Chebyshev Polynomials:
In our last example, the error increases towards each end. We can fix it by employing
the following weight function:
1
V1-X2
(to make the procedure work harder at each end).
Now we want to minimize
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where (X)), ®;(X) and $5(X) are polynomials of degree zero, one and two, or-

thogonal in a new way:
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whenever i # j.
Then, the normal equations are
1 1
P0(X)2dX D0 (X)Y (X)dX
_J; Nieve 0 0 _fl Bvee
1 1
1 (X)%dX &1 (X)Y(X)dX
Y N =
1
P2 (X)Y (X)) dX
0 0 f \/1 X2 _fl - Vi-Xx2

yielding the solution:
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Typical-error:
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denominator is the total weight, i.e. f_ll \/1‘1_)(7.

Using Gram-Schmidt, we now construct ®(, @1, .... Since weight function is sym-
metric, i.e. W(X) = W(—X), we use the odd-even trick.

We also need

X"dX  (2n-—1)!
Vi Xx2 (2n)!!
1
when n is even (equal to zero for n odd).
The first polynomial is always

™

Pp(X) =1
. 1
withog = [, \/1‘13{7 =.
Similarly, the next one is
D (X) =X
with oy = [* L X_dX2 =Z.

®5(X) = X2 + C, with C such that

resulting in
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and oy = f 1 % =g
Similarly
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which yields
P3(X) = X3 — %X

X3-2X)%dX .
and a3 = f 1 % = 33-
Now, ®(X) = X* + Co®2(X) + CoPo(X), where
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resulting in
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and ay = f_l —\/ﬁ = 55

The resulting polynomials are called Chebyshev, they also have a variety of other
applications.

Example:

Repeating the previous example using Chebyshev’s polynomials (rather than Leg-
endre’s) yields

o= /1 SmlEOF XX (602194701
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= —5.49281 3693 x 1072

resulting in

0.602194701 + 0.51362 51666 X
—0.20709 26885(X? — 1) — 0.0549281 3693(X° — 2 X)

with the typical error of
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= 0.000964

(has gone up slightly, but maximum error is lower).



Replacing X by % - — 1 (same as before) and expanding yields:

—1.24477557 x 1073 + 1.02396 7553z
—0.068587 596322 — 0.11337 7068623

Laguerre Polynomials

(Just to further practise Gram_Schmidt).

Suppose the interval is [0, 00) and W (x) = e~®. Construct the corresponding set of
orthogonal polynomials, i.e.

/e“”Li(x)Lj(w) dr =0 whenever ¢ # j.
0

(fy° e “a™dx = n! may help)
Lo(z) =1 withag = 1.

Li(z) = z + ¢ (no symmetry now) where

/e_z(x—i—c)dx = 14¢=0
0

=c=-1 = Li(z)=z-1

withay = [ e %(x — 1)?dz = 1.
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Lo(x) = 22 + c1 Ly (x) + coLo(x), where
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implying that
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with ay = [ e7%(2? — 4z + 2)? dz = 4.
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L3(x) = 23 + caLo(x) + c1L1(x) + coLo(z), where
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resulting in
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= 2° -9 +182 -6
o 5
and az = [ e % (23 — 92 + 18z — 6)? dz = 36.
0

Hermite polynomials
Take the interval of all real numbers, with W (z) = e~".
Utilizing the W (z) = W (—x) symmetry, we get:
Hy(z) = 1 with o = ffooo e dy = VT
Hi(r) =zand oy = ffooo 22 dy = 4

Hy(z) = 22 + ¢ where
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with g = [7 (2% — %x)ze_’czdx =3r.



