Chebyshev Polynomials:

In our last example, the error increases towards each end. We can fix it by employing the following weight function:

$$W(X) = \frac{1}{\sqrt{1 - X^2}}$$

(to make the procedure work harder at each end).

Now we want to minimize

$$S \equiv \int_{-1}^{1} \frac{\left(Y(X) - \hat{a}\Phi_{0}(X) - \hat{b}\Phi_{1}(X) - \hat{c}\Phi_{2}(X)\right)^{2}}{\sqrt{1 - X^{2}}} dX$$

where $\Phi_0(X)$, $\Phi_1(X)$ and $\Phi_2(X)$ are polynomials of degree zero, one and two, orthogonal in a new way:

$$\int_{-1}^{1} \frac{\Phi_i(X)\Phi_j(X) \, dX}{\sqrt{1 - X^2}} = 0$$

whenever $i \neq j$.

Then, the normal equations are

$$\begin{vmatrix}
\int_{-1}^{1} \frac{\Phi_0(X)^2 dX}{\sqrt{1 - X^2}} & 0 & 0 \\
0 & \int_{-1}^{1} \frac{\Phi_1(X)^2 dX}{\sqrt{1 - X^2}} & 0 \\
0 & 0 & \int_{-1}^{1} \frac{\Phi_2(X)^2 dX}{\sqrt{1 - X^2}}
\end{vmatrix}
\begin{vmatrix}
\int_{-1}^{1} \frac{\Phi_0(X)Y(X)dX}{\sqrt{1 - X^2}} \\
\int_{-1}^{1} \frac{\Phi_1(X)Y(X)dX}{\sqrt{1 - X^2}}
\end{vmatrix}$$

yielding the solution:

$$\hat{a} = \frac{\int_{-1}^{1} \frac{\Phi_{0}(X)Y(X)dX}{\sqrt{1-X^{2}}}}{\alpha_{0}}$$

$$\hat{b} = \frac{\int_{-1}^{1} \frac{\Phi_{1}(X)Y(X)dX}{\sqrt{1-X^{2}}}}{\alpha_{1}}$$

$$\hat{c} = \frac{\int_{-1}^{1} \frac{\Phi_{2}(X)Y(X)dX}{\sqrt{1-X^{2}}}}{\alpha_{2}}$$

where $\alpha_0 \equiv \int_{-1}^1 \frac{\Phi_0(X)^2 dX}{\sqrt{1-X^2}}$, $\alpha_1 \equiv \int_{-1}^1 \frac{\Phi_1(X)^2 dX}{\sqrt{1-X^2}}$,... Typical-error:

$$\sqrt{\frac{\int_{-1}^{1} \frac{Y(X)^{2} dX}{\sqrt{1-X^{2}}} -\alpha_{0} \, \hat{a}^{2} -\alpha_{1} \, \hat{b}^{2} -\alpha_{2} \, \hat{c}^{2}}{\pi}}$$

denominator is the total weight, i.e. $\int_{-1}^{1} \frac{dX}{\sqrt{1-X^2}}$.

Using Gram-Schmidt, we now construct Φ_0, Φ_1, \dots Since weight function is symmetric, i.e. W(X) = W(-X), we use the odd-even trick.

We also need

$$\int_{-1}^{1} \frac{X^n dX}{\sqrt{1 - X^2}} = \frac{(2n - 1)!!}{(2n)!!} \pi$$

when n is even (equal to zero for n odd).

The first polynomial is always

$$\Phi_0(X) = 1$$

with
$$\alpha_0 = \int_{-1}^{1} \frac{dX}{\sqrt{1-X^2}} = \pi$$
.

Similarly, the next one is

$$\Phi_1(X) = X$$

with
$$\alpha_1 = \int_{-1}^1 \frac{X^2 dX}{\sqrt{1 - X^2}} = \frac{\pi}{2}$$
.

 $\Phi_2(X) = X^2 + C$, with C such that

$$\int_{-1}^{1} \frac{(X^2 + C) dX}{\sqrt{1 - X^2}} = \pi C + \frac{\pi}{2} = 0 \Rightarrow C = -\frac{1}{2}$$

resulting in

$$\Phi_2(X) = X^2 - \frac{1}{2}$$

and
$$\alpha_2 = \int_{-1}^1 \frac{(X^2 - \frac{1}{2})^2 dX}{\sqrt{1 - X^2}} = \frac{\pi}{8}$$
.

