
TRANSFORMING RVs

of continuous type only.

The main issue: Given the distribution ofX, find the distribution of Y ≡ 1
1+X

(any expression involving X).

This is called univariate transformation.

Later, we also discuss bivariate transformations, say U ≡ X
X+Y

(or any other
expression involving X and Y ).

Another simple example: V ≡ X + Y (adding two RVs is tricky).

Let us start with

UNIVARIATE TRANSFORMATION
There are two basic techniques:

Distribution-Function (F ) Technique which works as follows:

Take Y ≡ g(X). We can find its distribution function by

FY (y) = Pr(Y < y) = Pr[g(X) < y]

i.e. solving the g(X) < y inequality for X (usually an interval), and then
integrating f(x) over this interval.

: EXAMPLES:

1) Consider X ∈ U(−π
2
, π
2
) [two-directional pointer attached to a spinning

wheel]. Find the distribution of

Y = b tan(X) + a

(location of a dot the pointer would leave on a screen placed b units from the
wheel’s center, with a scale whose origin is a units off the center).

Solution:

FX(x) =
x+ π

2

π
≡ x

π
+
1

2
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where −π
2
< x < π

2
.

FY (y) = Pr[b tan(X) + a < y] =

Pr[X < arctan(
y − a

b
)] = FX [arctan(

y − a

b
)] =

1

π
arctan

µ
y − a

b

¶
+
1

2

where −∞ < y <∞.

This implies that

fY (y) =
1

πb
· 1

1 +
¡
y−a
b

¢2 = b

π
· 1

b2 + (y − a)2

It looks similar to Normal (’bell-shaped’), yet these two are world apart.

The name of this new distribution is Cauchy [notation: C(a, b)].

Since the
∞R
−∞

y · fY (y) dy = ∞−∞, the Cauchy distribution does not have

a mean (also, its variance is infinite). As a consequence, the central limit
theorem does not apply.

Yet the distribution has a clear center (at y = a) and width (±b). These are
the median µ̃Y = a [verify by solving FY (µ̃) =

1
2
] and semi-inter-quartile range

(quartile deviation) QU−QL

2
where QU and QL are the upper and lower quartiles

[defined by F (QU) =
3
4
and F (QL) =

1
4
] - in this case, QL = a − b and

QU = a+ b.

The simplest case is C(0, 1), whose pdf equals

f(y) =
1

π
· 1

1 + y2

2) Let X have its pdf equal to 6x(1 − x) for 0 < x < 1. Find the pdf of
Y = X3.

2



Solution: From graph, 0 < Y < 1.

Secondly,

FX(x) = 6

Z
(x− x2) dx =

6(
x2

2
− x3

3
) = 3x2 − 2x3

And finally:

FY (y) ≡ Pr(Y < y) = Pr(X3 < y) =

Pr(X < y
1
3 ) = FX(y

1
3 ) = 3y

2
3 − 2y

This easily converts to fY (y) = 2y−
1
3 − 2 where 0 < y < 1 [zero otherwise].

Note that when y → 0 this pdf becomes infinite, which is OK.

3) Let X ∈ U(0, 1). Find and identify the distribution of Y = − lnX (its
range is obviously 0 < y <∞).

Solution: First: FX(x) = x for 0 < x < 1.

Then:

FY (y) = Pr(− lnX < y) =

Pr(X > e−y) = 1− FX(e
−y) = 1− e−y

where y > 0.

The corresponding pdf is thus e−y (exponential distribution, with µ = 0).

Note that Y = −β · lnX would result in exponential distribution with µ = β.

4) If Z ∈ N (0, 1), what is the distribution of Y = Z2.

Solution:

FY (y) = Pr(Z2 < y) =

Pr(−√y < Z <
√
y) = FZ(

√
y)− FZ(

√
y)
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Since we don’t have an explicit expression for FZ(z), it would appear that
we are stuck.

But, we can get the corresponding fY (y) by a simple differentiation:

dFZ(
√
y)

dy
− dFZ(−√y)

dy
=

y−
1
2

2
fZ(
√
y) +

y−
1
2

2
fZ(−√y) =

y−
1
2 e−

y
2√

2π

where y > 0.

