
NONLINEAR EQUATIONS

We start with equation for one unknown:

f(x) = 0

We can find a solution (solutions) graphically, but only to two significant digits.
We can then improve the accuracy by
Newton’s Method:
Fit a straight line with a slope of f 0(x0) trough the point [x0, f(x0)]:

y − f(x0) = f 0(x0) · (x− x0)

then find its intercept with the x axis, by solving

−f(x0) = f 0(x0) · (x− x0)

This yields:

x1 = x0 − f(x0)

f 0(x0)

which is a better, but not necessarily 10-digit accurate solution.
But, we can apply the same idea again, using x1 in place of x0. This will

result in

x2 = x1 − f(x1)

f 0(x1)

And again:

x3 = x2 − f(x2)

f 0(x2)

etc., until the numbers no longer change.
One can show that this procedure is quadratically convergent, meaning that

the number of correct digits roughly doubles in each iteration (one step of the
procedure).
Example: Solve

ex = 2− x

First we plot f(x) = ex− 2+ x. The graph intersects the x-axis at, roughly,
x0 = 1. Then, compute f 0(x) = ex + 1 and we are ready to iterate:

x1 = 1− e− 2 + 1
e+ 1

= 0.53788 28428

x2 = x1 − ex1 − 2 + x1
ex1 + 1

= 0.44561 67486

x3 = x2 − ex2 − 2 + x2
ex2 + 1

= 0.44285 67246

x4 = x3 − ex3 − 2 + x3
ex3 + 1

= 0.4428544011

x5 = x4 − ex4 − 2 + x4
ex4 + 1

= 0.4428544011
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Quadratic convergence is clearly observed.

The method fails (convergence becomes extremely slow) when f(x) only
touches the x axis, without crossing it (this is an indication that both f(x) and
f 0(x) have a root at that point).
Example: We know that f(x) = 1+sinx has a root at x = 3

2π = 4. 71238 8981
(≡ 270o). If we try to find it by the regular technique (starting at x0 = 5), we
get

x1 = x0 − 1 + sinx0
cosx0

= 4. 85519 4921

x2 = x1 − 1 + sinx1
cosx1

= 4.78367 0356

x3 = x2 − 1 + sinx2
cosx2

= 4.74801 457

x4 = x3 − 1 + sinx3
cosx3

= 4.73019 9891

x5 = x4 − 1 + sinx4
cosx4

= 4.72129 4199

x6 = x5 − 1 + sinx5
cosx5

= 4.71684 156

x7 = x6 − 1 + sinx6
cosx6

= 4.71461 527

If instead we solve (1 + sinx)0 = cosx = 0, we get

x1 = x0 +
cosx0
sinx0

= 4.70418 7084

x2 = x1 +
cosx1
sinx1

= 4.71238 9164

x3 = x2 +
cosx2
sinx2

= 4.71238898

x4 = x3 +
cosx3
sinx3

= 4.71238898

One can now easily verify that

1 + sin 4. 71238 898 = 0

(Regular) Example: When dealing with the third-degree Laguerre polyno-
mial, we had to rely on Maple to get its three roots. Now, we can do this
ourselves. Plotting

x3 − 9x2 + 18x− 6 = 0
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indicates that there is a root near x0 = 6. We thus get

x1 = x0 − x30 − 9x20 + 18x0 − 6
3x20 − 18x0 + 18

= 6. 33333 3333

x2 = x1 − x31 − 9x21 + 18x1 − 6
3x21 − 18x1 + 18

= 6.29071 5373

x3 = x2 − x32 − 9x22 + 18x2 − 6
3x22 − 18x2 + 18

= 6.289945332

x4 = x3 − x33 − 9x23 + 18x3 − 6
3x23 − 18x3 + 18

= 6.289945083

Once we have a root of a cubic equation, we can deflate the polynomial by
carrying out the following synthetic division:

(x3 − 9x2 + 18x− 6)÷ (x− 6. 28994 5083) =
x2 − 2.710054917x+ 0.9539034002

The remaining two roots can then be found by the usual formula:

2.710054917
2 ∓

q
(2.7100549172 )2 − 0.9539034002

= 0.41577 45565 and 2. 29428 0362

Several Unknowns
First two nonlinear equations for two unknowns:

F1(x1, x2) = 0

F2(x1, x2) = 0

Finding a reasonably accurate starting (initial) solution is now a lot more
difficult - we will assume that a reasonably good estimate is provided to us, we
will call them x10 and x20 .

