Simple Regression: 1

Model:
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 where $i = 1, 2, ...n$ and $\varepsilon_i \in \mathcal{N}(0, \sigma)$ independent.
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2, S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})y_i \text{ and } S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Point estimators of slope and intercept: $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}, \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x},$

(unbiased, jointly Normal).

Coefficient of Determination: $\frac{S_{xy}^2}{S_{xx}S_{yy}}$ (dimensionless).

Residuals: $e_i = y_i - \widehat{y}_i$ where $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$ S_{xy}^2

Sum of squares of the residuals: $SS_E = S_{yy} - \frac{S_{xy}^2}{S_{xx}}$

Mean square residual: $MS_E = \frac{SS_E}{n-2}$

Point estimator of σ^2 : $\hat{\sigma}^2 = MS_E \Rightarrow \hat{\sigma} = \sqrt{MS_E}$

where $\frac{MS_E}{\sigma^2} \in \chi^2_{n-2}$, independent of $\hat{\beta}_1$ and $\hat{\beta}_0$.

Standard deviation of $\hat{\beta}_1$ and $\hat{\beta}_0$: $\frac{\sigma}{\sqrt{S_{xx}}}$ and $\sigma \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}}$ respectively.

Their covariance: $-\overline{x}\frac{\sigma^2}{S}$.

Confidence interval for slope: $\hat{\beta}_1 \pm t_{\frac{\alpha}{2},n-2} \sqrt{\frac{MS_e}{S_{--}}}$

Confidence interval for intercept: $\hat{\beta}_0 \pm t_{\frac{\alpha}{2},n-2} \sqrt{MS_e\left(\frac{1}{n} + \frac{\overline{x}^2}{S_{--}}\right)}$

Confidence ellipse for both: $\frac{(\widehat{\beta} - \beta)^T \mathbb{X}^T \mathbb{X}(\widehat{\beta} - \beta)}{MS_e} = F_{2,n-2}(1 - \alpha)$

Confidence interval for σ^2 : $\left(\frac{SS_E}{\chi^2_{1-\frac{\alpha}{2},n-2}}, \frac{SS_E}{\chi^2_{\frac{\alpha}{2},n-2}}\right)$ (for σ , take square root).

Confidence interval for $\mathbb{E}(y|x_0) \equiv \beta_0 + \beta_1 x$

$$\widehat{\boldsymbol{\beta}}_0 + \widehat{\boldsymbol{\beta}}_1 x_0 \pm \operatorname{t}_{\frac{\alpha}{2}, n-2} \sqrt{M S_e \left(\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)}$$

Prediction interval for a new y yet to be taken at x_0 , i.e. for $\beta_0 + \beta_1 x_0 + \varepsilon_0$:

$$\widehat{\beta}_0 + \widehat{\beta}_1 x_0 \pm \mathbf{t}_{\frac{\alpha}{2}, n-2} \sqrt{M S_e \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right)}$$

Testing H₀: $\beta_1 = 0$ against H_A: $\beta_1 \neq 0$, use $T = \frac{\beta_1}{\sqrt{\frac{MS_e}{S_{\pi\pi}}}}$ as test statistic,

check against critical values of $\pm t_{\frac{\alpha}{2},n-2}$ (α is now level of significance).

When H_A : $\beta_1 > 0$, check against $+ \mathsf{t}_{\alpha,n-2}$ $(\beta_1 < 0, -\mathsf{t}_{\alpha,n-2})$.

Testing H₀:
$$\beta_0 = 0$$
, use $T = \frac{\widehat{\beta}_0}{\sqrt{MS_e \left(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right)}}$.

To test normality, display sorted residuals against $F^{-1}(\frac{i}{n+1})$, i = 1, 2, ... n, where F^{-1} is the $\mathcal{N}(0,1)$ distribution-function inverse; should get a straight-line pattern.