Similarly

$$\int_{1}^{1} \frac{(X^{3} + CX) \cdot X \, dX}{\sqrt{1 - X^{2}}} = \frac{3\pi}{8} + \frac{\pi}{2}C = 0 \Rightarrow C = -\frac{3}{4}$$

which yields

$$\Phi_3(X) = X^3 - \frac{3}{4}X$$

and
$$\alpha_3=\int_{-1}^1\frac{(X^3-\frac34X)^2dX}{\sqrt{1-X^2}}=\frac{\pi}{32}.$$
 Now, $\Phi_2(X)=X^4+C_2\Phi_2(X)+C_0\Phi_0(X),$ where

$$\int_{-1}^{1} \frac{\left(X^4 + C_2\Phi_2(X) + C_0\Phi_0(X)\right) \cdot \Phi_2(X) dX}{\sqrt{1 - X^2}}$$

$$= \frac{\pi}{8} + \frac{\pi}{8}C_2 = 0 \Rightarrow C_2 = -1$$

$$\int_{-1}^{1} \frac{\left(X^4 + C_2\Phi_2(X) + C_0\Phi_0(X)\right) \cdot \Phi_0(X) dX}{\sqrt{1 - X^2}}$$

$$= \frac{3\pi}{8} + \pi C_0 = 0 \Rightarrow C_0 = -\frac{3}{8}$$

resulting in

$$\Phi_4(X)=X^4-(X^2-\frac{1}{2})-\frac{3}{8}=X^4-X^2+\frac{1}{8}$$
 and $\alpha_4=\int_{-1}^1\frac{(X^4-X^2+\frac{1}{8})^2dX}{\sqrt{1-X^2}}=\frac{\pi}{128}.$

The resulting polynomials are called **Chebyshev**, they also have a variety of other applications.

Example:

Repeating the previous example using Chebyshev's polynomials (rather than Legendre's) yields

$$\hat{a} = \int_{-1}^{1} \frac{\sin[\frac{\pi}{4}(1+X)] dX}{\sqrt{1-X^2}} \div \pi = 0.602194701$$

$$\hat{b} = \int_{-1}^{1} \frac{X \sin[\frac{\pi}{4}(1+X)] dX}{\sqrt{1-X^2}} \div \frac{\pi}{2} = 0.5136251666$$

$$\hat{c} = \int_{-1}^{1} \frac{(X^2 - \frac{1}{2}) \sin[\frac{\pi}{4}(1+X)] dX}{\sqrt{1-X^2}} \div \frac{\pi}{8}$$

$$= -0.2070926885$$

$$\hat{d} = \int_{-1}^{1} \frac{(X^3 - \frac{3}{4}X) \sin[\frac{\pi}{4}(1+X)] dX}{\sqrt{1-X^2}} \div \frac{\pi}{32}$$

$$= -5.492813693 \times 10^{-2}$$

resulting in

$$0.60219\,4701 + 0.51362\,51666\,X$$
$$-0.20709\,26885(X^2 - \frac{1}{2}) - 0.0549281\,3693(X^3 - \frac{3}{4}X)$$

with the typical error of

$$\sqrt{\frac{\int_{-1}^{1} \frac{\sin[\frac{\pi}{4}(1+X)]^{2}dX}{\sqrt{1-X^{2}}} - \pi \cdot \hat{a}^{2} - \frac{\pi}{2} \cdot \hat{b}^{2} - \frac{\pi}{8} \cdot \hat{c}^{2} - \frac{\pi}{32} \cdot \hat{d}^{2}}{\pi}} = 0.000964$$

(has gone up slightly, but **maximum** error is lower).

Replacing X by $\frac{4}{\pi} \cdot x - 1$ (same as before) and expanding yields:

$$-1.24477557 \times 10^{-3} + 1.023967553x$$
$$-0.0685875963x^{2} - 0.1133770686x^{3}$$

Laguerre Polynomials

(Just to further practise Gram Schmidt).

