
Parameter Estimation

The RV which estimates a parameter of a distribution (such as X̄ used to
estimate the mean µ of a Normal distribution) is called an ��������� of the
parameter; being a RV, it has a distribution of its own (the so-called sampling
distribution, often too difficult to find). Once a RIS of size n is taken and the
resulting value of any such estimator is referred to as the parameter’s ��������.

We start by assuming (to simplify things) that there is only one parameter,
say θ, of the sampled distribution to estimate (if there are other parameters,
their exact value must be known). Also note that some parameters can have
any value for a certain interval (such as p of the binomial distribution) while
others need to be integers (such as n of the binomial distribution) - here, we
will consider the former type only.

First issue is: what are desired properties of an estimator, say θ̂(X1,X2, ....,Xn),
of a parameter θ ?
The most important property is to be 	
������, meaning

E(θ̂) = θ

or, as a second best, asymptotically unbiased , i.e.

E(θ̂) −→
n→∞

θ

The E(θ̂) − θ difference is called the ���� of an estimator, and is identically
equal to 0 in the former case, and tends to zero as n→∞ in the latter case.
The second essential property of an estimator is to have its variance as small

as possible.

Some definitions:

C�
�����
� ��������� must meet two properties: be asymptotically un-
biased, and have a variance which tends, as n→∞, to zero. This means that,
with enough sampling, we can always pinpoint the value of θ to any required
accuracy. Yet, such an estimator may still be very inefficient!
M�
��	� �����
�� 	
������ ��������� (MVUE) is an (fully) unbiased

estimator whose variance is smaller or equal to the variance of any other un-
biased estimator, for all potential values of θ. This thus defines the ‘best’ es-
timator, but things are not so easy: given an unbiased estimator, it is clearly
impossible to compare its variance with every other such estimator (infinitely
many of them), to see whether it fits the bill. Luckily, there is a theoretical
lower bound (a function of θ) on the variance of all unbiased estimators of the
���	��� type; when an estimator achieves this bound, it must be automat-
ically MVUE (���	��� means that the parameter appears in the pdf of the
sampled distribution, but not in the corresponding support). Note that most
distributions we have ever seen were regular (uniform distribution being the
only exception).
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Rao-Cramér inequality (sometimes they reverse the names)
Preliminaries: Define a new RV by

U =
∂ ln f(X | θ)

∂θ

Note that this notation does not imply conditional probability; the bar only
separates the variable(s) from the parameter(s).
E������: For E (β) , this yields

U =
∂
�
−X
β
− lnβ

�

∂β
=
X

β2
−
1

β

It follows that (in general)

E (U) =

�
•

(ln f) · f dx =

� •

f

f
· f dx =

�
•

f dx =
∂

∂θ

�
f dx = 0

where f is a shorthand for the original pdf, •... denotes differentiation with respect
to θ, and the dx integration is over all x values. Differentiating one more time
results in

�
••

(ln f) · f dx+

�
•

(ln f) ·
•

f dx =

�
••

(ln f) · f dx

+

�
•

(ln f) ·

•

f

f
· f dx =

�
••

(ln f) · f dx+

� •

(ln f)2 · f dx

=

�
••

(ln f) · f dx+

�
U2 · f dx = 0

This implies that the variance of U can be alternately computed by

Var (U) = −E

�
∂2 ln f(X | θ)

∂θ2

�

Actual derivation: Now, let Θ be an unbiased estimator of θ, i.e.

E (Θ) =

�
· · ·

�
Θ ·

n�

i=1

fi dx1...dxn = θ

where fi is a shorthand for f(xi | θ). Differentiating with respect to θ yields

�
· · ·

�
Θ ·

n�

j=1

•

fj

fj

n�

i=1

fi dx1...dxn = 1

or, equivalently

1 = E



Θ ·
n�

j=1

Uj



 = Cov



Θ,
n�

j=1

Uj





≤
�
Var (Θ) · n Var (U)
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implying

Var (Θ) ≥
1

n Var (U)
=

−1

n E
�
∂2 ln f(X | θ)