Lack-of-fit Test (several y observations at each x):

Group means:
$$\overline{y}_i \equiv \frac{\sum_{j=1}^{n_i} y_{ij}}{n_i}$$
 and overall (grand) mean: $\overline{\overline{y}} = \frac{\sum_{i=1}^{m} n_i \overline{y}_i}{\sum_{i=1}^{m} n_i}$

$$\overline{x} \equiv \frac{\sum_{i=1}^{m} n_i x_i}{\sum_{i=1}^{m} n_i}, S_{xx} \equiv \sum_{i=1}^{m} n_i (x_i - \overline{x})^2 \text{ and } S_{xy} = \sum_{i=1}^{m} n_i (x_i - \overline{x}) \overline{y}_i$$

After these modifications, the rest of the formulas (for $\hat{\beta}_1$ and $\hat{\beta}_0$, $\hat{\sigma}$,

CI, PI, tests of significance etc.) remain identical.

To test whether the true model is linear: Test statistic:
$$T = \frac{SS_{LOF}}{SS_{PE}} \cdot \frac{n-m}{m-2}$$
, check against the critical value of $\mathsf{F}_{m-2,n-m}$,

where
$$SS_{LOF} = \sum_{i=1}^{m} n_i (\overline{y}_i - \widehat{y}_i)^2$$
 and $SS_{PE} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_i)^2$.

Note that the last two add up to SS_e .

Weighted Regression

With each x_i and y_i , a positive weight w_i is also given. Model changes only in $\varepsilon_i \in \mathcal{N}(0, \frac{\sigma}{\sqrt{w_i}})$.

$$\overline{x} = \frac{\sum\limits_{i=1}^n w_i \, x_i}{\sum\limits_{i=1}^n w_i}, \, \overline{y} = \frac{\sum\limits_{i=1}^n w_i \, y_i}{\sum\limits_{i=1}^n w_i}$$

$$S_{xx} = \sum_{i=1}^{n} w_i (x_i - \overline{x})^2$$
, $S_{xy} = \sum_{i=1}^{n} w_i (x_i - \overline{x}) y_i$ and $S_{yy} = \sum_{i=1}^{n} w_i (y_i - \overline{y})^2$

Standard error of
$$\widehat{\beta}_0$$
 changes to $\sigma \sqrt{\frac{1}{\sum_{i=1}^n w_i} + \frac{\overline{x}^2}{S_{xx}}}$

Standard error of
$$\widehat{\beta}_0$$
 changes to $\sigma \sqrt{\frac{1}{\sum_{i=1}^n w_i} + \frac{\overline{x}^2}{S_{xx}}}$
that of $\mathbb{E}[y \mid x = x_0]$ to $\sigma \sqrt{\frac{1}{\sum_{i=1}^n w_i} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$.

with the corresponding change in the CI and PI construction.

The
$$\hat{\sigma}^2$$
 estimator is still the same $MS_E = \frac{S_{yy}^2 - \frac{S_{xy}^2}{S_{xx}}}{n-2}$.

Bivariate Model

x and y are now generated from a bivariate normal distribution

having the usual 5 parameters: μ_x , σ_x , μ_y , σ_y and ρ_z

We know that the conditional distribution of $y \mid x$ is:

$$\mathcal{N}(\mu_y + \rho \, \sigma_y \frac{x - \mu_x}{\sigma_z}, \sigma_y \sqrt{1 - \rho^2}).$$

 $\mathcal{N}(\mu_y + \rho \, \sigma_y \frac{x - \mu_x}{\sigma_x}, \sigma_y \sqrt{1 - \rho^2}).$ The 'best' regression line for predicting y based on x is still the old $y = \hat{\beta}_0 + \hat{\beta}_1 x$ (same formulas), but the distribution of the regressioncoefficient estimators is now much more complicated. Using large n theory:

$$\mathbb{E}\left(\widehat{\beta}_{1}\right) = \beta_{1}\left[1 + \frac{0}{n} + \ldots\right] \text{ and } \operatorname{Var}\left(\widehat{\beta}_{1}\right) = \frac{\sigma_{y}^{2}\left(1 - \rho^{2}\right)}{n \,\sigma_{x}^{2}} + \ldots$$
One could thus still construct an approximate CI for β_{1} .

