
Estimating two parameters.

We have seen many distributions with two (real-valued) parameters, e.g.
Negative Binomial (discrete), Normal, gamma, Cauchy, beta and Uniform (con-
tinuous). In the following, we denote the two parameters θ and λ, and assume
their (unknown) values are to be estimated based on a random independent
sample of size n (denoted X1, X2, ...Xn) from the corresponding distribution.
Similarly to estimating one parameter, we need to differentiate between the
������� case of estimation when the (now two-dimensional) support of the
distribution is not affected by the values of θ and λ, and the exceptional non-
regular case (such as Uniform distribution). In this section, we discuss the
regular case only.

In analogy with one-parameter estimation, one can show (this time, we do
not go over the actual proof) that the variance-covariance matrix (say V) of

the sampling distribution of any unbiased estimators of θ and λ (denoted θ̂ and

λ̂), i.e. 


Var

�
θ̂
�

Cov
�
θ̂, λ̂

�

Cov
�
θ̂, λ̂

�
Var

�
λ̂
�





must be (in a sense explained shortly) bigger or equal to the following Rao-
Cramer bound (we will still refer to it by the RCV acronym) for all potential
values of θ and λ:

RCV =
1

n
·






−E
�
∂2 ln f(x|θ, λ)

∂θ2

	
−E

�
∂2 ln f(x|θ, λ)

∂θ∂λ

	

−E
�
∂2 ln f(x|θ, λ)

∂θ∂λ

	
−E

�
∂2 ln f(x|θ, λ)

∂λ2

	






−1

To be able to compute this RCV, one must remember that a 2 by 2 matrix is
inverted using the following scheme

�
a b

c d

�−1
=






d

ad− bc
−b

ad− bc−c
ad− bc

a

ad− bc






Also: saying that V ≥ RCV means that (i) Var
�
θ̂
�
≥ first main-diagonal

element of RCV, (ii) Var
�
θ̂
�
≥ second main-diagonal element of RCV, and (iii)

the determinant of V− RCV (the product of its main-diagonal elements minus
the product of the two off-diagonal elements) cannot be negative; the individual
bound on each variance is of particular interest to us. In addition to providing
a lower bound for each variance, the same RCV is also the actual asymptotic
variance-covariance matrix of the corresponding maximum-likelihood estimators
(whose distribution is, approximately, bivariate Normal). Finding MLEs is done
in the next section; now we go over a few examples of computing the RCV
matrix.

1



Examples:

• Normal distribution (σ > 0)

lnf = −(X − µ)
2

2σ2
− lnσ − ln(2π)

2



−∂

2 ln f

∂µ2
−∂

2 ln f

∂µ∂σ

−∂
2 ln f

∂µ∂σ
−∂

2 ln f

∂σ2




 =






1

σ2
2(X − µ)
σ3

2(X − µ)
σ3

3
(X − µ)2
σ4

− 1

σ2






RCV =
1

n
·






1

σ2
0

0
2

σ2






−1

=






σ2

n
0

0
σ2

2n






since E (X) = µ and E


(X − µ)2

�
= σ2. Note that inverting a diagonal

matrix is easy - replace each diagonal element by its reciprocal; the two
ML estimators will be asymptotically uncorrelated.

• gamma distribution (both parameters and X itself must be positive)

ln f = (α− 1) lnX − X
β
− ln Γ(α)− α lnβ





−∂

2 lnf

∂α2
−∂

2 ln f

∂α∂β

−∂
2 lnf

∂α∂β
−∂

2 ln f

∂β2




 =





Ψ′(α)

1

β
1

β

2X

β3
− α

β2






RCV =
1

n
·





Ψ′(α)

1

β
1

β

α

β2






−1

=

�
α −β
−β β2Ψ′(α)

�

n · (α Ψ′(α)− 1)

meaning that each element of the matrix is divided by the denomina-
tor. This implies that the asymptotic correlation coefficient of the two

ML estimators equals − 1
�
α ·Ψ′(α)

(it approaches −1 as α increases; the

two errors will be highly correlated). Note that Ψ(α) is a shorthand for
d ln Γ(α)

dα
, and thus Ψ(α)′ =

d2 ln Γ(α)

dα2
, and recall that E (X) = αβ.
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• Cauchy (σ̂ > 0):

ln f = ln σ̃ − ln(σ̃2 + (X − µ̃)2)− lnπ




−∂

2 lnf

∂µ̃2
−∂

2 ln f

∂µ̃∂σ̃

−∂
2 lnf

∂µ̃∂σ̃
−∂

2 ln f

∂σ̃2




 =






2


σ̃2 − (X − µ̃)2

�



σ̃2 + (X − µ̃)2

�2
4(X − µ̃)σ̃



σ̃2 + (X − µ̃)2

�2

4(X − µ̃)σ̃


σ̃2 + (X − µ̃)2

�2
1

σ̃2
+

2

σ̃2 + (X − µ̃)2 −
4σ̃2



σ̃2 + (X − µ̃)2

�2






RCV =
1

n
·






1

2σ̃2
0

0
1

2σ̃2






−1

=






2σ̃2

n
0

0
2σ̃2

n






where the expected values can be easily computed by Maple. The two ML
estimators are asymptotically uncorrelated.

