NONLINEAR EQUATIONS

We start with equation for one unknown:
flx) =0

We can find a solution (solutions) graphically, but only to two significant digits.
We can then improve the accuracy by

Newton’s Method:

Fit a straight line with a slope of f/(zo) trough the point [zg, f(z0)]:

y — f(x0) = f'(x0) - (¥ — 0)
then find its intercept with the z axis, by solving
—f(@o) = f'(z0) - (z — w0)

This yields:
f(zo)
f' (o)
which is a better, but not necessarily 10-digit accurate solution.
But, we can apply the same idea again, using =1 in place of xg. This will

T, =g —

result in
oy = 2y — f(z1)
f'(@1)
And again:
2y = oy 1 72)
[ (@2)

etc., until the numbers no longer change.

One can show that this procedure is quadratically convergent, meaning that
the number of correct digits roughly doubles in each iteration (one step of the
procedure).

Example: Solve

ef=2—z

First we plot f(x) = e®* — 2+ x. The graph intersects the z-axis at, roughly,
xg = 1. Then, compute f’'(z) = e” + 1 and we are ready to iterate:

—941
o = 1- S22 5378828428
e+1
xr1 __ 2
oy = - T ETT G 44561 67486
e*1 +1
xr2 __ 2
vy = g 2T 4498567246
er2 +1
xr3 __ 2 -
vy = my— =TT ) 4428544011
ers +1
T4 __ 2
vy = - =TT 4498544011
e*s +1



Quadratic convergence is clearly observed.

The method fails (convergence becomes extremely slow) when f(x) only
touches the x axis, without crossing it (this is an indication that both f(z) and
f'(z) have a root at that point).

Example: We know that f(z) = 1+sinz has aroot at z = 37 = 4.71238 8981
(= 270°). If we try to find it by the regular technique (starting at zo = 5), we

get

1+ sinxg

2 = @y — — OO _ 4 955194921
COS Tg
-
vy = @y — — T4 783670356
COS 1
by = ag— SIT2 4 mie01 457
COS To
.
ve = s —ORT 4 30190891
COS T3
vs = my— ATSBTL 201994109
COS T4
1+si
vs = ws— OIS 71684156
CoSs T3
1+si
vr = g —OMT6 4 461597
COS g

If instead we solve (1 +sinz)’ = cosx = 0, we get

21 = 20+ 220 _ 4 70418 7084
sin zq

Zo = x1 + 2T _ 4 712389164
sin 1

T3 = g 4+ 22 _ 4 71238898
sin za

24 = g 4+ 23 _ 4 71238898
SN T3

One can now easily verify that
1+ sin4.71238898 =0

(Regular) Example: When dealing with the third-degree Laguerre polyno-
mial, we had to rely on Maple to get its three roots. Now, we can do this
ourselves. Plotting

2 —92° + 182 —6=0



indicates that there is a root near o = 6. We thus get

z3 — 923 + 1829 — 6

= xo- = 6.333333333
. 0T T30 18z + 18
3 2
7 — 9z7 + 18z1 — 6
- - = 6.29071 5373
2 T T30 18z, 1 18
3 2
x5 — 925 + 18x2 — 6
= - = 6.28994 5332
s T2 TR0 182, + 18
3 _ 2 1 _
pi = oy I8 0 o oe0945083

322 — 18xz3 + 18

Once we have a root of a cubic equation, we can deflate the polynomial by
carrying out the following synthetic division:

(23 — 92% + 182 — 6) + (x — 6.28994 5083) =
2% — 2.710054917 x + 0.9539034002

The remaining two roots can then be found by the usual formula:

2.710(%54917 ¥ \/(24710%54917)2 —0.9539034002

= 0.4157745565 and 2.294280362

Several Unknowns
First two nonlinear equations for two unknowns:

Fi(z1,22)
Fy(z1,22) =

Finding a reasonably accurate starting (initial) solution is now a lot more
difficult - we will assume that a reasonably good estimate is provided to us, we
will call them x1, and ;.

Fy and F; can be (Taylor) expanded, around this point, as follows:

Fi(x1,22) = Fi(z14,22,) +

aF1(£C1O,£C20) 8F1(£C10,£C20)

0x1 (x1 —x1,) + Oxo (o2 = 220) 4 .
Fyen,o2) = Poen a3, +
OB (w10, 23 (z1—w1,) + OBl10: 22,) (22 = 220) + ...

01 Oz

or, in matrix notation,

F(x) =F(xq) + g—z (x —x0) + ...

X0



where xg is a column vector with components z;, and x5,, and 2—1; denotes, the
following Jacobian

ory,  O0F
OF _ | 9z, Oxo
ox | OB OF
81‘1 al‘g
Setting to 0 and solving for x:
or| |7
X1 =Xo — a F(Xo)

X0

(one iteration). In this spirit we can continue:

[ OF
X2 =X1— | 5= F(x1)
X X
L 1_
etc., until convergence reached.
Example: Solve
zri1cosxzo +0.716 = 0
Tosinx; — xf —1305 = 0
starting with 21, = 1 and zo, = 3.
The Jacobian:
COS To —x1sin xo
Ty COST, — 221 sinxq

Evaluating the left hand side of each of our equations (using the initial values
of z1 and z3) yields
Fy = [ —0.2739924966 ]
0.2194129540

Similarly evaluating the Jacobian:

Jo = —0.9899924966 —0.1411200081
07 1 —0.379093082  0.8414709848

This implies:

_ 0.7748646744
x1 = X0 — [Jo] lFo—{ }

2.637824472

Now, repeat the process (best done with Maple):

F := [ z[1]*cos(z[2]) + 0.716,
z[2]*xsin(x[1]) — z[1]"2 — 1.305 |;



J := matrix(2,2):
for i to 2 do for j to 2 do
J[i, j] := diff (F'[i], z[j]) end do end do:

xz:= 1., 3.]:

with(linalg):

x := evalm(x — linsolve(J, F) );
By re-executing the last line, we will automatically get x;, X3, etc.:
[0.7748646744, 2.637824472]
[0.7825429930, 2, 719825617
[0.7854682773, 2.717842406]
[0.7854606220, 2.717875728]
[0.7854606228, 2.717875728|.

It should be clear how the formulas extend to the case of three or more
unknowns.
Example: Solve:

1+ T + X3

= 7
3
\3/.’1?1262.%'3 = 4
3 16
i i - 7
1 T2 3

For the initial values, take x1 = 1.5, 2 = 5 and z3 = 10.
In the previous computer program, we change the definition of F' to:

F = 2z[1] + z[2] + z[3] — 21,
x[1] * z[2] * z[3] — 64,
1/2[1] 4+ 1/2[2] + 1/2[3] — 21/16 J;

increase the dimensions (from 2 to 3, in the next two lines), and change
the initial values.

As result, we get:

[.6989495801, 3.572619045, 16.72843138]
[.8746180084, 4.895879953, 15.22950204]
[.9791494539, 3.948814285, 16.07203626]
[.9992737556, 4.004281052, 15.99644519]



[.9999992176, 3.999999364, 16.00000142]
[.9999999991, 4.000000005, 16.00000000]
(verify against the original equations).

If we used the equations in their original form, it would have taken us 9
iterations to reach the same conclusion.

The choice of the initial values is quite critical, see what would happen if
we change z1, to 2.0 (don’t forget to type ‘restart;’ first).



