- 1. Consider a random independent sample (RIS) of size 13 from $\mathcal{N}(\mu = 7, \sigma = 2)$. Find $\Pr(\overline{X} < \frac{s}{3} + 7)$.
- 2. Consider a RIS of size 12 from $\mathcal{N}(\mu = 1.2, \sigma = 0.3)$. Compute the probability that $\sum_{i=1}^{12} (X_i \bar{X})^2 < 0.8$.
- 3. Consider a RIS of size 6 from $\mathcal{N}(\mu, \sigma)$. Find:
 - (a) $\Pr(\left|\overline{X} \mu\right| > \frac{s}{2}),$ (b) $\Pr\left(\left|\overline{X} - \mu\right| > \frac{\sigma}{2}\right),$ (c) $\Pr(0.8 \sigma < s < 1.2\sigma).$
- 4. Customers arrive at a store at an average rate of 17.3 per hour. Find the probability that the time of the 7^{th} arrival from now (when time is set to 0) is more than 3 times the time of the 4^{th} arrival (use beta distribution).
- 5. Two RISs are drawn, independently, from the same Normal distribution. The first sample is of size 11, the second one is of size 14. Find the probability that the first *sample variance* will be more then twice as big as than the second one.