1. Using Runge-Kutta technique and $h=0.01$, find a solution to the following set of differential equations

$$
\begin{aligned}
\dot{x} & =10(y-x) \\
\dot{y} & =28 x-y-x z \\
\dot{z} & =x y-\frac{8}{3} z
\end{aligned}
$$

for t (the independent variable) from 0 to 20 , where $x(0)=1, y(0)=$ 2 and $z(0)=3$. Display the corresponding path in a 3 -dimensional picture.
2. Similarly, solve

$$
\ddot{y}+y-\dot{y}\left(1-y^{2}\right)=0
$$

for t from 0 to 10 , where $y(0)=1$ and $\dot{y}(0)=2$. Display y as a function of t. How close can you get to the two initial values by reversing the direction of time and 'backtracking' to $t=0$.

Optional: Repeat the same, with t going from 0 to 20 .