• Log-normal (a more ‘exotic’ distribution, b > 0 and X > 0):

ln f = −(lnX − a)
2

2b2
− lnX − ln b− ln(2π)

2



−∂

2 ln f

∂a2
−∂

2 ln f

∂a∂b

−∂
2 ln f

∂a∂b
−∂

2 ln f

∂b2




 =






1

b2
2(lnX − a)

b3
2(lnX − a)

b3
3(lnX − a)2 − b2

b4






RCV =
1

n
·






1

b2
0

0
2

b2






−1

=






b2

n
0

0
b2

2n






since E (lnX − a) = 0 and E


(lnX − a)2

�
= b2 (Maple).

• Laplace (ditto, b > 0):

ln f = −|X − a|
b

− ln b− ln 2




−∂

2 ln f

∂a2
−∂

2 ln f

∂a∂b

−∂
2 ln f

∂a∂b
−∂

2 ln f

∂b2




 =






sign′(x− a)
b

sign(x− a)
b2

sign(x− a)
b2

2 |x− a| − b
b3






RCV =
1

n
·






1

b2
0

0
1

b2






−1

=






b2

n
0

0
b2

n






The ‘sign’ function is equal to 1 or −1, depending on the sign of its argu-
ment (positive or negative, respectively). It is needed only in this example
(students will never need to use it).

Finding MLEs by solving the corresponding two normal equations.
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• Normal distribution. Solve
�n
i=1 (Xi − µ)

σ2
= 0

�n
i=1 (Xi − µ)

2

σ3
− n
σ

= 0

Solution:

µ̂ = X̄

σ̂ =

��n
i=1



Xi − X̄

�2

n
=

�
X2 − X̄2 ≡

√
S2

Note that we are dividing by n, not by n− 1; for large n, this is of minor
difference.

• gamma distribution. Solve
n�

i=1

lnXi − n Ψ(α)− n lnβ = 0

�n
i=1Xi

β2
− n α

β
= 0

The second equation implies that β̂ =
X̄

α̂
. Substitute into the first equation

and get
ln α̂−Ψ(α̂) = ln X̄ − lnX

which needs to be solved numerically for α̂ (Maple).

• For Cauchy distribution, we have to solve
n�

i=1

Xi − µ̃
σ̃2 + (Xi − µ̃)2

= 0

2
n�

i=1

σ̃2

σ̃2 + (Xi − µ̃)2
= n

This can be done only numerically by Maple’s ‘fsolve’.

• Log-normal: Solve
�n
i=1(lnXi − a)

b2
= 0

�n
i=1(lnXi − a)2 − n b2

b3
= 0

implying that

â = lnX

b̂ =

�
(lnX)2 − lnX2

Note the similarity with Normal distribution (X is replaced by lnX).
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• Laplace distribution with the following pdf

f(x) =

exp

�
−|x− a|

b

	

2b

(for any real x), where b > 0. The ln of the correponding likelihood func-
tion is given by

−
�n
i=1 |Xi − a|

b
− n ln b− n ln 2

It is obvious that to minimize the denominator (whatever the value of
b is), one must take â = X̃ (the sample median) - just visualize what
happens when a has k observations to its left and m > k observations to
its right (by increasing a the sum of the absolute values of the differences
correspondingly decreases, right?). Once we have solved for â, maximizing
the above expression with respect to b is done by making its b derivative
equal to zero, thus: �n

i=1 |Xi − â|
b2

− n
b
= 0

implying that

b̂ =

�n
i=1 |Xi − â|

n
=
���X − X̃

���

Again, we know how to find the (exact) distribution of X̃ (see the order-
statistics chapter); the technique itself guarantees that both estimators are
asymptotically unbiased, their RCV indicates that each of them has the

asymptotic variance of
b2

n
and that they are asymptotically uncorrelated.

