TRIGONOMETRIC APPROXIMATION (FOURIER SERIES)

Any function can be approximated, in the (—m, ) interval by a linear com-
bination of sin and cos, thus:

flz) =~ % +ajcosz +bysinz

+as cos 2z + by sin 2z
+as cos 3x + by sin 3x + ...

where
1 ™
ar = = f(z) cos(kz) dzx
T —T
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by = — f(z)sin(kz) dx
™
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This can be derived by minimizing
2

/n [f(x) _ % - Z (ay coskx + by sinkz)| dx

- k=1

which is made easy by the fact that the set of coskx and sin kx functions is

orthogonal.
EXAMPLE:

e’ ~ 3.67608 — 3.67608 cos x + 3.67608 sin x
+1.47043 cos 2x — 2.94086 sin 2x
—0.735216 cos 3x + 2.20565 sin 3x

which, when displayed graphically, yields the following (far from spectacular)
fit:
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When increasing the number of terms to 81 (up to cos 40z and sin 40z), we get
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(note the so called Gibbs phenomenon).
Note that the trigonometric expansion is a periodic function:

If we want to fit a function by a combination of sin and cos in a different
finite interval, say (A, B), we first shift the function to (—m, ) by introducing
a new independent variable

2z — (A+ B)

X
B—-A

- T

or, in reverse
B-A A+ B
T = - X + i
2 2




do the same fit as before in terms of X, and then shift back to x.

EXAMPLE: This time, we consider the Inz function in the (1,2) interval,

which implies z = % + % Fitting In (% + %) over the (—m,7) interval yields

3.67608 + 0.023558 cos X + 0.215401 sin X
—0.00620228 cos 2X — 0.109594 sin 2.X
+0.00278771 cos 3X + 0.0733257 sin 3.X

Replace X by (22 — 3) - 7, and we have our ’approximation’ to Inz over (1,2),
which looks like this:
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DISCRETE VERSION

Let us go back to (—m, 7). We divide the interval into 2m subintervals of
equal length, denoting the end points xg, z1, 2, ...,T2;,. We then find the
trigonometric approximation by minimizing

2m—1 a
Z [f(xj) - ?0 — @y, COS N
3=0
n—1 2
- Z (ar coskxj + by sinkx;)
k=1

Note that n < m.
Since the cos kz; and sin kx; functions are still orthogonal, this time in the
following, discrete sense

2m—1
E coskx;sinlx; =0
j=0



the above minimization has the following simple solution
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EXAMPLE:
Let m = 15 and our y values are:
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With n = 2, we get —1.460 — 0.764 cos(X ) — 1.817sin(X) 4+ 1.479 cos(2X)




Similarly, for n = 6, the results are —1.460 — 0.764 cos(X) — 1.817sin(X) +
1.479 cos(2X) —0.515sin(2X ) — 0.009 cos(3X ) —0.388 sin(3X ) +0.077 cos(4X ) +
0.562sin(4X) — 0.277 cos(5X) — 0.896 sin(5X ) — 0.291 cos(6X) and

We can then easily change to x scale to go from A (for the first point) to

B (for the last), by
rx—A 1
X—BA'W@W)‘W

getting
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INTERPOLATING TRIGONOMETRIC POLYNOMIAL

This is the previous case with n = m. Clearly, the individual errors at xy,
1, Ta, .-Tam,—1 must now be all equal to zero. Also, the solution now changes



to

m—1

ao Qm .

> + - cosmx; + g ay, cos kx; + by sin kx
k=1

(the rest being the same). For our previous data we get (after the same re-
scaling):
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When m is equal to a (large) power of 2, then there is an algorithm which
can compute the a; and by, coefficients while minimizing the number of additions
and (mainly) multiplications. It is called fast Fourier transform, and it is
extremely complicated; I'll try to demonstrate how it works in one of our labs.
The number of multiplications is reduced from (2m)? of the regular technique,
to 3m + mlogy m.

Thus, for example, when m = 22° = 1,048, 576, the regular technique would
require 242 = 4,398, 046, 511, 104 multiplications (not feasible), against 22°(3 +
20) = 24,117,248 required by FFT (piece of cake).

APPENDIX
2 .
.’L‘jz—ﬂ'-‘r%j 7=0.2m—-1
2m—1
sin(Kxzj)cos(Lxzj) = 0
3=0
2m—1
sin(Kzj)sin(Lz;) = 0
7=0
2m—1
cos(Kxzj)cos(Lz;) = 0
§=0



for any 0 < K < m and 0 < L < m, with the exception of the last two, when
K=1L.

First we show
2m—1

Z exp(iMz;) =0

=0
when 0 < M < 2m. Same as

2m
ul—a

exp(—imM) [1+a+a2+...+a2m71] =(-1) 1—a
where -
a = exp(iM—)
m

Note that
a®™ = exp(iM - 27) =1

which proves the above.
Also note that, when M = 0, the same sum is trivially equal to 2m, and
when M = 2m, we get %7 so by L’Hopital rule, the sum equals

. 1l—exp(iM -27r) —2mi
lim - = ——=2m
M—2m 1 —exp(iMI) —iZ

as well (the result is always real).
Now, we have to do is this:

2m—1 2m—1
Z exp(iKz;)exp(ilz;) = Z expli(K + L)x;]
j=0 7=0

2m—1

g

[cos(Kxj) + isin(Kx;)] [cos(Lz;) + isin(Lx;)]
=0
2m—1 2m—1

= Z cos(Kxj)cos(Lxj) — Z sin(Kx;)sin(Lx;)
=0 =0
2m—1 2m—1

+i Z sin(Kz;) cos(Lx;) + 1 Z cos(Kx;)sin(Lx;)
=0 7=0



and

2m—1 2m—1
Z exp(iKx;)exp(—iLz;) = Z expli(K — L)x;]
Jj=0 =0

2m—1

= Z cos(Kxz;) + isin(Kx;)] [cos(Lxj) — isin(Lx;)]
7=0

2m—1 2m—1
= E cos(Kxj)cos(Lxj) + E sin(Kx;)sin(Lx;)
Jj=0 Jj=0

2m—1 2m—1

+i Z sin(Kxj)cos(Lxj) — i Z cos(Kxj)sin(Lx;)
§=0 =0

The result is thus non-zero only when K = L (K =L =m and K = L =0 get
double contribution).