Similarly, on can show that the ρ estimator, namely $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$, has

$$\mathbb{E}\left(r\right) = \rho - \frac{\rho(1-\rho^2)}{2n} + \dots \text{ and } \operatorname{Var}(r) = \frac{(1-\rho^2)^2}{n} + \dots$$

Arctanh(r) has a lot better 'behaviour' (especially in terms of skewness),

its expected value and variance is $\operatorname{arctanh}(\rho) + \frac{\rho}{2n} + \dots$ and $\frac{1}{n-3} + \dots$ respectively. This is utilized in constructing CI for ρ

2 Multivariate Linear Regression:

Multivariate Normal Distribution:

Defined by $\mathbf{X} = \mathbb{A}\mathbf{z} + \boldsymbol{\mu}$, where \mathbf{z} are independent, standardized Normal.

Variance-covariance matrix: $\mathbb{V} = \mathbb{A}\mathbb{A}^{\mathsf{T}}$

(be able to solve for \mathbb{A} - not unique).

Probability density function:
$$\frac{1}{\sqrt{(2\pi)^k \det(\mathbb{V})}} \cdot \exp\left(-\frac{(\mathbf{x} - \boldsymbol{\mu})^T \mathbb{V}^{-1}(\mathbf{x} - \boldsymbol{\mu})}{2}\right)$$

Moment generating function: $\exp\left(\mathbf{t}^T\boldsymbol{\mu} + \frac{\mathbf{t}^T \mathbb{V} \mathbf{t}}{2}\right)$

$$\mathbb{V}$$
 matrix estimator: $\widehat{\mathbb{V}}_{ij} = \frac{S_{ij}}{n-1}$, where $S_{ij} = \sum_{\ell=1}^{n} (x_{\ell i} - \overline{x}_i) \cdot (x_{\ell j} - \overline{x}_j)$

Hidden extrapolation: Compare $\sum_{i=1}^{k} \sum_{j=1}^{k} (x_i^{new} - \overline{x}_i)(\mathbb{V}^{-1})_{ij}(x_j^{new} - \overline{x}_j)$ with the largest of $\sum_{i=1}^{k} \sum_{j=1}^{k} (x_{\ell i} - \overline{x_i}) (\mathbb{V}^{-1})_{ij} (x_{\ell j} - \overline{x_j})$, where $\ell = 1, 2, ...n$ (n is the number of observations, k is the number of the x-variables).

Correlation-matrix estimator:
$$r_{ij} = \frac{S_{ij}}{\sqrt{S_{ii}S_{jj}}}$$

Partial correlation coefficient: $\rho_{ij \mid k} = \frac{\rho_{ij} - \rho_{ik}\rho_{jk}}{\sqrt{1 - \rho_{ik}^2} \cdot \sqrt{1 - \rho_{jk}^2}}$

(can be estimated by substituting r for ρ).

Multivariate Regression - Main Results

(covers polynomial and dummy-variable regression):

Model: $\mathbf{y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, $\boldsymbol{\varepsilon}$ all from $\mathcal{N}(0, \sigma)$, independent.

Regression coefficient estimators: $\widehat{\boldsymbol{\beta}} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{y}$ Their variance-covariance matrix: $\sigma^2(\mathbb{X}^T \mathbb{X})^{-1} \simeq MS_E \cdot (\mathbb{X}^T \mathbb{X})^{-1}$

Fitted values: $\hat{\mathbf{y}} = \mathbb{X} \hat{\boldsymbol{\beta}}$

Residuals: $\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}}$

$$SS_E = \mathbf{y}^T \mathbf{y} - \widehat{\boldsymbol{\beta}}^T \mathbb{X}^T \mathbf{y}, MS_E = \frac{SS_E}{n - (k+1)}$$

CI for
$$\beta_i$$
: $\widehat{\boldsymbol{\beta}}_i \pm \mathsf{t}_{\frac{\alpha}{2},\,n-k-1} \cdot \sqrt{MS_E \cdot \left[\left(\mathbb{X}^T \mathbb{X} \right)^{-1} \right]_{i,i}}$

CI for
$$\sigma^2$$
: $\left(\frac{SS_E}{\chi_{1-\frac{\alpha}{2}}^2}, \frac{SS_E}{\chi_{\frac{\alpha}{2}}^2}\right)$, use χ^2 with $n - (k+1)$ df.

