
Gaussian Integration of
1R
−1

y(x) dx

Any three (four, five)-node formula will be exact for all quadratic (cubic, quartic,
...) polynomials, but if we are lucky (e.g. Simpson’s rule), we can go higher than this.
How high can we go?
The answer: If we choose n nodes to be the roots of the nth degree Legendre poly-

nomial (they all must be in the −1 to 1 range), the corresponding rule will be exact for
all polynomials of degree up to and including 2n− 1 (instead of the usual n− 1). This
also pushes the order of the leading error term from hn+1 to h2n+1 - a very substantial
improvement!
Proof:
For any polynomial, say q(x) of degree n− 1 (or less)

1R
−1

q(x) · φn(x) dx = 0

since q can be expressed as a liner combination of φ0, φ1, ...φn−1.
Let p(x) be an arbitrary polynomial of degree smaller than 2n. Then:

p(x) = q(x) · φn(x) + r(x)

where both q and r are polynomials of degree n− 1 or less.
Our Gaussian rule will correctly (i.e. exactly) integrate both the first term (equal to

zero) and the second term (any n-point formula does). It thus correctly integrates p(x).
Example:
To derive a 3-point Gaussian formula, we must first find the roots of φ3(x) = x3 −

3
5x, namely x1 = −

q
3
5 , x2 = 0 and x3 =

q
3
5 .

We know how to continue:

1R
−1

y(x) dx ≈ 2 · [c1 y(x1) + c2 y(x2) + c1 y(x3)]

making it exact for y = 1 and y = x2, i.e.

4c1 + 2c2 = 2

4c1 · 3
5

=
2

3

Solution: c1 = 5
18 and c2 =

8
18 .

The final rule:

1R
−1

y(x) dx ≈ 2 · 5 y(x1) + 8 y(x2) + 5 y(x3)
18
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It is automatically correct also for y = x4 (and all odd powers of x):

2× 5× 9

25
÷ 9 = 2

5

It can be transformed to work with any limits:

BR
A

y(x) dx ' (B −A) ·

5 y(A+B2 −
q

3
5
B−A
2 ) + 8 y(A+B2 ) + 5 y(A+B2 +

q
3
5
B−A
2 )

18

Applied to
R π/2
0

sinxdx, it yields:

π

36

µ
5 sin[π4 (1−

q
3
5)] + 8 sin(

π
4 ) + 5 sin[

π
4 (1 +

q
3
5 )]

¶
= 1.00000 8122

a spectacular improvement over Simpson’s (also 3 point) result of 1.0022.
Furthermore, applying it separately to the (0, π4 ) and (

π
4 ,

π
2 ) subintervals (the composite-

rule idea), results in

π

72

µ
5 sin[π8 (1−

q
3
5)] + 8 sin(

π
8 ) + 5 sin[

π
8 (1 +

q
3
5)]

¶
+

π

72

µ
5 sin[π8 (3−

q
3
5)] + 8 sin(

3π
8 ) + 5 sin[

π
8 (3 +

q
3
5)]

¶
= 1.00000 0119

a 68 fold increase in accuracy (theory predicts 64).
Romberg algorithm further improves the two results to (64×1.00000 0119−1.00000 8122)÷

63 = 0.99999 9992

Integrals With Weights
such as, for example,

R∞
0
e−x ·y(x) dx. The idea is the same (use the roots of Laguerre,

instead of Legendre, polynomials).
Example 1:
For a 3 point rule, we first solve (with the help of Maple)

x3 − 9x2 + 18x− 6 = 0
The roots are:

x1 = 0.4157745568

x2 = 2.294280360

x3 = 6.289945083
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Replacing y(x) by

(x−x2)(x−x3)
(x1−x2)(x1−x3) y(x1) +

(x−x1)(x−x3)
(x2−x1)(x2−x3) y(x2) +

(x−x1)(x−x2)
(x3−x1)(x3−x2) y(x3)

we multiply by e−x and integrate:

0.7110930101 y1 + 0.2785177336 y2 + 0.0103892565 y3

The rule is exact not only for y(x) = 1, x and x2:

0.7110930101 + 0.2785177336 + 0.0103892565

= 1 ≡
∞R
0

e−xdx

0.7110930101x1 + 0.2785177336x2 + 0.0103892565x3

= 1 ≡
∞R
0

x e−xdx

0.7110930101x21 + 0.2785177336x
2
2 + 0.0103892565x

2
3

= 2 ≡
∞R
0

x2e−xdx

but also for y(x) = x3, x4 and x5:

0.7110930101x31 + 0.2785177336x
3
2 + 0.0103892565x

3
3

= 6 ≡
∞R
0

x3e−xdx

0.7110930101x41 + 0.2785177336x
4
2 + 0.0103892565x

4
3

= 24 ≡
∞R
0

x4 e−xdx

0.7110930101x51 + 0.2785177336x
5
2 + 0.0103892565x

5
3

= 120 ≡
∞R
0

x5e−xdx

For y(x) = x6 we get:

0.7110930101x61 + 0.2785177336x
6
2 + 0.0103892565x

6
3

= 684

(5% off the correct answer of 720).

Applying the formula to
R∞
0

exp(−x)
x+2 dx yields

0. 7110930101

x1 + 2
+
0.2785177336

x2 + 2
+
0.0103892565

x3 + 2
= 0.3605
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It should now be quite obvious how to construct a Gaussian formula with a given
number of nodes to approximate

1Z
−1

y(x)√
1− x2

dx

using the roots of the corresponding Chebyshev polynomial.
Example 2:

2-point Gaussian formula for
1R
0

y(x)√
x
dx.

Since the corresponding φ2(x) is now given by x2 − 6
7x+

3
35 (Assignment 4), our

two nodes are:

x1 =
3

7
−
r
9

49
− 3

35
=
3

7
− 2

35

√
30

x2 =
3

7
+

r
9

49
− 3

35
=
3

7
+
2

35

√
30

Replacing y(x) by
x− x2
x1 − x2

y(x1)+
x− x1
x2 − x1

y(x2), dividing by
√
x and integrating

yields:
1R
0

y(x)√
x

dx ≈
³
1 +

√
30
18

´
y(x1) +

³
1−

√
30
18

´
y(x2)

The rule is correct for y(x) = 1, x, x2 and x3:³
1 +

√
30
18

´
+
³
1−

√
30
18

´
= 2³

1 +
√
30
18

´
x1 +

³
1−

√
30
18

´
x2 =

2

3³
1 +

√
30
18

´
x21 +

³
1−

√
30
18

´
x22 =

2

5³
1 +

√
30
18

´
x31 +

³
1−

√
30
18

´
x32 =

2

7
but ³

1 +
√
30
18

´
x41 +

³
1−

√
30
18

´
x42 =

258

1225
6= 2

9
(off by about 5%).

To approximate
1Z
0

exp(x2)√
x

dx '
³
1 +

√
30
18

´
exp(x21) +

³
1−

√
30
18

´
exp(x22) = 2.528
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reasonably close (0.6% error) to the exact answer of 2.543.

5


