
SOLVING DIFFERENTIAL EQUATIONS

We will consider only equations of the following type:

y00 = f(x, y, y0)

together with two boundary conditions, specifying the value of y(x) at x = A
and x = B.
We will first consider the Linear Case namely:

y00 + p(x) · y0 + q(x) · y = r(x)

where p(x), q(x) and r(x) are specific (given) functions of x.
The equation is linear in y(x) and its derivatives (y related terms have been

collected on the left hand side of the equation)
This equation is quite often impossible to solve analytically, so we need a

numerical technique for doing the job.
The idea: Subdivide the (A,B) interval into n equal-length subintervals of

length h = B−A
n (the nodes will be called x0, x1, x2, .... xn−1, xn, with x0 = A

and xn = B), and set up (ordinary) equations for the corresponding y0, y1, y2,
... yn−1 and yn (the first and last are given - the rest are the unknowns). This
is achieved by replacing y00 and y0 by

yi−1 − 2yi + yi+1
h2

and
yi+1 − yi−1

2h

Note that both formulas have error terms proportional to h2 + ... The same
can then be expected of our final solution.
When substituting these into the above equation, we get (point by point):

y0 − 2y1 + y2
h2

+
y2 − y0
2h

p1 + y1q1 = r1

y1 − 2y2 + y3
h2

+
y3 − y2
2h

p2 + y2q2 = r2

...
yn−2 − 2yn−1 + yn

h2
+

yn − yn−2
2h

pn−1 + yn−1qn−1 = rn−1

where p1 ≡ p(x1), p2 ≡ p(x2), .... (similarly for q1, q2, ... and r1, r2, ....).
This can be expressed in the following matrix form:

−2 + h2q1 1 + h
2 p1 0 · · · 0

1− h
2 p2 −2 + h2q2 1 + h

2 p2 · · · ...

0 1− h
2 p3 −2 + h2q3

. . . 0
...

...
. . .

. . . 1− h
2 pn−2

0 · · · 0 1− h
2 pn−1 −2 + h2qn−1
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and the right hand side of:
r1h

2 − y0
¡
1− h

2 p1
¢

r2h
2

r3h
2

...
rn−1h2 − yn

¡
1 + h

2pn−1
¢


The fact that the resulting matrix of coefficients is tri-diagonal greatly sim-

plifies the task of solving the equations.

Tri-diagonal Systems (LU Decomposition)
Any tri-diagonal matrix can be written as product of two matrices. The

below-diagonal elements of the fist matrix are those of the original matrix, and
the main-diagonal elements of the second matrix are all equal to 1.
Example:

A =


3 −3 0 0
−3 8 −2 0
0 1 2 4
0 0 −2 6

 ≡

?(1) 0 0 0
−3 ?(3) 0 0
0 1 ?(5) 0
0 0 −2 ?(7)



1 ?(2) 0 0
0 1 ?(4) 0
0 0 1 ?(6)
0 0 0 1

 =


3 0 0 0
−3 5 0 0
0 1 12

5 0
0 0 −2 28

3



1 −1 0 0
0 1 −25 0
0 0 1 5

3
0 0 0 1


This makes solving

Ax =


7
8
2
−3


a lot easier, since

LUx ≡ Ly =


3y1

−3y1 + 5y2
y2 +

12
5 y3−2y3 + 28
3 y4

 =


7
8
2
−3


can be solved (rather easily) for y1 = 7

3 , y2 =
8+7
5 = 3, y3 =

2−3
12
5

= − 5
12 and

y4 =
−3− 5

6
28
3

= −2356 .
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Similarly, we can now deal with

Ux =


x1 − x2
x2 − 2

5x3
x3 +

5
3x4

x4

 =


7
3
3
− 5
12−2356


from bottom up: x4 = −2356 , x3 = − 5

12 +
5
3 · 2356 = 15

56 , x2 = 3 +
2
5 · 1556 = 87

28 and
x1 =

7
3 +

87
28 =

457
84 .

Second example: 
2 5 0 0 0
4 −3 −2 0 0
0 3 1 1 0
0 0 1 0 2
0 0 0 2 4

x =


4
0
2
−3
−1



2 0 0 0 0
4 −13 0 0 0
0 3 7

13 0 0
0 0 1 −137 0
0 0 0 2 80

13



1 5

2 0 0 0
0 1 2

13 0 0
0 0 1 13

7 0
0 0 0 1 −1413
0 0 0 0 1

x =


4
0
2
−3
−1


yields y1 = 2, y2 =

8
13 , y3 =

2
7 , y4 =

23
13 , y5 = −5980 and x5 = − 59

80, x4 =
39
40 ,

x3 = −6140 , x2 = 17
20 , x1 = −18 .

We will now return to our differential equations:
Example: Solve

y00 =
3

1 + x
y0 +

4

(1 + x)2
y = 1 + x

subject to: y(1) = 0 and y(2) = 9 (the analytic solution is y = x3+x2−x−1).
First we choose n = 4 (h = 1

4), and build the following table:

xi
h pi
2 h2qi h2ri

1.25 − 3
18

4
81

9
64

1.50 − 3
20

4
100

10
64

1.75 − 3
22

4
121

11
64

Then, we set up the equations for y1, y2 and y3:

−15881 15
18 0 9

64 − 0× 21
18

23
20 −196100

17
20

10
64

0 25
22 −238121

11
64 − 9× 19

22

We already know how to solve these, the answer is:

y1 ≡ y(1.25) = 1.25876 (1.265625)

y2 ≡ y(1.50) = 3.11518 (3.125)

y3 ≡ y(1.75) = 5.66404 (5.671875)
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(the errors are about 0.5, 0.3 and 0.1%, respectively).
We can improve the value of y(1.5) by Richardson extrapolation, if we re-do

the problem using n = 2 (h = 1
2):

xi
h pi
2 h2qi h2ri

1.50 − 3
10

4
25

10
16

resulting in
−4625 10

16 − 0× 13
10 − 9× 7

10

The right hand side has been computed based on

r1h
2 − y0(1− h

2 p1)− y2(1 +
h
2p1)

The solution is y1 ≡ y(1.5) = 3.08424, having a 1.3% error. Richardson
extrapolation now yields:

4× 3.11518− 3.08424
3

= 3.12549

having the error of only 0.015% (a twenty-fold improvement over the n = 4
answer).
Another example:

y00 − exp(x2 ) y0 + ln(1 + x) y = sinx

with y(0) = 2 and y(3) = −4.
Here, we try to achieve better accuracy by simply increasing n. This will be

done with the help of a Maple program in one of our labs.
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