This can be identified as the gamma distribution with α = 1
2
and β = 2.

Its moment generating function is (1− 2t)−1/2

Due to its importance, it is also called chi-square distribution with one
degree of freedom (χ21).

Chi-square distribution with n degrees of freedom is obtained by adding,
independently, Z21 + Z22 + Z23 + ....+ Z2n, where each Zi ∈ N (0, 1).

A simple moment-generating-function argument shows that it is, effectively,
the gamma distribution with α = n

2
, β = 2.

Notation: χ2n.

Probability-Density-Function (f) Technique is a bit faster, but it
works for one-to-one transformations only.

It consists of four steps:

(i): Find X in terms of Y.

(ii): Substitute the result (switch to small letters) for the argument of fX(x).

(iii): Differentiate the result of (i) with respect to y.

(iv): Multiply (ii) by the absolute value from (iii)

This yields directly the pdf of Y.
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: EXAMPLES (we will redo the first three examples of the previous
section):

1. X ∈ U(−π
2
, π
2
) and Y = b tan(X) + a.

Solution:

(i) x = arctan(y−a
b
)

(ii) 1
π

(iii) 1
b
· 1
1+( y−a

b
)2
= b

b2+(y−a)2

(iv) b
π
· 1
b2+(y−a)2 [check].

2. f(x) = 6x(1− x) for 0 < x < 1, Y = X3.

Solution:

(i) x = y1/3

(ii) 6y1/3(1− y1/3)

(iii) 1
3
y−2/3

(iv) 2(y−1/3 − 1) [check].
3. X ∈ U(0, 1) and Y = − lnX.

Solution:

(i) x = e−y

(ii) 1

(iii) −e−y
(iv) e−y [check].

BIVARIATE TRANSFORMATION
Y is now a function of two ’old’ RVs, sayX1 andX2 whose joint distribution

is given.
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Distribution-Function Technique follows essentially the same pattern
as the univariate case, i.e.

FY (y) = Pr(Y < y) = Pr[g(X1,X2) < y]

Realize that g(X1, X2) < y results in a 2-D region, over which f(x1, x2) needs
to be integrated.

: EXAMPLES:

1) Suppose that X1 and X2 are independent RVs, both from E(1), and Y =
X2

X1
.

Solution:

FY (y) = Pr

µ
X2

X1
< y

¶
= Pr(X2 < yX1) =ZZ

0<x2<yx1

e−x1−x2 dx1 dx2 = 1− 1

1 + y

where y > 0. This implies that fY (y) =
1

(1 + y)2

2) This time Z1 and Z2 are independent RVs from N (0, 1) and

Y = Z21 + Z22

(we already know the answer: χ22).

Solution:

FY (y) = Pr(Z
2
1 + Z22 < y) =

1

2π

ZZ
z21+z

2
2<y

e−
z21+

2
2

2 dz1 dz2 =

1

2π

2πZ
0

√
yZ

0

e−
r2

2 · r dr dθ =

y
2Z
0

e−w dw = 1− e−
y
2
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where y > 0.

This is exponential distribution with β = 2 (not χ22 as expected, how come?).

3) Sum of two independent RVs: Assume that X1 and X2 are inde-
pendent RVs from the same distribution, having L and H as its lowest and
highest possible value. Find the distribution of X1 +X2.

Solution:
FY (y) = Pr(X1 +X2 < y) =ZZ

x1+x2<y
L<x1,x2<H

f(x1)f(x2) dx1 dx2 =



y−LR
L

y−x1R
L

f(x1)f(x2) dx2 dx1 when y < L+H

1−
HR

y−H

HR
y−x1

f(x1)f(x2) dx2 dx1 when y > L+H

Differentiating with respect to y results in f(x) =
y−LR
L

f(x1)f(y − x1) dx1 when y < L+H

HR
y−H

f(x1)f(y − x1) dx1 when y > L+H

or, equivalently,

fY (y) =

min(H, y−L)Z
max(L, y−H)

f(x) · f(y − x) dx

where 2L < y < 2H.
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Two special cases of this:

(a) In the specific case of the uniform U(0, 1) distribution, the last formula
yields:

fY (y) =

min(1,y)Z
max(0,y−1)

dx =


yR
0

dx = y when 0 < y < 1

1R
y−1

dx = 2− y when 1 < y < 2

(b) Similarly, for the ’standardized’ Cauchy distribution with f(x) =
1

π
·

1

1 + x2
, we get:

fY (y) =
1

π2

∞Z
−∞

1

1 + x2
· 1

1 + (y − x)2
dx =

2

π
· 1

4 + y2

where −∞ < y <∞.