∂θ2

�

The RHS expression is the Rao-Cramer bound on the variance of any unbiased
estimator (RCV for short). �
For the E (β) example this means that the variance of an unbiased estimator

of β can never be smaller than β2

n
(whatever the β value is). Since X̄ has exactly

this variance, it is the MVUE (stop searching for anything better).
When the distribution is discrete, integration becomes summation and f(X | θ)

becomes pmf instead of pdf but the rest is the same. Thus, for a geometric dis-
tribution with f(X) = p (1− p)X−1, RCV is equal to

−1

n E
�
∂2(ln p+(X−1) ln(1−p)

∂θ2

� =
p2(1− p)

n

For an unbiased estimator, divide RCV by the estimator’s variance to find
its �������
��. Assuming ‘large’ sample size (which is our main emphasis here)
and a regular case, there is always a way of finding asymptotically unbiased and
asymptotically efficient estimator by Maximum Likelihood technique (described
later).
But there are other ways of finding an estimator, which we need to discuss

first.

The simplest way is of course by sheer guessing; we did it trying to find the
center of Cauchy distribution: the X̄ guess was not even a consistent estimator,
but X̃ proved to be quite decent (‘almost’ the best, as we will see later).
But now, we will try to be a bit more systematic.
An old technique (practically obsolete, but we will still go over it) is the
Method of moments (MM)
With one parameter (the current assumption), it works as follows: make

the expected value of X equal to X̄ and solve for the parameter (say θ) - the
solution (always a function of X̄) is your estimator.
Note that

• this will not work when E (X) is indefinite (or infinite), or when it is not
a function of θ,

• but it does not require the case to be regular (even though the correspond-
ing MM estimator is then rather inferior).

• The resulting θ̂ = g(X̄) is then always asymptotically (i.e. when n is
‘large’) Normal, with the asymptotic mean of g(µ) = θ and the asymptotic
variance of

g′(µ)2σ2

n
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since
g(X̄) ≃ g(µ) + g′(µ) · (X̄ − µ) + ...

Examples:

1. Estimating p of Geometric distribution can be done by p̂ = 1
X̄
, whose

sampling distribution is approximately (as n get bigger) Normal with the
asymptotic mean of p (that’s always the case - that’s how it has been

arranged) and asymptotic variance of p
2(1−p)
n

(RCV, when lucky, we can

get the ‘best’ estimator even by this technique). Note that


p̂2(1−p̂)

n
-

substituting our estimate into the variance formula - called the ���
����
����� gives a good idea about the estimate’s accuracy (this should be
done routinely with all numerical estimates).

2. Estimating b of U(0, θ) distribution leads to θ̂ = 2X̄, whose sampling dis-
tribution is approximately Normal with the (exact) mean of θ and variance

of θ
2

3n . Later on, we will see that this is a very inefficient way of estimating
θ.

The next technique is based on the so-called sufficient statistic (SS). To
find it, we simplify the sample’s joint pdf, namely

n�

i=1

f(Xi | θ)

as much as possible and delete factors free of θ (if any) and factors free of Xi (if
any). If the remaining expression contains only a single combination of the Xis
(let us denote it Φ) this combination is the corresponding �	������
� ���������
for estimating θ (note that it may not always exist; when it does, it is normally
either a sum or a product of n terms - when it is a product, we should imme-
diately convert it into a sum by taking its ln). One can prove that a sufficient
statistic contains all the sample’s information about the value of θ, implying
that we can always match or exceed the quality of all other unbiased estimators
by a properly designed function of Φ. To find such sufficient estimator , we do
something similar to the MM technique (see the examples). The big advantage
of this technique is that it often works even in non-regular cases (in which case
the Maximum Likelihood technique below will find it somehow more directly,
so the concept of sufficiency is more of a theoretical interest).
Examples:

1. The same geometric distribution as before (regular case). The joint pdf is

n�

i=1

p(1− p)Xi−1 =
pn

(1− p)n
· (1− p)

�
n

i=1Xi
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implying that
�n
i=1Xi is sufficient statistic. Since its expected value is

n
p
, making these equal and solving for p yields the same estimator as MM

(now we have a second reason to claim that this is the best we can do).