CI for
$$\mathbb{E}(y_0)$$
: $\widehat{\boldsymbol{\beta}}^T \mathbf{x}_0 \pm \mathbf{t}_{\frac{\alpha}{2}, n-k-1} \cdot \sqrt{\mathbf{x}_0^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}_0 \cdot MS_E}$

CI for
$$\mathbb{E}(y_0)$$
: $\widehat{\boldsymbol{\beta}}^T \mathbf{x}_0 \pm \mathbf{t}_{\frac{\alpha}{2}, n-k-1} \cdot \sqrt{\mathbf{x}_0^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}_0 \cdot MS_E}$
PI for a new y taken at \mathbf{x}_0 :
$$\widehat{\boldsymbol{\beta}}^T \mathbf{x}_0 \pm \mathbf{t}_{\frac{\alpha}{2}, n-k-1} \cdot \sqrt{\left(1 + \mathbf{x}_0^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}_0\right) \cdot MS_E}$$

Backward Elimination (testing
$$H_0$$
: $\beta_i = 0$ against H_A : $\beta_i \neq 0$):
Test statistic: $\frac{\beta_i}{\sqrt{MS_E \cdot [(\mathbb{X}^T \mathbb{X})^{-1}]_{i,i}}}$ (has t_{n-k-1} distribution).

Redundancy Test:

 H_0 : A few, specifically selected β 's are all equal to zero

 H_A : Not so, at least one of them is non-zero

 SS_E is now called SS_E^{full}

Remove the corresponding
$$\mathbf{x}$$
's from \mathbb{X} , recompute SS_E , call it SS_E^{red}
Test statistic: $\frac{SS_E^{rest} - SS_E^{full}}{SS_E^{full}} \cdot \frac{n - (k+1)}{k - \ell}$ has, under H_0 ,

 $F_{k-\ell,n-(k+1)}$ distribution (always a right-tail test)!

Weighted Case:

Now, $\varepsilon_i \in \mathcal{N}(0, \frac{\sigma^2}{w_i})$

Define \mathbb{W} as a matrix with w_i on the main diagonal (0 otherwise).

 $\boldsymbol{\beta}$ estimators: $\widehat{\boldsymbol{\beta}} = (\mathbb{X}^T \mathbb{W} \mathbb{X})^{-1} \mathbb{X}^T \mathbb{W} \mathbf{y}$

Their variance-covariance matrix:
$$\sigma^2(\mathbb{X}^T \mathbb{W} \mathbb{X})^{-1} \simeq MS_E \cdot (\mathbb{X}^T \mathbb{W} \mathbb{X})^{-1}$$

$$SS_E = \mathbf{y}^T \mathbb{W} \mathbf{y} - \widehat{\boldsymbol{\beta}}^T \mathbb{X}^T \mathbb{W} \mathbf{y}, MS_E = \frac{SS_E}{n - (k + 1)}$$

Everything else remains the same.

3 Nonlinear Regression

Model:
$$y = f(\mathbf{x}, \mathbf{b}) + \varepsilon$$

$$\mathbb{X}_{\ell i} = \frac{\partial f(\mathbf{x}_{\ell}, \mathbf{b})}{\partial b_i}$$
, where $\ell = 1, 2, ...n$ and $i = 1, 2, ...k$

(n is the number of observations, k the number of b-parameters).

Residuals: $\mathbf{e}_{\ell} = y_{\ell} - f(\mathbf{x}_{\ell}, \mathbf{b}), \ \ell = 1, 2, ...n$

Levenberg-Marquardt:

$$\mathbf{b}_{(j+1)} = \mathbf{b}_{(j)} + \left[\mathbb{X}_{(j)}^T \mathbb{X}_{(j)} + \lambda \operatorname{diag} \left(\mathbb{X}_{(j)}^T \mathbb{X}_{(j)} \right) \right]^{-1} \mathbb{X}_{(j)}^T \mathbf{e}_{(j)}$$

where (j) denotes the *iteration*, and λ is increased if SS_e gets bigger (is decreased otherwise), until **b** no longer changes (this yields $\hat{\mathbf{b}}$).