The last result can be easily converted to the pdf of X̄ = X1+X2

2
= Y

2
, yielding

fX̄(x̄) =
1

π
· 1

1 + x̄2

Thus, the sample mean X̄ has the same Cauchy distribution as do the two
individual observations (the result can be extended to any sample size)!
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Pdf (Shortcut) Technique is more powerful, but requires several steps:

(i) Since it can work only for one-to-one transformations, the new random
variable Y ≡ g(X1, X2) must be extended by Y2 ≡ X2.

(ii) Invert the transformation, i.e. solve y1 = g(x1, x2) and y2 = x2 for x1
and x2 (in terms of y1 and y2).

(iii) Substitute this solution into the joint pdf of the ’old’ X1,X2 pair.

(iv) Further multiply by the transformation’s Jacobian (in absolute value)¯̄̄̄
¯ ∂x1

∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

¯̄̄̄
¯

The result is the joint pdf of Y1 and Y2.

At the same time, establish the region of possible (Y1, Y2) values (this is often
the most difficult part of the procedure).

(v) Eliminate Y2 by integrating it out (finding the Y1 marginal).

Don’t forget that you must integrate over the conditional range of y2 given
y1.

: EXAMPLES:

1) X1, X2 ∈ E(1) and independent,

Y =
X1

X1 +X2

Solution:

(ii)

y1 =
x1

x1 + x2
y2 = x2
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yields

x1 =
y1y2
1− y1

x2 = y2

(iii) Substitute this into

f(x1, x2) = exp(−x1 − x2)

getting

exp

·
−y2

µ
y1

1− y1
+ 1

¶¸
= exp

µ
− y2
1− y1

¶

(iv) Further multiply by Jacobian

¯̄̄̄
¯̄ 1− y1 + y1
(1− y1)2

y2
y1

1− y1
0 1

¯̄̄̄
¯̄ = y2

(1− y1)2

to get

f(y1, y2) =
y2

(1− y1)2
exp

µ
− y2
1− y1

¶

for 0 < y1 < 1 and y2 > 0.

(v) Eliminate Y2 by

1

(1− y1)2

∞Z
0

y2 exp

µ
− y2
1− y1

¶
dy2 = 1

for 0 < y1 < 1.
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The distribution of Y is thus U(0, 1).

2) Same X1 and X2 as before, Y = X2

X1
.

Solution:

(ii)

x1 =
y2
y1

x2 = y2

(iii) Substitute into exp(−x1 − x2) to get

exp[−y2(1 + 1

y1
)]

(iv) times ¯̄̄̄
¯̄ −y2y21 1

y1
0 1

¯̄̄̄
¯̄ = y2

y21

yields the joint pdf for y1 > 0 and y2 > 0.

(v) Eliminate y2 by

1

y21

∞Z
0

y2 exp[−y2(1 + 1

y1
)] dy2 =

1

(1 + y1)2

where y1 > 0 [check].

3) Introducing ’Student’ or t-distribution:

Start with two independent RVs X1 ∈ N (0, 1) and X2 ∈ χ2n, define

Y1 =
X1r
X2

n
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(ii)

x1 = y1

r
y2
n

x2 = y2

(iii) Substitute into

f(x1, x2) =
exp(−x21

2
)√

2π
· x

n
2
−1

2 exp(−x2
2
)

Γ(n
2
) · 2n2 =

exp(−y21y2
2n
)√

2π
· y

n
2
−1

2 exp(−y2
2
)

Γ(n
2
) · 2n2

(iv) and multiply by ¯̄̄̄
¯̄
r

y2
n

y1
2
√
n y2

0 1

¯̄̄̄
¯̄ =ry2

n

(v) Eliminate y2:

1√
2πΓ(n

2
) 2

n
2
√
n

∞Z
0

y
n−1
2

2 exp[−y2
2
(1 +

y21
n
)] dy2 =

Γ(n+1
2
)

Γ(n
2
)
√
nπ
· 1³
1 +

y21
n

´n+1
2

where −∞ < y1 <∞.

