
Newton interpolating polynomial

x: 0 1 3 4 7
y: 2 —3 0 1 —2

0 2
−5

1 —3 13
6

3
2 − 7

12

3 0 −16 19
252

1 − 1
18

4 1 −12−1
7 —2

2− 5x+ 13
6
x(x− 1)− 7

12
x(x− 1)(x− 3)

+
19

252
x(x− 1)(x− 3)(x− 4)

Substitute and verify. Plot with the original data.

Lagrange interpolating polynomial

We can use our Maple program, correspondingly modified.

(x− 1)(x− 3)(x− 4)(x− 7)
42

+
x(x− 3)(x− 4)(x− 7)

12

−x(x− 1)(x− 3)(x− 7)
36

− x(x− 1)(x− 3)(x− 4)
252

Substitute and verify. Plot, together with the original data.

Least-sqare fit of a polynomial to discrete data

Minimize by solving normal equations

n
nP
i=1

xi
nP
i=1

x2i . . .
nP
i=1

xki
nP
i=1

xi
nP
i=1

x2i
nP
i=1

x3i . . .
nP
i=1

xk+1i

nP
i=1

x2i
nP
i=1

x3i
nP
i=1

x4i . . .
nP
i=1

xk+2i

...
...

...
. . .

...
nP
i=1

xki
nP
i=1

xk+1i

nP
i=1

xk+2i . . .
nP
i=1

x2ki




a0
a1
a2
...
ak

 =



nP
i=1

yi
nP
i=1

xiyi
nP
i=1

x2i yi

...
nP
i=1

xki yi


Be able to compute residues, sum of squares residues, typical error, etc. Full
pivoting must be used when switching to decimal.

1

Same with weights

nX
i=1

wi

£
yi − (a0 + a1xi + a2x

2
i ...+ akx

k
i)
¤2



nP
i=1

wi

nP
i=1

wixi . . .
nP
i=1

wix
k
i

nP
i=1

wixi
nP
i=1

wix
2
i . . .

nP
i=1

wix
k+1
i

...
...

. . .
...

nP
i=1

wix
k
i

nP
i=1

wix
k+1
i . . .

nP
i=1

wix
2k
i




a0
a1
...
ak

 =


nP
i=1

wiyi
nP
i=1

wixiyi

...
nP
i=1

wix
k
i yi


Least-sqare fit of a linear model to discrete data

Minimize

nX
i=1

[yi − (a1f1(xi) + a2f2(xi)...+ akfk(xi))]
2

by solving normal equations

nP
i=1

f1(xi)
2

nP
i=1

f1(xi)f2(xi) . . .
nP
i=1

f1(xi)fk(xi)

nP
i=1

f2(xi)f1(xi)
nP
i=1

f2(xi)
2 . . .

nP
i=1

f2(xi)fk(xi)

...
...

. . .
...

nP
i=1

fk(xi)f1(xi)
nP
i=1

fk(xi)f2(xi) . . .
nP
i=1

fk(xi)
2




a1
a2
...
ak

 =


nP
i=1

yif1(xi)

nP
i=1

yif2(xi))

...
nP
i=1

yifk(xi)


Be able to compute residues, sum of squares residues, typical error, etc. Full
pivoting required.

Gaussian elimination with backward substitution

Include full pivoting when the entries are decimal numbers.

Gram-Schmidt orthogonalization

Build the first few polynomials and the corresponding αs.

Least-square ’continuous’ fit of a function by a polynomial

Minimize Z B

A

£
f(x)− (a0 + a1x+ a2x

2...+ akx
k)
¤2

by:

2

• In f(x), replace x by A+B
2 + B−A

2 X.

• Compute
ci =

R 1
−1 f(X) · φi(X)dX

αi
i = 0, 1, 2, ...k

where φi are the Legendre polynomials.

• In
c0φ0(X) + c1φ1(X) + c2φ2(X)...+ ckφk(X)

replace X by 2x−(A+B)
B−A and expand.

If we want to use Chebyshev polynomials instead of Legendre, the only thing
which changes is

ci =

R 1
−1

f(X)·φi(X)√
1−X2 dX

αi
i = 0, 1, 2, ...k

where φi are now the Chebyshev polynomials.
Compute typical and the largest error, plot, etc.

Composite trapezoidal rule

To approximate Z B

A

y(x)dx

we choose a value of n and then compute

y(A) + 2y(A+ h) + 2y(A+ 2h) + ...+ 2y(B − h) + y(B)

2n
· (B −A)

where h = B−A
n . The main error is proportional to h2 and can be removed by

Romberg’s algorithm (if you double n, use 4, if you triple it, use 9, etc.).
The remaining error is h4-proportional, and can be removed by a second

stage of Romberg’s (when n doubles, use 16, when it triples use 81, etc.).
The remaining error is h6-proportional, and can be removed by one more

stage of Romberg’s (when n doubles use 64, etc.).

Composite Simpson’s rule

To approximate Z B

A

y(x)dx

we choose a value of n (must be even) and then compute

y(A) + 4y(A+ h) + 2y(A+ 2h) + ...+ 4y(B − h) + y(B)

3n
· (B −A)

where h = B−A
n . The main error is proportional to h4 and can be removed by

Romberg’s algorithm (if you double n, use 16, if you triple it, use 81, etc.).
The remaining error is h6-proportional, and can be removed by a second

stage of Romberg’s (when n doubles, use 64, when it triples use 729, etc.).