Suppose the interval is $[0,\infty)$ and $W(x)=e^{-x}$. Construct the corresponding set of orthogonal polynomials, i.e.

$$\int_{0}^{\infty} e^{-x} L_{i}(x) L_{j}(x) dx = 0 \quad \text{whenever} \quad i \neq j.$$

$$\left(\int_0^\infty e^{-x} x^n dx = n! \text{ may help}\right)$$

$$L_0(x) = 1 \text{ with } \alpha_0 = 1.$$

 $L_1(x) = x + c$ (no symmetry now) where

$$\int_{0}^{\infty} e^{-x}(x+c) dx = 1+c=0$$

$$\Rightarrow c = -1 \Rightarrow L_{1}(x) = x-1$$

with
$$\alpha_1 = \int\limits_0^\infty e^{-x} (x-1)^2 dx = 1$$
.

$$L_2(x) = x^2 + c_1 L_1(x) + c_0 L_0(x)$$
, where

$$\int_{0}^{\infty} e^{-x} \left(x^{2} + c_{1}L_{1}(x) + c_{0}L_{0}(x) \right) L_{0}(x) dx =$$

$$2 + c_{0} \Rightarrow c_{0} = -2$$

$$\int_{0}^{\infty} e^{-x} \left(x^{2} + c_{1}L_{1}(x) + c_{0}L_{0}(x) \right) L_{1}(x) dx =$$

$$6 - 2 + c_{1} \Rightarrow c_{1} = -4$$

implying that

$$L_2(x) = x^2 - 4(x-1) - 2 = x^2 - 4x + 2$$

with
$$\alpha_2 = \int_{0}^{\infty} e^{-x} (x^2 - 4x + 2)^2 dx = 4$$
.

$$L_3(x) = x^3 + c_2 L_2(x) + c_1 L_1(x) + c_0 L_0(x), \text{ where}$$

$$\int_0^\infty e^{-x} \left(x^3 + c_2 L_2 + c_1 L_1 + c_0 L_0 \right) L_0 \ dx$$

$$= 6 + c_0 \Rightarrow c_0 = -6$$

$$\int_0^\infty e^{-x} \left(x^3 + c_2 L_2 + c_1 L_1 + c_0 L_0 \right) L_1 \ dx$$

$$= 24 - 6 + c_1 \Rightarrow c_1 = -18$$

$$\int_0^\infty e^{-x} \left(x^3 + c_2 L_2 + c_1 L_1 + c_0 L_0 \right) L_2 \ dx$$

$$= 120 - 96 + 12 + 4c_2 \Rightarrow c_2 = -9$$

resulting in

$$L_3(x) = x^3 - 9(x^2 - 4x + 2) - 18(x - 1) - 6$$
$$= x^3 - 9x^2 + 18x - 6$$

and
$$\alpha_3 = \int_0^\infty e^{-x} (x^3 - 9x^2 + 18x - 6)^2 dx = 36.$$

Hermite polynomials

Take the interval of all real numbers, with $W(x) = e^{-x^2}$.

Utilizing the W(x) = W(-x) symmetry, we get:

$$H_0(x) = 1$$
 with $\alpha_0 = \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.

$$H_1(x)=x$$
 and $\alpha_1=\int_{-\infty}^{\infty}x^2e^{-x^2}dx=rac{\sqrt{\pi}}{2}$

 $H_2(x) = x^2 + c$ where

$$\int_{-\infty}^{\infty} (x^2 + c) e^{-x^2} dx = \frac{\sqrt{\pi}}{2} + c\sqrt{\pi} = 0$$
$$\Rightarrow c = -\frac{1}{2} \Rightarrow H_2(x) = x^2 - \frac{1}{2}$$

and $\alpha_2 = \int_{-\infty}^{\infty} (x^2 - \frac{1}{2})^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

 $H_3(x) = x^3 + c x$ so that

$$\int_{-\infty}^{\infty} (x^3 + cx) x e^{-x^2} dx = \frac{3\sqrt{\pi}}{4} + c\frac{\sqrt{\pi}}{2} = 0$$
$$\Rightarrow c = -\frac{3}{2} \Rightarrow H_3(x) = x^3 - \frac{3}{2}x$$

with
$$\alpha_3 = \int_{-\infty}^{\infty} (x^3 - \frac{3}{2}x)^2 e^{-x^2} dx = \frac{3}{4}\sqrt{\pi}$$
.