Note that when n = 1 this equals 1
π
· 1
1+ y21

(Cauchy), when n → ∞, the

second part of the formula tends to e−
y21
2 (standardized Normal).

When n ≥ 2, the mean of this distribution is 0. when n ≥ 3, its variance
equals

n

n− 2
12



4) Introducing Fisher’s or F-distribution

defined by

Y1 =

X1

n
X2

m

≡ m

n
· X1

X2

where X1 and X2 are independent, both having the chi-square distribution,
with degrees of freedom n and m, respectively.

(ii)

x1 =
n

m
y1 y2

x2 = y2

(iii) Substitute into

x
n
2
−1

1 exp(−x1
2
)

Γ(n
2
) 2

n
2

· x
m
2
−1

2 exp(−x2
2
)

Γ(m
2
) 2

m
2

=

( n
m
)
n
2
−1

Γ(n
2
)Γ(m

2
) 2

n+m
2

y
n
2
−1

1 · y
n+m
2
−2

2 exp
h
−y2(1+

n
m
y1)

2

i

(iv) multiply by ¯̄̄̄
¯
n

m
· y2 ....

0 1

¯̄̄̄
¯ = n

m
· y2

where y1 > 0 and y2 > 0.

(v) Integrating over y2 (from 0 to ∞) yields:

f(y1) =
Γ(n+m

2
)

Γ(n
2
)Γ(m

2
)
(
n

m
)
n
2 · y

n
2
−1

1

(1 + n
m
y1)

n+m
2

where y1 > 0.
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SAMPLING FROM A DISTRIBUTION

A random independent sample (RIS) of size n is a collection of n independent
RVs X1, X2, ..., Xn, each having the same distribution.

A function of these is called a statistic. The most important of these is

SAMPLE MEAN is defined as the usual average of the Xi’s:

X ≡ X1 +X2 + ...+Xn

n

Unlike the distribution’s mean, this is a random variable, having a distribution
of its own.

How does the distribution of X relate to the distribution of the individual
Xi s?

In terms of the expected value and variance, the answer is simple:

E
¡
X
¢
=
E (X1 +X2 + ...+Xn)

n
=

µ+ µ+ ...+ µ

n
= µ

and

Var
¡
X
¢
=
1

n2
Var (X1) +

1

n2
Var (X2) + ...+

1

n2
Var (Xn)

=
σ2 + σ2 + ...+ σ2

n2
=

σ2

n

This implies

σX =
σ√
n

CENTRAL LIMIT THEOREM

The shape of the X distribution is more tricky.
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When n = 1, we have the original shape.

For n = 2, the distribution looks already quite different.

When we reach n = 10, a bell-shaped curve is quite apparent.

And, at n = 30, the match with the Normal distribution is almost perfect.

Proof needs moment generating function:

First, we standardize X

Z ≡ X̄ − µ
σ√
n

=

Pn
i=1(Xi−µ)

n
σ√
n

=

nX
i=1

µ
Xi − µ

σ
√
n

¶
≡

nX
i=1

Yi

We know that

MY (t) = 1 + E[Y ] t+ E[Y 2]
t2

2
+ E[Y 3]

t3

3!
+ ...

= 1 +
t2

2n
+

α3t
3

6n3/2
+ ....

where α3 is the skewness of the original distribution.

The MGF of Z is this M(t), raised to the power of n. When n→∞, we get

lim
n→∞

µ
1 +

t2

2n
+

α3t
3

6n3/2
+ ....

¶n

= exp

µ
t2

2

¶
which is the MFG of N (0, 1).

