 (any specific
time).

n people fishing independently is the same as one person fishing at a rate equal to the
sum of the individual rates.

Gamma distribution describes time till the kth arrival (from ‘now’).

CENTRAL LIMIT THEOREM:
Let X have any distribution whatsoever, with a mean of µ and standard deviation of σ.

Then Pn
i=1Xi − nµ

σ
√
n

has, in the n → ∞ limit, the standardized Normal distribution, which has the MGF of
exp( t

2

2 ) and PDF of

f(z) =
exp(− z2

2 )√
2π

(not analytically integrable, but Maple can handle it).
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