
Fitting polynomials to:
Discrete data

(either computed or empirical, and collected in a table of x and y values).
This may be done for several different reasons. We may want to
1. accurately interpolate (compute y using a value of x not found in the table it-
self).

2. draw a smooth picture connecting all data points,
3. fit a simple curve (linear, quadratic) to empirical (not so accurate) data. The curve
be ’as close as possible’ to the individual data points - we will have to agree on
some overall criterion.

More complicated mathematical functions
over a specific range of x values. Similarly to the previous case. we cannot do this

exactly, but have to minimize (in some well defined sense) the error of the fit.
There are several reasons for doing this:
1. Polynomials are easy to evaluate (we just add/subtract and multiply - and ulti-
mately, all numerical computation has to be reduced to these)

2. they are also easy to integrate and differentiate - we may thus substitute our fitted
polynomial for the actual function (which may be very hard or even impossible
to integrate).

To facilitate the procedure (of fitting polynomials to a function), several sets of
orthogonal polynomials are introduced (e.g. Legendre, Chebyshev, Hermite, etc.).
Trigonometric polynomials
are used for a specific type of data - fast Fourier transform.

Integration

The way how we can numerically evaluate
BR
A

y(x) dx is to choose a set of x values

(so called NODES) in the [A, B] interval, for each (say xi, i = 0, 1, 2, ..., n) of
these compute the corresponding yi ≡ y(xi). We then have to develop a formula for
combining these yi values to accurately estimate the integral (the area between the y(x)
function and the x axis).
A part of the problem is clearly the choice of the nodes. There are two distinct ways

of approaching it:
1. A sensible (but in a sense arbitrary) choice of n equidistant values (effectively
subdividing [A, B] into n equal-length subintervals, leading to two basic ’rules’
of integration, trapezoidal and Simpson, to be studied in detail.

2. A choice of n points which is, in a certain sense, optimal (we can define ’opti-
mal’ only when we have a better understanding of the issues).
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Differentiation
similarly involves estimating the value of y0(x), y00(x), etc. at x = x0. This can

be done by computing y(x) at x0 and a few extra values of x in the neighborhood of
x0 (this time, we will almost always choose them equidistant), and plugging them into
the corresponding formula (which, of course, will be our task to develop). The major
problem facing us here will the round-off error.

Ordinary differential equations
The formulas for numerical differentiation can also be used (this is in fact their ma-

jor application) to solve, numerically, various types of ordinary and partial differential
equations. We will deal with some examples of the ODE variety only, of two basic
types
1. Boundary-value problem. In this context, we will also have to learn solving
nonlinear (regular) equations.Solving ordinary differential equations

2. Initial-value problem - Runge-Kutta methods.
Matrix Algebra

The basic problem is to solve n linear equations for n unknowns, i.e. Ax = r,
where A is an n by n (square) matrix, x is the (column) vector of the n unknowns,
and r is similarly a vector of the right hand side values. The simplest technique uses
the so called Gaussian elimination and backward substitution. One can reduce the
round-off error by adding an extra step (row interchange) called pivoting.
Wewill then learn how to solve, iteratively, n non-linear equations for n unknowns,

by Newton’s method - we will still need matrices!
Eigenvalues and eigenvectors
of square matrices are defined by

Ax = λx

where x (non-zero) is an eigenvector and λ an eigenvalue.
To simplify the issue, we will assume that A is symmetric (a fairly important class

of matrices), which implies that both eigenvalues and eigenvectors must be real (they
could be complex in general). We will then learn how to find them, one by one (there
is n of them in general), by first utilizing Housholder’s method to reduce A to a
tridiagonal matrix, and then the applying, repeatedly, the so called QL algorithm to
extract the smallest eigenvalue. The resulting matrix is then deflated and the process
repeated till all eigenvalues are found.

Remaining Topics
There is a number of important topics which we will not have time to discuss in this

brief course, namely:
1. Solving partial differential equations.
2. Optimizing a function of several variables (finding its largest or smallest value).
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