SAMPLE VARIANCE is defined by

s2 ≡
Pn

i=1(Xi −X)2

n− 1
(s is then the sample standard deviation).
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We first expand its numerator

nX
i=1

(Xi − X̄)2 =
nX
i=1

[(Xi − µ)− (X̄ − µ)]2 =

nX
i=1

(Xi − µ)2 − 2
nX
i=1

(X̄ − µ)(Xi − µ) + n · (X̄ − µ)2

then take its expected value:

nX
i=1

Var(Xi)− 2
nX
i=1

Cov(X̄,Xi) + n ·Var(X̄) =

nσ2 − 2n · σ
2

n
+ n · σ

2

n
= σ2(n− 1)

since

Cov(X̄,X1) =
1

n

nX
i=1

Cov(Xi,X1) =

1

n
Cov(X1,X1) =

1

n
Var(X1) =

σ2

n

and the same for Cov(X̄,X2), Cov(X̄,X3).

We have thus shown that

E[s2] =
σ2(n− 1)
n− 1 = σ2

s2 can thus be called an unbiased estimator of the distribution’s variance
σ2.

Does this imply that s has the expected value of σ?

The answer is ’no’.
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SAMPLING FROM N (µ, σ)
To be able to say anything more about s2, we need to be more specific

about the distribution form which the sample is taken.

In this section, we assume that this distribution is Normal.

This immediately implies that the distribution of X is Normal for any n.

Regarding s2, one can show that it is independent of X, and that the

distribution of
(n− 1) s2

σ2
is χ2n−1.

The proof of this is fairly complex.

The important implication of all this is that

(X̄ − µ)
s√
n

has the tn−1 distribution.

Proof:

(X̄ − µ)
s√
n

≡

(X̄ − µ)
σ√
ns

s2(n−1)
σ2

n− 1

≡ Zq
χ2n−1
n−1

SAMPLINGWITHOUT REPLACEMENT Suppose we select a ran-
dom sample X1, X2, .... Xn, from a population of N numbers, say x1, x2,
..., xN (these don’t need to be integers, they may also not be all distinct, and
they may be ’dense’ in one region and ’sparse’ in another - they may thus
closely resemble any distribution, including Normal).

Assuming that each number of the population has the same chance of being
selected, the mean and variance of the distribution of the Xi s

µ =

PN
i=1 xi
N
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and

σ2 =

PN
i=1(xi − µ)2

N

If the sample is to be independent, the sampling has to be done with re-
placement (meaning that each selected xi value must be ’returned’ to the
population before the next draw, to be considered again). In this case, our
previous formulas concerning X and s2 remain valid.

If the sampling is done without replacement, X1, X2, ..., Xn are no longer
independent (they are still identically distributed). How does this effect the
properties of X?

The expected value ofX remains equal to µ, by essentially the same argument
as before (the proof does not require independence).

Its variance is now computed by

Var
¡
X
¢
=

1

n2

nX
i=1

Var (Xi) +
1

n2

X
i6=j
Cov(Xi, Xj)

=
nσ2

n2
− n(n− 1)σ2

n2(N − 1) =
σ2

n
· N − n

N − 1
since all the covariances (when i 6= j) have the same value, equal to

Cov(X1,X2) =

P
k 6=c(xk − µ)(xc − µ)

N(N − 1)

=

PN
k=1

PN
c=1(xk − µ)(xc − µ)−PN

k=1(xk − µ)2

N(N − 1)
= − σ2

N − 1
Note that this variance is smaller (good) than what it was in the ’indepen-
dent’ case.

BIVARIATE SAMPLES A random independent sample of size n from a
bivarite distribution consists of n pairs of RVs (X1, Y1), (X2, Y2), .... (Xn, Yn),
which are independent between (but not within).
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We already know the individual properties of X, Y (and of s2x and s2y).

Jointly, X and Y have a distribution which, for n→∞, tends to be bivariate
Normal (proof similar to the univariate case).

As we know, this distribution has five parameters - four of them are the
marginal means and standard deviations (µx, µy,

σx√
n
and σy√

n
), the last one

is the correlation coefficient between X and Y . Let’s try to derive it.

Clearly

Cov(
nX
i=1

Xi,
nX
i=1

Yi) =

Cov(X1, Y1) + Cov(X2, Y2) + ..... +Cov(Xn, Yn)

= nCov(X,Y )

This implies that the covariance between X and X equals
Cov(X,Y )

n
.

