
INITIAL-VALUE PROBLEM FOR (A SET OF) FIRST-ORDER ODE

Suppose we need to solve
ẏ = f(y, t)

given the ’initial’ value of y, namely y(t0) = y0. Usually, t0 = 0 (t represents
time).
Or, more generally

ẏ1 = f1(y1, y2, ...yn, t)

ẏ2 = f2(y1, y2, ...yn, t)

...

ẏn = fn(y1, y2, ...yn, t)

given the initial value (at the same t0) of each dependent variable.
In our discussion, we will assume that n = 2 (these are the easiest to visual-

ize, when we identify y1 and y2 with the usual x and y coordinates, respectively).
This is like being given an initial position of a point in 2D, and a formula (one
for each component) for computing its velocity at any time, and any place, later.
When the velocity is a function of position only (no t dependence), the differen-
tial equations are called autonomous (we won’t try to differentiate between the
two, even though some techniques do).
To find a numerical solution to these, we first have to discretize time (the

corresponding time step is denoted h), and try to find an approximate solution
to x(t0 + h) and y(t0 + h). The same step is then repeated as many times as
desired. So, it all boils down to how to advance the solution by time h.
The simplest (but also rather ’primitive’) technique for doing this is called

Euler; it evaluates the two velocity components at t0, multiplies each of them
by h, and add this to the existing location. This yields an exact solution only
when the velocity is constant everywhere (not very likely), and has an error (of
a single step) proportional to h2 otherwise. To see that, we write (assuming we
have only one dependent variable)

y(t0 + h) ' y(t0) + ẏ(t0)h+
ÿ(t0)

2!
h2 +

...
y (t0)

3!
h3 +

= y0 + f0h+
f0f

0
0 + ḟ0
2

h2 +

f20 f
00
0 + 2f0ḟ

0
0 + f̈0 + (f0f

0
0 + ḟ0)f

0
0

6
h3 + ...

and realize that Euler is approximating f(t0 + h) by y0 + f0h.
To advance the solution from time t0 to another (final) time T, the number

of steps required is clearly proportional to 1
h (equal to

T−t0
h). Since the errors

usually accumulate, the overall error is thus proportional to the first power of
h only - the technique is thus known as a first-order method. To improve
its (final) accuracy by a factor of 10 (getting an extra correct digit) requires

1

reducing h ten times (10 times as much work). Due to this, the technique is
hardly ever used in practice.
An improvement is the so calledmodified Euler method, in which we start

by making an ’Euler’ move, evaluate the velocity at the end of it, then backtrack
to the initial location and move using the average of the two velocities. One
can show that the error of such a move is proportional to h3. But again, getting
from t0 to T takes T−t0

h such steps, which ’steals’ one power of h from the final
accuracy - this is a second-order technique. So now, reducing h by a factor of
10 results in 2 extra correct digits.
Proof: We know that v1 = f0 and, to a sufficient accuracy

v2 = f(y0 + v1h, t0 + h) = f0 + f0f
0
0h+ ḟ0h+ ...

This implies that

y0 +
v1 + v2
2

h = y0 + f0h+
f0f

0
0 + ḟ0
2

h2 + ...

A similar (second-order) technique is themidpoint method: with the initial
velocity, we only move half way (multiplying it by h/2), evaluate a new velocity
at this half-way point, backtrack, then move with this new velocity for the time
h (the initial velocity being discarded).
The most popular is and fourth-order technique (called Runge-Kutta),

which works like this:

• Find the initial velocity, say v1
• With this velocity, move half way, and find a new velocity v2
• Backtrack (to the initial point), and using this new velocity, move half
way again, finding yet another velocity v3

• Backtrack, and with this latest velocity, move the full distance, evaluating
the velocity one last time (let us call it v4)

• Finally, backtrack one last time, and make a full move using the following
weighted average of the four velocities

v1 + 2v2 + 2v3 + v4
6

One can show (with the help of Maple) that one-step error is now propor-
tional to h5, which makes the cumulative error proportional to h4 (reducing h
by 10, we get 4 extra digits of accuracy).
The best way to estimate the final error is to reverse the procedure (going

from T back to t0), replacing h by −h (to see how close we get to y0).
The easiest way (good enough for us) to deal with higher-order ODE is to

make them of the first order, by doubling (second order), tripling (third), etc.
their number.

2

EXAMPLES:
ÿ =

y · ẏ
1 + t2

can be converted to

ẏ2 =
y1 · y2
1 + t2

ẏ1 = y2

where y1 ≡ y and y2 ≡ ẏ.
Similarly

...
y =

y · ẏ · ÿ
1 + t2

is equivalent to

ẏ3 =
y1 · y2 · y3
1 + t2

ẏ2 = y3

ẏ1 = y2

3

