
TRIGONOMETRIC APPROXIMATION (FOURIER SERIES)

Any function can be approximated, in the (−π, π) interval by a linear com-
bination of sin and cos, thus:

f(x) ' a0
2
+ a1 cosx+ b1 sinx

+a2 cos 2x+ b2 sin 2x

+a3 cos 3x+ b3 sin 3x+ ...

where

ak =
1

π

Z π

−π
f(x) cos(kx) dx

bk =
1

π

Z π

−π
f(x) sin(kx) dx

This can be derived by minimizingZ π

−π

"
f(x)− a0

2
−
X
k=1

(ak cos kx+ bk sin kx)

#2
dx

which is made easy by the fact that the set of cos kx and sin kx functions is
orthogonal.
EXAMPLE:

ex ' 3.67608− 3.67608 cosx+ 3.67608 sinx
+1.47043 cos 2x− 2.94086 sin 2x
−0.735216 cos 3x+ 2.20565 sin 3x

which, when displayed graphically, yields the following (far from spectacular)
fit:
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When increasing the number of terms to 81 (up to cos 40x and sin 40x), we get

(note the so called Gibbs phenomenon).
Note that the trigonometric expansion is a periodic function:

If we want to fit a function by a combination of sin and cos in a different
finite interval, say (A,B), we first shift the function to (−π, π) by introducing
a new independent variable

X ≡ 2x− (A+B)

B −A
· π

or, in reverse

x =
B −A

2π
·X +

A+B

2
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do the same fit as before in terms of X, and then shift back to x.
EXAMPLE: This time, we consider the lnx function in the (1, 2) interval,

which implies x = X
2π +

3
2 . Fitting ln

¡
X
2π +

3
2

¢
over the (−π, π) interval yields

3.67608 + 0.023558 cosX + 0.215401 sinX

−0.00620228 cos 2X − 0.109594 sin 2X
+0.00278771 cos 3X + 0.0733257 sin 3X

Replace X by (2x− 3) · π, and we have our ’approximation’ to lnx over (1, 2),
which looks like this:

DISCRETE VERSION

Let us go back to (−π, π). We divide the interval into 2m subintervals of
equal length, denoting the end points x0, x1, x2, ..., x2m. We then find the
trigonometric approximation by minimizing

2m−1X
j=0

h
f(xj)− a0

2
− an cosnxj

−
n−1X
k=1

(ak cos kxj + bk sin kxj)

#2
Note that n < m.
Since the cos kxj and sin kxj functions are still orthogonal, this time in the

following, discrete sense

2m−1X
j=0

cos kxj sin cxj = 0
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the above minimization has the following simple solution

ak =
1

m

2m−1X
j=0

f(xj) cos(kxj)

bk =
1

m

2m−1X
j=0

f(xj) sin(kxj)

EXAMPLE:
Let m = 15 and our y values are:

With n = 2, we get −1.460− 0.764 cos(X)− 1.817 sin(X) + 1.479 cos(2X)

4



Similarly, for n = 6, the results are −1.460 − 0.764 cos(X) − 1.817 sin(X) +
1.479 cos(2X)−0.515 sin(2X)−0.009 cos(3X)−0.388 sin(3X)+0.077 cos(4X)+
0.562 sin(4X)− 0.277 cos(5X)− 0.896 sin(5X)− 0.291 cos(6X) and

We can then easily change to x scale to go from A (for the first point) to
B (for the last), by

X =
x−A

B −A
· π
µ
2− 1

m

¶
− π

getting

INTERPOLATING TRIGONOMETRIC POLYNOMIAL

This is the previous case with n = m. Clearly, the individual errors at x0,
x1, x2, ..x2m−1 must now be all equal to zero. Also, the solution now changes
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to
a0
2
+

am
2
cosmxj +

m−1X
k=1

ak cos kxj + bk sin kxj

(the rest being the same). For our previous data we get (after the same re-
scaling):

When m is equal to a (large) power of 2, then there is an algorithm which
can compute the ak and bk coefficients while minimizing the number of additions
and (mainly) multiplications. It is called fast Fourier transform, and it is
extremely complicated; I’ll try to demonstrate how it works in one of our labs.
The number of multiplications is reduced from (2m)2 of the regular technique,
to 3m+m log2m.
Thus, for example, when m = 220 = 1, 048, 576, the regular technique would

require 242 = 4, 398 , 046, 511, 104 multiplications (not feasible), against 220(3+
20) = 24, 117, 248 required by FFT (piece of cake).

APPENDIX

xj = −π + 2π

2m
j j = 0..2m− 1

2m−1X
j=0

sin(Kxj) cos(Lxj) = 0

2m−1X
j=0

sin(Kxj) sin(Lxj) = 0

2m−1X
j=0

cos(Kxj) cos(Lxj) = 0
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for any 0 ≤ K ≤ m and 0 ≤ L ≤ m, with the exception of the last two, when
K = L.
First we show

2m−1X
j=0

exp(iMxj) = 0

when 0 < M < 2m. Same as

exp(−iπM)
£
1 + a+ a2 + ...+ a2m−1

¤
= (−1)M 1− a2m

1− a

where
a = exp(iM

π

m
)

Note that
a2m = exp(iM · 2π) = 1

which proves the above.
Also note that, when M = 0, the same sum is trivially equal to 2m, and

when M = 2m, we get 00 , so by L’Hopital rule, the sum equals

lim
M→2m

1− exp(iM · 2π)
1− exp(iM π

m)
=
−2πi
−i πm

= 2m

as well (the result is always real).
Now, we have to do is this:

2m−1X
j=0

exp(iKxj) exp(iLxj) =
2m−1X
j=0

exp[i(K + L)xj ]

=
2m−1X
j=0

[cos(Kxj) + i sin(Kxj)] [cos(Lxj) + i sin(Lxj)]

=
2m−1X
j=0

cos(Kxj) cos(Lxj)−
2m−1X
j=0

sin(Kxj) sin(Lxj)

+i
2m−1X
j=0

sin(Kxj) cos(Lxj) + i
2m−1X
j=0

cos(Kxj) sin(Lxj)
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and

2m−1X
j=0

exp(iKxj) exp(−iLxj) =
2m−1X
j=0

exp[i(K − L)xj ]

=
2m−1X
j=0

[cos(Kxj) + i sin(Kxj)] [cos(Lxj)− i sin(Lxj)]

=
2m−1X
j=0

cos(Kxj) cos(Lxj) +
2m−1X
j=0

sin(Kxj) sin(Lxj)

+i
2m−1X
j=0

sin(Kxj) cos(Lxj)− i
2m−1X
j=0

cos(Kxj) sin(Lxj)

The result is thus non-zero only when K = L (K = L = m and K = L = 0 get
double contribution).
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