Therefore,

ρXY =

Cov(X,Y )

nr
σ2x
n
· σ

2
y

n

=
Cov(X,Y )

σxσy
= ρxy

same as that of a single (Xi, Yi) pair!

ORDER STATISTICS

Consider RIS of size n from some distribution.

DefineX(1), X(2), ....X(n) to be the smallest, the second smallest, ..., the largest
observation, respectively (they will be strongly correlated).

They are called the first, the second, ..., and the last order statistic, re-
spectively.

Note that when n is odd, X(n+1
2
) is the sample median X̃.

UNIVARIATE CASE
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It is fairly easy to find Pr[X(i) < x]. This simply means that, out of the origi-
nal n independent observations, i or more are smaller than x. The probability
that any one of these n is smaller than x is p = F (x). The answer is thus:

Pr[X(i) < x] =
nX
j=i

µ
n

j

¶
F (x)j[1− F (x)]n−j

To get the corresponding pdf, we have to differentiate this with respect to
x. This is a bit tricky, but the answer is:

f(i)(x) =
n!

(i− 1)!(n− i)!
F (x)i−1 [1− F (x)]n−i f(x)

It has the same range as the original distribution.

Using these formulas, we can easily answer any probability question, and
compute the mean and variance of this distribution.

EXAMPLES:

1) Consider a RIS of size 7 from E(β = 23min) [seven fishermen indepen-
dently catching one fish each].

Find Pr(X(3) < 15 min.) [the third catch of the group will not take longer
than 15 min.].

Solution: Find the probability that any one of the original 7 independent
observations is < 15 min.:

p = Pr(Xi < 15 min.) = 1− e−
15
23 = 0.479088

Getting 3 or more successes equals

1−
·
q7 + 7pq6 +

µ
7

2

¶
p2q5

¸
= 73.77%

Now, find the mean and standard deviation of X(3).

Solution: We know that

f(3)(x) =
7!

2!4!
(1− e−

x
β )3−1(e−

x
β )7−3 · 1

β
e−

x
β

=
105

β
(1− e−

x
β )2e−

5x
β
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where β = 23 min.

The corresponding mean is

µ(3) =
105

23

∞Z
0

x(1− e−
x
23 )2e−

5x
23 dx = 11.719 min.

the standard deviation:

σ(3) =

vuuut105

23

∞Z
0

(x− 11.719)2(1− e−
x
23 )2e−

5x
23 dx = 6.830 min.

2) Consider a RIS of size 5 form U(0, 1).
Find Pr[X(2) > 0.3]. This implies that 1 or fewer observations are less than
0.3 .

p = Pr(X < 0.3) = 0.3 .

Pr[X(2) > 0.3] = 0.7
5 + 5× 0.74 × 0.3 = 58.82%

Find the mean and standard deviation of X(2).

The corresponding pdf is

f(2)(x) =
5!

1!3!
x(1− x)3

for 0 < x < 1.

µ(2) = 20

1Z
0

x2(1− x)3dx =
1

3

σ(2) =

vuuut20 1Z
0

(x− 1
3
)2x(1− x)3dx = 0.1782
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SAMPLE MEDIAN is obviously the most important sample statistic;
let us have a closer look at it.

For small samples, we treat it as one of the order statistics.

When n is large (to simplify the issue, we assume that n is odd, i.e. n ≡
2k + 1), its distribution becomes approximately Normal, with the mean of µ̃
(the distribution median) and the standard deviation of

1

2f(µ̃)
√
n

This is true for all distributions.