F1 and F2 can be (Taylor) expanded, around this point, as follows:

F1(x1, x2) = F1(x10 , x20) +

∂F1(x10 , x20)

∂x1
(x1 − x10) +

∂F1(x10 , x20)

∂x2
(x2 − x20) + ...

F2(x1, x2) = F2(x10 , x20) +

∂F2(x10 , x20)

∂x1
(x1 − x10) +

∂F2(x10 , x20)

∂x2
(x2 − x20) + ...

or, in matrix notation,

F(x) = F(x0) +
∂F

∂x

¯̄̄̄
x0

(x− x0) + ...
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where x0 is a column vector with components x10 and x20 , and
∂F
∂x denotes, the

following Jacobian

∂F

∂x
≡

 ∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2


Setting to 0 and solving for x:

x1 = x0 −
"
∂F

∂x

¯̄̄̄
x0

#−1
F(x0)

(one iteration). In this spirit we can continue:

x2 = x1 −
"
∂F

∂x

¯̄̄̄
x1

#−1
F(x1)

etc., until convergence reached.
Example: Solve

x1 cosx2 + 0.716 = 0

x2 sinx1 − x21 − 1.305 = 0

starting with x10 = 1 and x20 = 3.
The Jacobian: ·

cosx2 −x1 sinx2
x2 cosx1 − 2x1 sinx1

¸
Evaluating the left hand side of each of our equations (using the initial values

of x1 and x2) yields

F0 =

· −0.2739924966
0.2194129540

¸
Similarly evaluating the Jacobian:

J0 =
· −0.9899924966 −0.1411200081
−0.379093082 0.8414709848

¸
This implies:

x1 = x0 − [J0]−1F0 =
·
0.7748646744
2.637824472

¸
Now, repeat the process (best done with Maple):

F := [ x[1]∗cos(x[2]) + 0.716,
x[2]∗sin(x[1])− x[1]ˆ2− 1.305 ];
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J := matrix(2, 2):

for i to 2 do for j to 2 do

J [i, j] := diff(F [i], x[j]) end do end do:

x := [1., 3.]:

with(linalg):

x := evalm(x− linsolve(J, F ) );

By re-executing the last line, we will automatically get x1, x2, etc.:

[0.7748646744, 2.637824472]

[0.7825429930, 2,719825617]

[0.7854682773, 2.717842406]

[0.7854606220, 2.717875728]

[0.7854606228, 2.717875728].

It should be clear how the formulas extend to the case of three or more
unknowns.
Example: Solve:

x1 + x2 + x3
3

= 7

3
√
x1x2x3 = 4

3
1
x1
+ 1

x2
+ 1

x3

=
16
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For the initial values, take x1 = 1.5, x2 = 5 and x3 = 10.
In the previous computer program, we change the definition of F to:

F := [ x[1] + x[2] + x[3]− 21,
x[1] ∗ x[2] ∗ x[3]− 64,
1/x[1] + 1/x[2] + 1/x[3]− 21/16 ];
increase the dimensions (from 2 to 3, in the next two lines), and change
the initial values.

As result, we get:

[.6989495801, 3.572619045, 16.72843138]

[.8746180084, 4.895879953, 15.22950204]

[.9791494539, 3.948814285, 16.07203626]

[.9992737556, 4.004281052, 15.99644519]
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[.9999992176, 3.999999364, 16.00000142]

[.9999999991, 4.000000005, 16.00000000]

(verify against the original equations).

If we used the equations in their original form, it would have taken us 9
iterations to reach the same conclusion.

The choice of the initial values is quite critical, see what would happen if
we change x10 to 2.0 (don’t forget to type ’restart;’ first).
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