
Median µ̃ : Solution to F (x) = 1

2
(always exists)

gamma(k, β) distribution (time of kth arrival)
µ = kβ, σ =

√
kβ, M(t) = (1− βt)−k

f(x) =

xk−1 exp

�
−x
β

�

(k − 1)!βk
x > 0

Central Limit Theorem

RIS of size n from (almost) any distribution.

First, we standardize X̄

Z =
X̄ − µ
σ√
n

=
n�

i=1

Xi − µ
σ
√
n
≡

n�

i=1

Ui

The first 4 simple moments of each Ui are:

E (U) = 0

E
�
U2
�
=

1

n

E
�
U3
�
=

E

�
(X − µ)3

�

σ3n3/2

E
�
U4
�
=

E

�
(X − µ)4

�

σ4n2

This means that the corresponding MGF of Z is

MZ(t) =

�
1 +

1

n
· t
2

2
+

SK

n3/2
· t
3

3!
+
KT

n2
· t
4

4!
+ ...

�n

Our �
1 +

a

n
+
b

n2
+ ...

�n
→ ea

formula tells us that the MGF of Z has the following n→∞ limit

MZ(t)→ exp

�
t2

2

�

The corresponding pdf is

f(z) =

exp

�
−z

2

2

�

√
2π

any real z

(yet to be proven).
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First we verify that
√
2π is the proper normalizing constant, by evaluating

��

whole plane

exp

�
−z

2
1 + z

2
2

2

�
dz1dz2

Introducing polar coordinates (a routine change of variables, whose Ja-
cobian equals to r - a must to understand). In the new coordinates, the same
integral becomes �� 2π

0

dθ

�
·
�� ∞

0

exp
	
−r2

2



r dr

�

Z is so called standardized Normal, or N (0, 1).

‘General’ Normal RV
V = σ Z + µ

Clearly, E (V ) = µ, Var(V ) = σ2. Notation: N (µ, σ).
To get the pdf of V, we substitute

z =
v − µ
σ

in f(z), and further divide by σ (since dz becomes
dv

σ
), getting

f(v) =

exp

�
−(v − µ)

2

2σ2

�

√
2π · σ

(dv)

Similarly, the MGF of V is

MV (t) = e
µt ·MZ(t→ σt) = exp

�
σ2t2

2
+ µt

�

This implies that, adding two independent, Normally distributed RVs from
N (µ1, σ1) and N (µ2, σ2), the sum is also Normally distributed with the mean
equal to µ1 + µ2 and the standard deviation of

�
σ21 + σ

2
2.

The Central Limit Theorem can now be stated as follows

X̄ ≈ N (µ, σ√
n
)

or
n�

i=1

Xi ≈ N (nµ, σ
√
n)

so, to answer any probability question about these, we need to build the corre-
sponding pdf and integrate (no tables!).
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When the distribution we sample is discrete, to compute the probability of
winning (in total) at least $13 can be answered by either

Pr

�
n�

i=1

Wi ≥ 13



or Pr

�
n�

i=1

Wi > 12




Which value do we use in our Normal approximation?

Introducing bivariate Normal distribution (first step to multivariate)
First, we need the concept of joint MGF of two RVs, say X and Y

M(t1, t2) ≡ E
�
et1X + t2Y

�

What should be immediately obvious is thatM(t1, t2 = 0) yields (rather easily)
the (marginal) MGF of X. Also, differentiating M(t1, t2) w/r to t1 yields

E
�
X · et1X + t2Y

�

So, to get E (X) , we have to set t1 = t2 = 0. In general

E
�
X2Y

�
=
∂3M(t1, t2)

(∂t1)2∂t2

����
tt=t2=0

This means that, when Taylor-expanding M(t1, t2), one gets

1 + µxt1 + µyt2 + E
�
X2
� t21
2
+ E

�
Y 2
� t22
2
+ E (X · Y ) t1t2 +

E
�
X3
� t31
3!
+ E

�
X2Y

� t21t2
2!1!

+ ....

Bivariate version of CLT
Consider a RIS of size n from a bivariate distribution (X is # of spades and

Y # of diamonds when dealing 7 cards). We already know that both

Z1 =
X̄ − µx

σx√
n

and Z2 =
Ȳ − µy

σy√
n

have, to a good approximation, N (0, 1) distribution, when n is large. The
question is: what is their joint (bivariate) distribution?

And again, this can be settled only at the level of the corresponding joint
MGF - let’s try to build it:

�
1 +

1

n
· t
2
1

2
+
1

n
· t
2
2

2
+
ρ

n
· t1t2 +

...

n3/2
+ ...

�n

whose n→∞ limit is

exp

�
t21 + t

2
2 + 2ρ t1t2
2

�
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And, as before, what now is the corresponding bivariate pdf? Answer:

f(z1, z2) =

exp

�
−z

2
1 + z

2
2 − 2ρ z1z2

2(1− ρ2)

�

2π
�
1− ρ2

all plane

Let’s verify having the correct normalizing constant:

� ∞

−∞
exp

�
− z21
2(1− ρ2)

��� ∞

−∞
exp

�
−z

2
2 − 2ρz1z2
2(1− ρ2)

�
dz2

�
dz1

By subtracting and adding ρ2z21 to the 1
st and 2nd denominator (respectively),

we get
�
2π(1− ρ2) for the dz2 integral and

√
2π for the dz1 integral (check).

We already know the two marginals (easy), how about a conditional pdf, say
of Z2 given that Z1 has been observed to have the value of z1.

f(z2|Z1 = z1) =
exp

�
−z

2
1 + z

2
2 − 2ρ z1z2

2(1− ρ2)

�

2π
�
1− ρ2

÷
exp

�
−z

2
1

2

�

√
2π

=

exp

�
−z

2
2 − 2ρ z1z2 + ρ2z21

2(1− ρ2)

�

√
2π
�
1− ρ2

=

exp

�
−(z2 − ρ z1)

2

2(1− ρ2)

�

√
2π
�
1− ρ2

All we need to do now is to identify the answer as N (ρ z1,
�
1− ρ2).

To define ‘general’ bivariate Normal, we linearly transform each Z1 and Z2,
thus

U = σ1Z1 + µ1
V = σ2Z2 + µ2

denoting the new distribution N (µ1, µ2, σ1, σ2, ρ). Note that the correlation
coefficient between U and V stays the same ρ !

We know what the two (of U and V ) marginals are, how about the con-
ditional distribution of V given that U = u ? Well, this is the conditional
distribution of σ2Z2 + µ2 given that σ1Z1 + µ1 = u. We already know that the

conditional distribution of Z2 given that Z1 =
u− µ1
σ1

is

N
�
ρ · u− µ1

σ1
,
�
1− ρ2

�

so, the conditional distribution of σ2Z2 + µ2 is then

N
�
µ2 + σ2ρ ·

u− µ1
σ1

, σ2
�
1− ρ2

�
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