Proof: The sample median X̃ ≡ X(k+1) has the following pdf:

n!

k! · k!F (x)
k[1− F (x)]kf(x)

We introduce a new RV Y ≡ (X̃ − µ̃)
√
n and find its pdf in the usual four

steps:

(i) Solve for x = µ̃+ y√
n

(ii) Substitute:

n!

k!k!
F (µ̃+

y√
n
)k [1− F (µ̃+

y√
n
)]k f(µ̃+

y√
n
)

(iii) dx
dy
= 1√

n

(iv)
n!

k!k!
√
n
F (µ̃+

y√
n
)k [1− F (µ̃+

y√
n
)]k f(µ̃+

y√
n
)

To take the limit of the resulting pdf, we first expand

F (µ̃+
y√
n
) ' F (µ̃) + F 0(µ̃)

y√
n
+

F 00(µ̃)
2

y2

n
+ .... =

1

2
+ f(µ̃)

y√
n
+

f 0(µ̃)
2

y2

n
+ ....
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which implies that

1− F (µ̃+
y√
n
) ' 1

2
− f(µ̃)

y√
n
− f 0(µ̃)

2

y2

n
+ ...

and

F (µ̃+
y√
n
) [1− F (µ̃+

y√
n
)] ' 1

4
− f(µ̃)2

y2

n
+ .... =

1

4

µ
1− 4f(µ̃)2y2

n
+ ...

¶
And finally the limit of:

(2k + 1)!

4kk!k!
√
2k + 1

µ
1− 4f(µ̃)

2y2

2k + 1
+ ...

¶k

f(µ̃+
y√
2k + 1

)

= const× exp(−2f(µ̃)2y2)× f(µ̃)

How does this compare with the general Normal pdf of

1

σ
√
2π
exp

·
−(y − µ)2

2σ2

¸
Clearly, µ = 0 and σ2 = 1

4f(µ̃)2
or σ = 1

2f(µ̃)
.

So Y ∈ N (0, 1
2f(µ̃)

), which implies that eX = µ̃+ Y√
n
is Normal with the mean

of µ̃ and standard deviation of 1
2
√
nf(µ̃)

.

EXAMPLES:

1) Consider a RIS of size 1001 from Cauchy distribution with f(x) = 1
π
· 1
1+x2

.

Find Pr(−0.1 < X̃ < 0.1).

Solution: We know that X̃ ≈ N (0, 1
2· 1
π
·√1001 = 0.049648).

Thus Pr(−0.1 < X̃ < 0.1) =

1

0.049648×√2π

0.1Z
−0.1

exp

µ
− x2

2× 0.0496482
¶
dx

= 95.60%
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Note that Pr(−0.1 < X̄ < 0.1) = 1
π
arctan(x)

¯̄0.1
x=−0.1 = 6.35% only (and it

does not improve with n).

2) Sampling from N (µ, σ), is it better to estimate µ by the sample mean or
by the sample median?

Solution: Since X̄ ∈ N (µ, σ√
n
) and X̃ ≈ N (µ, 1

2· 1√
2πσ

·√n =
p

π
2
· σ√

n
), it is

obvious that X̃’s standard error is
p

π
2
= 1.253 times bigger than that of X̄.

To estimate µ to the same accuracy asX does, X̃ would have to use π
2
= 1.57

times bigger sample.

3) Consider a RIS of size 349 from a distribution with f(x) = 2x (0 < x < 1).
Find Pr(X̃ < 0.7).

Solution: From F (x) = x2 we first establish the distribution’s median as the
solution to x2 = 1

2
⇒ µ̃ = 1√

2
.

The corresponding f(µ̃) is equal to
√
2, which means eσ = 1

2
√
2×√349 =

0.018925, and Pr(X̃ < 0.75) =

1

0.018925×√2π

0.7Z
−∞

exp

Ã
−

(x− 1√
2
)2

2× 0.0189252
!
dx

= 35.36%

Subsidiary: Find Pr(X̄ < 0.7).

Solution: The distribution being sampled has µ =
1R
0

2x · x dx = 2
3
and σ2 =

1R
0

2x · x 2dx− (2
3
)2 = 1

18
.

We know that X̄ ≈ N (2
3
, 1√

18·√349 = 0.0126168), therefore Pr(X̄ < 0.75) =

1

0.0126168×√2π

0.7Z
−∞

exp

µ
− (x− 2

3
)2

2× 0.01261682
¶
dx

= 99.59%

BIVARIATE CASE
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Joint pdf of two order statistics X(i) and X(j) (i < j) is

f(xi, xj) =

lim
∆→0
ε→0

Pr[ (xi ≤ X(i) < xi +∆) ∩ (xj ≤ X(j) < xj + ε) ]

∆ · ε

i.e.
Interval # of observation
L↔ xi i− 1

xi ↔ xi +∆ 1
xi +∆↔ xj j − i− 1
xj ↔ xj + ε 1
xj + ε↔ H n− i− j

By the multinomial formula, the probability equals

n!

