
NUMERICAL DIFFERENTIATION

Used mainly to numerically solve differential equations (next chapter).
In addition to truncation error, we must also watch out for round off

errors.
The main idea: select a few nodes (at and near x0), evaluate y(x) at these,

fit interpolating polynomial, differentiate that instead.
Example:
Derive formula for y0(x0), using x0 − h, x0 and x0 + h as nodes.
Interpolating polynomial:

(x− x0)(x− x0 − h)

(−h) · (−2h) y(x0 − h) +

(x− x0 + h)(x− x0 − h)

h · (−h) y(x0) +

(x− x0 + h)(x− x0)

2h · h y(x0 + h)

Differentiate, then substituting x = x0:

y0(x0) ' y(x0 − h)

−2h +
y(x0 + h)

2h

=
y(x0 + h)− y(x0 − h)

2h

(the usual slope between the end points).

Taylor expanding the RHS yields:

y0(x0) +
y000(x0)
6

h2 +
yv(x0)

120
h4 + ....

The truncation error:

y000(x0)
6

h2 +
yv(x0)

120
h4 + ....

Unfortunately, we cannot reduce h indefinitely (round off error).
Formula demonstration:
Approximate y0(1)where y(x) = exp(x2). (The exact value is 2e = 5.43656 3656).

h exp[(1+h)2]−exp[(1−h)2]
2h Error:

0.1 5. 52788 333 0.0913197
0.01 5. 43746 980 0.0009061
0.001 5. 43657 250 0.0000088
0.0001 5. 43656000 0.0000037
0.00001 5. 43655000 0.0000136
0.000001 5. 43650000 0.0000636

The error should decrease by a factor of 100 in each step - does it?
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Richardson Extrapolation (new name for the old Romberg).
Example:
(same as before, h reduced more slowly):

Ri =

h exp[(1+h)2]−exp[(1−h)2]
2h Si =

4Ri+1−Ri
3 Ti =

16Si+1−Si
15

1
4 6. 03135 7050 5.42938 7349 5.43657 7469
1
8 5. 57987 9776 5.43612 8086 5.436563886
1
16 5.47206 6010 5.43653 6649 5.436563708
1
32 5.44541 8990 5.43656 2016
1
64 5.43877 6260

64Ti+1−Ti
63

5.436563669
5.436563704

(as close as we can get to the exact answer).

Higher-Degree (more nodes) Formulas
To obtain a more accurate formula for y0(x0), we will now use x = x0, x0±h

and x0 ± 2h as nodes.
Two ways of simplifying the derivation:

1. Assume that x0 = 0 and h = 1 (the old X scale), then transform back to
x.

Interpolating polynomial:

(X+1)(X−1)(X−2)
(−1)×(−3)×(−4) Y (−2) + (X+2)(X−1)(X−2)

1×(−2)×(−3) Y (−1) +
(X+2)(X+1)(X−2)

3×2×(−1) Y (1) + (X+2)(X+1)(X−1)
4×3×1 Y (2)

Differentiate, then set X = 0:

(−1)(−2)+1(−2)+1(−1)
−12 Y (−2) + (−1)(−2)+2(−2)+2(−1)

6 Y (−1)
+1(−2)+2(−2)+2·1

−6 Y (1) + 1(−1)+2(−1)+2·1
12 Y (2) =

1

12
Y (−2)− 8

12
Y (−1) + 8

12
Y (1)− 1

12
Y (2)

Transform back to x:

y0(x0) '
y(x0 − 2h)− 8 y(x0 − h) + 8 y(x0 + h)− y(x0 + 2h)

12h

2. Knowing that the formula must be anti-symmetric (for any odd deriva-
tive), i.e.

−c2 Y (−2)− c1Y (−1) + c1Y (1) + c2Y (2)
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and must be correct for Y (X) = X, X3 (it’s automatically correct for
1, X2 and X4):

2c2 + c1 + c1 + 2c2 = 1

8c2 + c1 + 8c1 + c2 = 0

implying c1 = −8c2 and c2 = − 1
12 (same answer as before).

Taylor expanding:

y(x0 − 2h) =
y(x0)− 2h y0(x0) + 4h

2

2
y00(x0)− 8h

3

6
y000(x0) +

16h4

24
yiv(x0)− ...

y(x0 − h) =

y(x0)− h y0(x0) +
h2

2
y00(x0)− h3

6
y000(x0) +

h4

24
yiv(x0)− ...

y(x0 + h) =

y(x0) + h y0(x0) +
h2

2
y00(x0) +

h3

6
y000(x0) +

h4

24
yiv(x0) + ...

y(x0 + 2h) =

y(x0) + 2h y
0(x0) +

4h2

2
y00(x0) +

8h3

6
y000(x0) +

16h4

24
yiv(x0) + ...

Our new formula thus yields:

y0(x0)− h4

30
yv(x0) + ...

(a lot smaller truncation error).
Example: (same derivative, one more time):

Ri =

h − exp[(1+2h)2]+8 exp[(1+h)2]−8 exp[(1−h)2]+exp[(1−2h)2]
12h

1
4 5. 30723 9257
1
8 5.42938 7358
1
16 5.43612 8081
1
32 5.43653 6647

Ti =
16Ri+1−Ri

15
5.43753 0565
5.43657 7463
5.436563885

64Ti+1−Ti
63

5.43656 2332
5.436563667

(reasonably accurate, even without Richardson).