3

n-point Gaussian formula

To approximate Z B

A

y(x)dx

we now compute

(B −A)
nX
i=1

ci · y
³
A+B+Xi(B−A)

2

´
where Xi are the roots of n-degree Legendre polynomial, and ci are numeri-
cal coefficients (both the Xi and the corresponding ci are tabulated in your
textbook, we also know how to compute them on our own).
We should be able to also apply it as a composite formula.

Designing own n-point formula

to approximate Z B

A

w(x) · y(x)dx

where A and B are now specific numbers and w(x) is a specific weight function
(may be ≡ 1), and x1, x2, ... xn are given nodes (from the A to B interval).

• Using the nodes, find the corresponding Lagrange interpolating polyno-
mial, say pn(x), to go through [x1, y(x1)], [x2, y(x2)],[xn, y(x2)].

• EvaluateZ B

A

w(x) · pn(x)dx = c1 · y(x1) + c2 · y(x2) + ...+ cn · y(xn)

This is your rule of integration.

Be able to apply it to a specific case of y(x).
If we want to derive a Gaussian rule for the above integral, the nodes

would not then be given; instead, we have to find the corresponding orthogonal
polynomials (Gram-Schmidt, using the given interval and weight function), find
the roots of the n-degree polynomial, and use them as the n nodes. The rest of
the procedure is the same.

Designing n-point formulas for kth derivative

The nodes are given as x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h,
Using these nodes, we fit the corresponding Lagrange interpolating polyno-

mial, differentiate it k times, and then substitute x0 for x (and simplify). Be
able to apply the resulting formula to a specific function. Also, be able to find
its error expansion, based on which perform Richardson extrapolation.

4

Also, remember that the most basic such formulas are

y0(x0) ' y(x0 + h)− y(x0 − h)

2h

and

y00(x0) ' y(x0 + h)− 2y(x0) + y(x0 − h)

h2

LU decomposition

Be able to solve a tri-diagonal system of linear equations

Ax = r

via LU decomposition of A.

Solving n non-linear equations for n unknowns

The key formula (one iteration) is

xi+1 = xi −
"
∂F

∂x

¯̄̄̄
xi

#−1
F(xi)

where F(xi) is the vector whose components are the n equations, and ∂F
∂x is the

corresponding Jacobian (always evaluated with the most current values of x).
Understand the concept of quadratic convergence.

Second-order ODE - boundary-value problem

The differential equation may be either linear

y00 + p(x) · y0 + q(x) · y = r(x)

or non-linear
y00 = f(x, y, y0)

We divide the original interval into n subintervals, and find the values of y only
at these points. We can then double (or triple) the value of n (once or twice),
and improve the solution by Richardson extrapolation.

Solving (sets of) ODE by Runge-Kutta - initial-value problem

The equation looks as follows

ẏ = f(t, y)

where y (and correspondingly f) can have more than one component (when
dealing with a set of equations).

5

The fourth-order (referring to the time-step error) Runge-Kutta works like
this (one step):
Compute

k1 = hf(t, y)

k2 = hf(t+ h
2 , y +

k1
2)

k3 = hf(t+ h
2 , y +

k2
2)

k4 = hf(t+ h, y + k3)

then advance t by h and y by

h · k1 + 2k2 + 2k3 + k4
6

Should be able to deal with higher-order ODE by treating y, ẏ, ÿ, ...(one
has to go to one less than the equation’s order) as individual components of the
solution.
Be able to estimate the error of your solution (by backtracking), and realize

that going twice as slow (in terms of h) will improve the accuracy 16 fold (going
ten times as fast will yield 4 extra digits of accuracy).

Least-square fit of a function by trigonometric polynomial

First, introduce a new scale X by

x→ B −A

2π
·X +

A+B

2

then compute

ak =
1

π

Z π

−π
f(X) cos(kX) dX

bk =
1

π

Z π

−π
f(X) sin(kX) dX

(as many as desired). The resulting trigonometric polynomial is:

a0
2
+ a1 cosX + b1 sinX

+a2 cos 2X + b2 sin 2X

+a3 cos 3X + b3 sin 3X + ...

where X needs to be replaced by

2x− (A+B)

B −A
· π

Be able to deal with functions given in a piecewise manner.
Least-square fit of discrete data by a trigonometric polynomial

6

Fit the yi values (2m of them) by computing

ak =
1

m

2m−1X
i=0

yi cos(kXi) k = 0, 1, 2,n

bk =
1

m

2m−1X
i=0

yi sin(kXi) k = 1, 2,n− 1

where
Xi = −π + π

m
· i i = 0, 1, 2,2m− 1

construct your polynomial by

a0
2
+ a1 cosX + b1 sinX

+a2 cos 2X + b2 sin 2X

+a3 cos 3X + b3 sin 3X + ...
...

+an−1 cos(n− 1)X + bn−1 sin(n− 1)X
+an cosnX

then replace X by
x−A

B −A
· π
µ
2− 1

m

¶
− π

where A and B are the first and last values (respectively) of x in the given table
(the x’s must follow algebraic progression).
To construct interpolating trigonometric polynomial, we simply take n =

m (it would be pointless to go any higher), and change the last term to

+
am
2
cosmX

The resulting fit must be perfect (no residuals).

7