(i− 1)!(j − i− 1)!(n− j)!
F (xi)

i−1 ×
[F (xi +∆)− F (xi)][F (xj)− F (xi +∆)]j−i−1 ×
[F (xj + ε)− F (xj)][1− F (xj + ε)]n−j

Dividing by ∆ · ε and taking the two limits yields
n!

(i− 1)!(j − i− 1)!(n− j)!
F (xi)

i−1 f(xi)×
[F (xj)− F (xi)]

j−i−1 f(xj)[1− F (xj)]
n−j

with L < xi < xj < H, where L and H is the lower and upper limit (respec-
tively) of the original distribution.

Two important special cases of this formula:

1) Consecutive order statistics, i and i+ 1:

f(xi, xi+1) =
n!

(i− 1)!(n− i− 1)! ×
F (xi)

i−1 [1− F (xi+1)]
n−i−1 f(xi) f(xi+1)

2) First and last order statistics, i = 1 and j = n:

f(x1, xn) = n(n− 1) [F (xn)− F (x1)]
n−2 f(x1) f(xn)
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EXAMPLES:

1) Assuming we sample from E(1) and n = 9, find Cov(X(3),X(5)) and
Pr(X(3) >

1
2
∩X(5) < 2).

The corresponding bivariate pdf. is f(x3, x5) =

9!

2× 4!(1− e−x3)2(e−x3 − e−x5)e−4x5e−x3e−x5 x3 < x5

µ(3) = 7560×Z ∞

0

Z x5

0

x3 · (1− e−x3)2(e−x3 − e−x5)e−5x5e−x3dx3dx5

= 0.37897

µ(5) = 7560×Z ∞

0

Z x5

0

x5 · (1− e−x3)2(e−x3 − e−x5)e−5x5e−x3dx3dx5

= 0.74563

E[X(3)X(5)] = 7560×Z ∞

0

Z x5

0

x3x5 · (1− e−x3)2(e−x3 − e−x5)e−5x5e−x3dx3dx5

= 0.33095

which imply that

Cov(X(3), X(5)) = 0.33095− 0.37897× 0.74563 = 0.04838

and, finally

Pr(X(3) >
1

2
∩X(5) < 2) = 7560×
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Z 2

0.5

Z x5

0.5

(1− e−x3)2(e−x3 − e−x5)e−5x5e−x3dx3dx5

= 24.15%

2) Assuming that we sample from U(0, 1), find the distribution of Y =
X(1 )+X(n )

2
, the mid-range value.

This means that
f(x1, xn) = n(n− 1)(xn − x1)

n−2

Solution: Y2 = X(n). This means that 0 < y2 < 1 and
y2
2
< y1 < y2.

(ii) x1 = 2y1 − y2 and xn = y2.

(iii) n(n− 1)(2y2 − 2y1)n−2

(iv)

¯̄̄̄
2 −1
0 1

¯̄̄̄
= 2

(v)

f(y1) = 2
n−1n(n− 1)

min(2y2,1)Z
y1

(y2 − y1)
n−2 dy2 =

2n−1 n (y2 − y1)
n−1¯̄min(2y1,1)

y2=y1
=

2n−1n×
½

yn−11 0 < y1 <
1
2

(1− y1)
n−1 1

2
< y1 < 1

This implies that

E(Y1) =

Z 1

0

y1f(y1)dy1 =
1

2

Var(Y1) =

Z 1

0

(y1 − 1
2
)2f(y1)dy1 =

1

2(n+ 2)(n+ 1)
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These can be easily extended to the case of a general uniform distribution
U(a, b):

E
h
X(1)+X(n)

2

i
=

a+ b

2
,Var

h
X(1)+X(n)

2

i
=

(b− a)2

2(n+ 2)(n+ 1)
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