Nonsymmetric Spacing
Choice of nodes may be restricted (say, to one side of x0).
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Example:
Approximate y0(x0), using x0, x0 + h and x0 + 2h as nodes.
In terms of X:

c0Y (0) + c1Y (1) + c2Y (2)

Make it exact for Y (X) = 1, X and X2:

c0 + c1 + c2 = 0

c1 + 2c2 = 1

c1 + 4c2 = 0

which yields c2 = −12 , c1 = 2, c0 = − 32 .
The resulting formula:

y0(x0) ' −3y(x0) + 4y(x0 + h)− y(x0 + 2h)

2h

Its right hand side expands to

y0(x0)− h2

3
y000(x0)− h3

4
yiv(x0)− ...

The main error term is proportional to h2 (since we have three nodes).
Example:
Applied to our benchmark problem, this yields:

Ri =

h −3 exp(1)+4 exp[(1+h)2]−exp[(1+2h)2]
2h Si =

4Ri+1−Ri
3

1
16 5. 35149 250 5.43909 0859
1
32 5.41719 127 5.43685 1443
1
64 5.43193 640

8Si+1−Si
7

5.43653 1527

(performs worse than the symmetric rule).

Higher Derivatives
To approximate y00(x0), we first derive a basic three-node (symmetric) for-

mula.
The interpolating polynomial is the same, differentiating it twice yields the

following result:
y(x0 − h)− 2y(x0) + y(x0 + h)

h2

Taylor expanding:

y00(x0) +
yiv(x0)

12
h2 + ....

The round-off error is now substantially bigger than in the y0(x0) case.
Example:
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Approximate the second derivative of exp(x2) at x = 1 (equal to 6e =
16. 30969 097):

Ri =

h exp[(1−h)2]−2 exp(1)+exp[(1+h)2]
h2 Si =

4Ri+1−Ri
3

16Si+1−Si
15

1
16 16.377100 16.309653 16.309712
1
32 16.326515 16.309708
1
64 16.313910

The second stage of Richardson extrapolation no longer improves (due to
round-off error), unless 15-digit accuracy used:

Ri =

h exp[(1−h)2]−2 exp(1)+exp[(1+h)2]
h2

1
16 16.37709 985
1
32 16.32651 323
1
64 16.31389 467

Si =
4Ri+1−Ri

3
16Si+1−Si

15
16.30965 102 16.30969098
16.30968 848

Finally, we derive a formula to approximate y000(x0).
Minimum of four nodes is needed (always the order of the derivative plus

one).
We will choose them at x0 ± h and x0 ± 2h.
In the X scale, the formula must read (utilizing its antisymmetry):

−c2 Y (−2)− c1 Y (−1) + c1 Y (1) + c2 Y (2)

Furthermore, it must yield the exact answer with Y (X) = X and X3:

2c2 + c1 + c1 + 2c2 = 0

8c2 + c1 + c1 + 8c2 = 6

which implies c1 = −2c2 and c2 =
1
2 .

We thus obtain

Y 000(0) ' Y (2)− 2Y (1) + 2Y (−1)− Y (−2)
2

or, going back to y(x):

y000(x0) '
y(x0 + 2h)− 2y(x0 + h) + 2y(x0 − h)− y(x0 − 2h)

2h3

The right hand side expands to

y000(x0) +
yv(x0)

4
h2 + ....
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Example:
Approximate the third derivative of exp(x2) at x = 1 (the exact answer is

20e = 54. 36563 657).
We will carry out the computation using 20-digit accuracy:

Ri =

h exp[(1+2h)2]−2 exp[(1+h)2]+2 exp[(1−h)2]−exp[(1−2h)2]
2h3

1
32 54. 57311 583
1
64 54.41742 711
1
128 54.37857 926

Si =
4Ri+1−Ri

3
16Si+1−Si

15
54.36553 087 54.36563659
54.36562 998

Summary:
To derive an m-node (m must be bigger than n) formula for y(n)(x0):

1. In the X scale, find the values of the c-coefficients by making the formula
exact for y = 1, X, X2, .... Xm.

2. For symmetric spacing, the c-coefficients are either symmetric (n even -
use 1, X2, ...only) or antisymmetric (n odd - use X, X3, ....only).

3. Convert to x scale by changing y0 to y(x0), y1 to y(x0 + h), etc., and
dividing by hn.

4. The truncation error has terms proportional to hm−n, hm−n+1, hm−n+2,
etc. in the general (non-symmetric) case. When the nodes are chosen
symmetrically, the odd-power (in h) terms disappear.

The round off error is due to subtracting numbers of very similar size (this
happens in all these formulas, but is more pronounced for higher derivatives).
For example, computing y(x0 + h)− y(x0 − h), when y = exp(x2), x0 = 1, and
h = 0.0001 yields:

2.718553670
−2.718010013
= 0.000543657

Computing y(x0 + h) + y(x0 − h)− 2y(x0) becomes, using 10 digits, almost
impossible:

5.436563683
−5.436563656
= 0.000000027
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