2. The same uniform distribution (non-regular case). The joint pdf is

1

θn

n�

i=1

G0,b[Xi] =
1

θn
·G0,θ[X(n)] ·G0,X(n)

[X(1)]

where Ga,b[X] equals to 1 when a ≤ X ≤ b and 0 otherwise. This implies

that X(n) is a sufficient statistic. Since
X(n)

θ
∈ beta(n, 1), the expected

value of X(n) is
n
n+1 · θ. Making them equal and solving for θ yields θ̂ =

n+1
n
· X(n). This is now a (fully) unbiased estimator whose variance is

�
n+1
n

�2
θ2 n
(n+1)2(n+2) =

θ2

n(n+2) . The �������� �������
�� of the MM

estimator to this SS estimator is 3
n+2 (going to 0 as n increases)!

3. Sampling a (special case of beta) distribution with f(x) = c · xc−1 where
0 < x < 1 and c > 0 (regular case). The joint pdf is

cn (
�n
i=1Xi)

c−1

making
�n
i=1Xi or, equivalently,

�n
i=1 lnXi the corresponding SS for

estimating c. The expected value of the latter is −n
c
; solving for c yields

ĉ = −
n�n

i=1 lnXi
= −

1

lnX
≃ c+ c2

�
lnX +

1

c

�
+ ...

The last expansion makes it obvious that its asymptotic variance is (c
2)2

c2n
=

c2

n
; this is guaranteed to be the same as RCV (as it does, check it out).

Finally, the technique which always works and is guaranteed to provide the
best asymptotic estimator (whenever it exists - and that covers all regular cases
and all cases having a sufficient statistic, which is all we need) is themaximum

likelihood (ML) estimation. It works as follows: considering the joint sample
pdf (or its ln, if it’s more convenient) a function of θ (keeping the Xis fixed - like
they have already been observed), find θ (a function of theXis) which maximizes
this joint pdf (or its ln) - that yields the corresponding ML estimator. One can
show that in a regular case, its asymptotic variance is RCV (its asymptotic
mean is always θ) and its sampling distribution is approximately Normal. The
only (small - we live in the computer age) problem one may encounter (rarely)
is that the solution may not always be a simple ‘analytic’ function of the Xis
- sometimes, we may be able to get the corresponding numerical solution only
(given the observed, numerical values of the Xis). But that’s ultimately what
we always want in the end!
Examples:
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1. The same geometric distribution as before. The ln of the joint pdf is

n ln p+ ln(1− p)
n�

i=1

(Xi − 1)

The corresponding first derivative with respect to p leads to the following
so-called 
����� ��	����


n

p
+
n−

�n
i=1Xi

1− p
= 0

Solving for p yields the same old 1
X̄
.

2. The same uniform distribution. Maximizing

1

θn
·G0,θ[X(n)] ·G0,X(n)

[X(1)]

is achieved by making θ as small as possible while keeping it no less than
X(n). That makes X(n) itself the MLE, having the expected value of

n θ
n+1

(the small bias tends to 0 as n→∞) and the variance of n θ2

(n+1)2(n+2) .

3. The same beta(c, 1) distribution. To maximize

n ln c+ (c− 1)
n�

i=1

lnXi

solve
n

c
+

n�

i=1

lnXi = 0

which yields the same ĉ = − 1
X̄
as the SS technique (perhaps a bit faster).

To get the corresponding RCV is now also so much easier, since the second
derivative (with respect to c) of ln c+ (c− 1) lnx is − 1

c2
.

4. Sampling from C(µ̃, 1). To maximize

−n lnπ −
n�

i=1

ln
�
1 + (Xi − µ̃)

2
�

we need to solve

2
n�

i=1

Xi − µ̃

1 + (Xi − µ̃)2
= 0

This can be done only numerically. Given the following sample of 30 ob-
servations from C(µ̃, 1) : 6.5,8.3,2.6,8.6,5.4,1.8,4.2, 5.1,12.6,14.3,3.1,16.2,
12.6,5.0,6.4,2.9,4.7,8.7,6.3,13.0,5.5,-4.2,7.0,9.8, 5.6,6.1,6.0,4.6,5.5,3.3 it is
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quite easy to ask Maple for a numerical solution to the previous equa-
tion (use ‘fsolve’), plotting its LHS cannot hurt either, getting

The estimate turns out to be 5.610, its standard error is the square root

of the corresponding RCV, namely


2
n
= 0.2582.
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