Due: Oct. 3

1. Using the weighted least-squares approach, fit the best straight line to the following data:

<i>x</i> :	13	26	45	74	90	112
<i>y</i> :	286	254	209	118	94	47
<i>w</i> :	2.3	3.9	5.7	6.1	4.9	2.6

As usually, plot the x-y data and your regression line. Also, construct a 95% confidence interval for (each) the true slope and intercept.

- **2.** Let two random variables *X* and *Y* have the bivariate Normal distribution with $\mu_x = \mu_y = 0$, $\sigma_x = \sigma_y = 1$ and the correlation coefficient ρ .
 - **a.** With the help of the corresponding moment generating function, find the following means:

$$\mathbb{E}(X \cdot Y)$$
$$\mathbb{E}(X^2 \cdot Y^2)$$
$$\mathbb{E}(X^3 \cdot Y^3)$$

b. Utilizing the previous results, find

$$\mathbb{E}[(X_1Y_1 + X_2Y_2 + \ldots + X_nY_n)^3]$$

where (X_1, Y_1) , (X_2, Y_2) ,, (X_n, Y_n) is a random independent sample from the bivariate distribution defined above.