
INTERPOLATING POLYNOMIALS
We will construct a polynomial to fit, exactly, a discrete set of data, such as

x: 0 1 3 4 7
y: 2 –3 0 1 –2

There are two standard techniques for achieving this (they both result in the same
polynomial):

Newton’s Interpolation (divided differences)
To run a polynomial through all points of the above table, it needs to have 5 coeffi-

cients (i.e. degree 4), such that

c0 + c1xi + c2x
2
i + c3x

3
i + c4x

4
i = yi

where i = 0, 1, ... 4. The resulting 5 equations for 5 unknowns are linear, having a
unique solution (unless there are two or more identical values in the x row). Later on
we learn how to solve such systems of linear equations, but here, we can proceed more
directly:

• We fit the first point only by a zero-degree polynomial (a constant),
• we extend this to a linear fit through the first two points,
• quadratic fit through the first three points,
• ..., until we reach the end of the data.

Each step of the procedure can be arranged to involve only one unknown parameter,
which we can easily solve for.

Expl: To fit the data of the original table, we start with the constant 2 (the first of
the y values). Then, we add to it c1(x−0), where c1 is a constant to yield, for the
complete expression,−3 (the second y value), i.e. 2+c1 = −3 ⇒ c1 = −5.Our
solution so far is thus 2− 5x. Now, we add to it c2(x−0)(x−1) so that the total
expression has, at x = 3, the value of 0, i.e. 2−5×3+c×3×2 = 0 ⇒ c2 =

13
6 .

This results in 2−5x+ 13
6 x(x−1).Add c3(x−0)(x−1)(x−3) andmake the result

equal to 1 at x = 4 ⇒ c3 = − 7
12 . Finally, add c4(x− 0)(x− 1)(x− 3)(x− 4)

and make the total equal to −2 at x = 7 ⇒ c4 =
19
252 . Thus, the final answer is

2− 5x+ 13
6
x(x− 1)− 7

12
x(x− 1)(x− 3) + 19

252
x(x− 1)(x− 3)(x− 4)

Expanding (quite time consuming if done ’by hand’) simplifies this to

2− 275
28

x+
1495

252
x2 − 299

252
x3 +

19

252
x4
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One can easily verify that this polynomial passes, exactly, through all five points.

Computing the c values is made easier by utilizing the following scheme:

0 2
−3−2
1−0 = −5

1 –3
3
3−(−5)
3−0 = 13

6

0−(−3)
3−1 = 3

2

− 1
6− 13

6

4−0 = − 7
12

3 0 1− 3
2

4−1 = −16
− 1
18−(− 7

12 )

7−0 = 19
252

1−0
4−3 = 1

− 1
2−(− 1

6 )

7−1 = − 1
18

4 1 −1−1
7−3 = −12−2−1

7−4 = −1
7 –2

Proof: c0 must clearly equal y0. Solving y0+c1(x1−x0) = y1 yields c1 = y1−y0
x1−x0 .

Solving y0 + y1−y0
x1−x0 (x2 − x0) + c2(x2 − x1)(x2 − x0) = y2 leads to

c2(x2 − x1) =
y2 − y0
x2 − x0

− y1 − y0
x1 − x0

=
y2(x1 − x0)− y1(x2 − x1 + x1 − x0) + y0(x2 − x1)

(x2 − x0)(x1 − x0)

=
(y2 − y1)(x1 − x0)− (y1 − y0)(x2 − x1)

(x2 − x0)(x1 − x0)

implying

c2 =

y2−y1
x2−x1 −

y1−y0
x1−x0

x2 − x1
etc.

Lagrange interpolation

This is a somehow different approach to the same problem (yielding the same solu-
tion). The main idea is this: Having n + 1 pairs of x-y values, it is relatively easy to
construct an n degree polynomial whose value is 1 at x = x0 and 0 at x = x1, x = x2,
... x = xn, as follows

P0(x) =
(x− x1)(x− x2)....(x− xn)

(x0 − x1)(x0 − x2)....(x0 − xn)

where the denominator is simply the value of the numerator at x = x0. Similarly, one
can construct
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P1(x) =
(x− x0)(x− x2)....(x− xn)

(x1 − x0)(x1 − x2)....(x1 − xn)
whose values are 0, 1, 0, ..... 0 at x = x0, x1, x2, .... xn respectively, etc.

Having these, we can then combine them into a single polynomial (still of degree
n) by

y0P0(x) + y1P1(x) + ....+ ynPn(x)
which, at x = x0, x1, .... clearly has the value of y0, y1, .... and thus passes through all
points of our data set.
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Expl: Using the same data as before, we can now write the answer almost imme-
diately

2
(x− 1)(x− 3)(x− 4)(x− 7)

(−1)(−3)(−4)(−7) − 3x(x− 3)(x− 4)(x− 7)
1(−2)(−3)(−6) +

x(x− 1)(x− 3)(x− 7)
4× 3× 1× (−3) − 2x(x− 1)(x− 3)(x− 4)

7× 6× 4× 3
which expands to the same polynomial.

Based on this fit, we can now interpolate (i.e. evaluate the polynomial) using any
value of x within the bounds of the tabulated x’s (taking an x outside the table is called
extrapolating). For example, at x = 6 the polynomial yields y = 1

63 = 0.015873.
Since interpolation was the original reason for constructing these polynomials, they are
called interpolating polynomials. We will need them mainly for developing formulas
for numerical differentiation and integration.

To conclude the section, we present another example, in which the y values are
computed based on the sinx function, using x = 60, 70, 80 and 90 (in degrees), i.e.

x sinxo

60 0.8660
70 0.9397
80 0.9848
90 1.0000
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The corresponding Lagrange interpolating polynomial is

0.866
(x− 70)(x− 80)(x− 90)

−6000
+0.9397

(x− 60)(x− 80)(x− 90)
2000

+0.9848
(x− 60)(x− 70)(x− 90)

−2000
+
(x− 60)(x− 70)(x− 80)

6000

= −0.10400 + 2.2797× 10−2x− 9.7500× 10−5x2
−2.1667× 10−7x3

Plotting the difference between this polynomial and the sinxo function reveals that
the largest error of such and approximation throughout the 60 to 90 degree range is be
about 0.00005. This would be quite sufficient when only a four digit accuracy is desired.
Note that trying to extrapolate (go outside the 60-90 range) would yield increasingly
inaccurate results.
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