The remaining formulas are identical with the linear case, but the corresponding distributions (Normal, t, χ^2 , etc.) are only approximate.

In particular:
$$\widehat{\sigma}^2 = MS_e = \frac{\sum_{\ell=1}^n e_\ell^2}{n-k}$$
, where $\frac{\sum_{\ell=1}^n e_\ell^2}{\sigma^2}$ is,

approximately, $\chi^2_{n-k} \Rightarrow \text{Standard error of } \widehat{\sigma} \text{ is } \sqrt{\frac{2}{n-k}} \cdot \widehat{\sigma}.$

and $MS_e(\mathbb{X}^T\mathbb{X})^{-1}$ is the V-C matrix of the $\hat{\mathbf{b}}$ estimators, where the final values of e_ℓ and \mathbb{X} are to be used.

4 Robust Regression

Laplace Distribution:

Pdf. of error terms:
$$\frac{\exp\left(\frac{|\varepsilon|}{\gamma}\right)}{2\gamma}$$
, note that $\sigma = \sqrt{2}\gamma$.

$$\widehat{\beta}_0$$
 and $\widehat{\beta}_1$ found by minimizing $\sum_{i=1}^n |e_i|$ (graphically), $\widehat{\gamma} = \frac{\sum_{i=1}^n |e_i|}{n}$.

Standard error of $\widehat{\gamma}$: $\frac{\gamma}{\sqrt{n}}$, V-C matrix of $\widehat{\beta}_0$ and $\widehat{\beta}_1$: $\gamma^2(\mathbb{X}^T\mathbb{X})^{-1}$.

Cauchy distribution:

Pdf. of error terms:
$$\frac{1}{\pi} \cdot \frac{\sigma}{\sigma^2 + \varepsilon^2}$$

$$\widehat{\beta}_0$$
 and $\widehat{\beta}_1$ found by solving $\sum_{i=1}^n \frac{e_i}{\sigma^2 + e_i^2} = 0$ and $\sum_{i=1}^n \frac{e_i x_i}{\sigma^2 + e_i^2} = 0$,

$$\widehat{\sigma}$$
 by solving $\sum_{i=1}^{n} \frac{\sigma^2}{\sigma^2 + e_i^2} = \frac{n}{2}$ (iteratively).

Standard error of
$$\widehat{\sigma}$$
: $\sigma \sqrt{\frac{2}{n}}$, V-C matrix of $\widehat{\beta}_0$ and $\widehat{\beta}_1$: $2\sigma^2(\mathbb{X}^T\mathbb{X})^{-1}$.

Autoregressive Model (for the ε 's) 5

Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where $\varepsilon_i = \rho \cdot \varepsilon_{i-1} + \delta_i$ with $\delta_i \in \mathcal{N}(0, \sigma)$ and independent. Implies: $\operatorname{Var}(\varepsilon_i) = \frac{\sigma^2}{1-\rho^2}$, and $\operatorname{Corr}(\varepsilon_i, \varepsilon_{i-k}) \equiv \rho_k = \rho^k$.

 $\widehat{\beta}_0,\,\widehat{\beta}_1$ and $\widehat{\sigma}$ are computed using weighted-regression formulas with

$$\mathbb{W} = \begin{bmatrix} 1 & -\rho & 0 & \cdots & 0 \\ -\rho & 1 + \rho^2 & -\rho & \cdots & 0 \\ 0 & -\rho & 1 + \rho^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

the ρ estimator is find by solving (iteratively)

$$\rho = \frac{\sum_{i=1}^{n-1} e_i e_{i+1}}{\sum_{i=2}^{n-1} e_i^2 + \frac{\sigma^2}{1-\rho^2}}$$