
Other Rules
(designing our own formulas with any number of nodes).
Example 1:
Four nodes, at A, A+ B−A

3 , B − B−A
3 , B. Utilizing symmetry we have:

£
ce y(A) + ci y(A+

B−A
3 )

+ci y(B − B−A
3 ) + ce y(B)

¤
(B −A)

To find ce and ci, we take A = −1 and B = 1 (A+B−A
3 = −13 , B−B−A

3 = 1
3),

and making the rule correct with y(x) = 1 and y(x) = x2, namely:

(2ce + 2ci) · 2 = 2

(2ce + 2
ci
9 ) · 2 = 2

3

which yields ci = 3
8 , ce =

1
8 . The resulting formula:

BZ
A

y(x) dx '

(B −A)
y(A) + 3 y(A+ B−A

3 ) + 3 y(B − B−A
3 ) + y(B)

8

Example 2:
Three nodes, at x1 = A+B−A

6 , x2 =
A+B
2 , x3 = B−B−A

6 (still symmetrical),
so

(B −A)(cs y1 + ccy2 + csy3)

Setting A = −1 and B = 1 (i.e. x1 = −23 , x2 = 0, x3 =
2
3) we get (for

y(x) = 1 and y(x) = x2):

(2cs + cc) · 2 = 2

2 · 49 cs · 2 = 2
3

implying that cs = 3
8 and cc =

2
8 , i.e.

BZ
A

y(x) dx ' 3 y1 + 2 y2 + 3 y3
8

(B −A)

Based on Taylor expansion of y(x), the error of this rule is computed by

3

8

µ
y(xc) + y0(xc)

h

3
+

y00(xc)
2

h2

9
+

y000(xc)
6

h3

27
+

yiv(xc)

24

h4

81

+
2

3
y(xc)

+y(xc)− y0(xc)
h

3
+

y00(xc)
2

h2

9
− y000(xc)

6

h3

27
+

yiv(xc)

24

h4

81

¶
· h =

1



µ
y(xc)h+

y00(xc)
24

h3 +
yiv(xc)

2592
h5 + ...

¶
−
µ
y(xc)h+

y00(xc)
24

h3 +
yiv(xc)

1920
h5 + ...

¶
= −7 y

iv(xc)

51840
h5 + ...

i.e. smaller than that of the Simpson rule, and of the opposite sign (can we
choose the points to eliminate this term entirely)?
Example 3:

We derive a formula to approximate
3R
0

y(x) dx assuming that only three

values of y(x) are known, y(0), y(1) and y(3). The formula will have the form
of

c0 y(0) + c1 y(1) + c3 y(3)

and has to be exact for y(x) = 1, y(x) = x and y(x) = x2, i.e.:

c0 + c1 + c3 =
3R
0

dx = 3

c1 + 3 c3 =
3R
0

xdx =
9

2

c1 + 9 c3 =
3R
0

x2 dx = 9

The last two equations can be solved for c1 and c3:·
9 −3
−1 1

¸ ·
9
2
9

¸
÷ 6 =

·
9
4
3
4

¸
implying that c0 = 0. The final rule is thus:

3Z
0

y(x) dx ' 9

4
y(1) +

3

4
y(3)

Singular and Improper Integrals
All formulas we derived so far will fail miserably when applied to:

1Z
0

exp(x2)√
x

dx

(they all assume that the integrand, with all its derivatives, is finite).
This integrand is singular due to 1√

x
. Even though creating a problem

numerically, 1√
x
is quite easy to integrate on its own. We will separate it from

2



the rest of the integrand, thus:

1Z
0

y(x)√
x

dx

We can now derive an approximate formula for this kind of integral in the
usual fashion, i.e.:
Using x = 0, 12 and 1 as our nodes, we get

y(x) ≈
(x− 1

2 )(x− 1)
1
2

y(0) +
x (x− 1)
−14

y(12) +
x (x− 1

2)
1
2

y(1)

Since
1R
0

(x− 1
2)(x− 1)√
x

dx =
2

5

1R
0

x (x− 1)√
x

dx = − 4
15

1R
0

x (x− 1
2)√

x
dx =

1

15

our integration rule reads:

1Z
0

y(x)√
x

dx ' 12

15
y(0) +

16

15
y( 12) +

2

15
y(1)

Or, alternately:

1Z
0

y(x)√
x

dx ' c0 y(0) + c 1
2
y(12) + c1 y(1)

(the ’;weight function’ 1√
x
breaks the symmetry), we make it correct for

y(x) = 1, x and x2:

c0 + c 1
2
+ c1 =

1R
0

1√
x
dx = 2

1

2
c 1
2
+ c1 =

1R
0

x√
x
dx =

2

3

1

4
c 1
2
+ c1 =

1R
0

x2√
x
dx =

2

5

resulting in c 1
2
= 16

15 , c1 =
2
15 , and c0 =

12
15 (check).
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Applying this rule to the original
R 1
0
exp(x2)√

x
dx results in 12

15 +
16
15 e

1
4 + 2

15 e =

2.532. This compares favorably (0.4% error) with the exact answer of 2.543.
To extend the formula to

R A
0

y(x)√
x
dx, we introduce z = Ax and write

AZ
0

y(x)√
x

dx =

1Z
0

y( zA )p
z
A

dz

A

'
√
A ·
·
12

15
y(0) +

16

15
y(A2 ) +

2

15
y(A)

¸
Another example:
Develop a 4 point formula for approximating:

∞R
0

y(x) exp(−x) dx

We choose x = 0, 1, 2 and 3 as our four nodes. The interpolating polynomial
is thus

(x− 1)(x− 2)(x− 3)
−6 y(0) +

x (x− 2)(x− 3)
2

y(1) +

+
x (x− 1)(x− 3)

−2 y(2) +
x (x− 1)(x− 2)

6
y(3) =

x3 − 6x2 + 11x− 6
−6 y(0) +

x3 − 5x2 + 6x
2

y(1) +

+
x3 − 4x2 + 3x

−2 y(2) +
x3 − 3x2 + 2x

6
y(3)

Multiplying by e−x and integrating from 0 to ∞ yields (remember thatR∞
0

xke−xdx = k!):

6− 12 + 11− 6
−6 y(0) +

6− 10 + 6
2

y(1)

+
6− 8 + 3
−2 y(2) +

6− 6 + 2
6

y(3) =

1
6 y(0) + y(1)− 1

2 y(2) +
1
3 y(3)

(our final rule). Note that one of our coefficients is negative (indication of
badly chosen nodes).
Applied to

R∞
0

exp(−x)
x+2 dx. our formula yields: 16 · 12+ 1

3− 1
2 · 14+ 1

3 · 15 = 0.3583̄,
reasonably close (0.8% error) to the exact answer of 0.3613.

The obvious questions to ask now:
Is there a better way of selecting our four nodes?
Is there a best way of selecting them? ’Best’ in what sense?
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