We can also get MLEs for any non-regular case by similarly maximizing the
likelihood function (or its ln, whichever is more convenient); this time, it is not
done by solving normal equations. Also, the (asymptotic) variance-covariance
matrix of the two estimators must be computed separately (RCV does not ex-
ists).
Example:

• U(a, b). The corresponding likelihood function is

�n
i=1Ga,b[Xi]

(b− a)n =
Ga,b[X(1)]GX(1),b[X(n)]

(b− a)n

To maximize it, we have to make b as small as possible, but not smaller
than X(n) (at which point the LF would drop down to 0); at the same
time a must be made as large as possible (minimizing the denominator),
but not bigger than X(1), for the same reason. This implies that the two

ML estimators are â = X(1) and b̂ = X(n); we know how to construct their
(exact) joint pdf, based on what we learned in the previous chapter (on
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order statistics). Since their (exact) correlation coefficient is
1

n
, they are

asymptotically uncorrelated; both of their (exact) variances are equal to
n (b− a)2

(n+ 1)2(n+ 2)
.

MM estimators

These are sometimes identical to MLEs, but more often inferior to them
(having bigger variances, in non-regular cases dramatically so!); on occations,
they may not even exist. On top of it, getting their variance-covariance matrix
is now a lot more complicated. They are thus clearly an obsolete ‘hangover’
from the days before computers, but we will still explain how the technique
works and give a few examples.

The idea is to solve E (X) = g(θ, λ) and E


X2
�
= h(θ, λ) for θ and λ

(these will be our MM estimators), and then replace E (X) and E


X2
�

by the

corresponding sample means X̄ and X2 respectively; the resulting estimators
will always be (regular case or not) asymptotically bivariate Normal.
Examples:

• N (µ, σ). Since E (X) = µ and E


X2
�
= σ2 + µ, we get µ̂ = X̄ and

σ̂ =
�
X2 − X̄2 (same as MLEs).

• gamma(α, β). Recall that

f(x) =

xα−1 exp

�
−x
β

	

Γ(α)βα
when x > 0

and compute

E (X) = α β

E


X2
�
= α β2 + α2β2

Var (X) = αβ2

Var


X2
�
= 2α(1 + α)(3 + 2α)β4

Cov


X,X2

�
= 2α(1 + α)β3

Solve

α β = X̄

α β2 + α2β2 = X2

which yields

α̂ =
X̄2

X2 − X̄2

β̂ =
X2 − X̄2

X̄
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Taylor-expand each of them in terms of X̄ (at αβ) andX2 (at αβ2+α2β2),
which is easily done by Maple’s ‘mtaylor’, getting

α̂ = α+
2(1 + α)

β
·


X̄ − αβ

�
− 1

β2

�
X2 − β2 − α2β2

�
+ ...

β̂ = β − 1 + 2α
α

·


X̄ − αβ

�
+
1

αβ

�
X2 − β2 − α2β2

�
+ ...

(each a linear combination of RVs whose variances and covariance are
known). Here you have to recall that

g(x, y) = g(x0, y0) +
∂g(x, y)

∂x

����
x=x0,y=y0

· (x− x0)

+
∂g(x, y)

∂y

����
x=x0,y=y0

· (y − y0) + ...

(Maple’s ‘mtaylor’ will do it for you).

This implies that

Var(α̂) ≃
�
2(1 + α)

β

	2
·Var(X̄) +

�
− 1

β2

	2
·Var(X2)

+2 · 2(1 + α)
β

·
�
− 1

β2

	
Cov(X̄,X2) =

2α(1 + α)

n

Similarly

Var(β̂) ≃ (3 + 2α)β2

α n

and

Cov(α̂, β̂) ≃ 2(1 + α)

β
·
�
−1 + 2α

α

	
·Var(X̄)

+

�
− 1

β2

	
· 1
αβ

·Var(X2)

+

�
2(1 + α)

β
· 1
αβ

+

�
−1 + 2α

α

	
·
�
− 1

β2

	�
· Cov(X̄,X2)

=
2α(1 + α)β3

n

This can be converted to

ρα̂,β̂ ≃
Cov(α̂, β̂)

�
Var(α̂) ·Var(β̂)

= −
�
2 + 2α

3 + 2α

(a rather large negative correlation of the two estimators, implying that a
positive error of one estimator will most likely go with a negative error of
the other - this will be reflected by the corresponding confidence ellipse).

7



• Cauchy distribution has indefinite mean and infinite variance - there are
no MMEs.

• Log-Normal. Since E (X) = exp

�
a+

b2

2

	
and E



X2
�
= exp



2a+ 2b2

�
,

solving for b yields

b̂ =

�

ln
X2

X̄2

implying that

â = 2 ln X̄ − lnX
2

2

We will not explore their asymptotic properties.

• U(a, b). Solving X̄ =
a+ b

2
and X2 =

(b− a)2
12

+
(a+ b)2

4
, we get

â = X̄ −
√
3S2

b̂ = X̄ +
√
3S2

Expanding:

â = a+
2a+ 4b

b− a

�
X̄ − a+ b

2

	
+

3

b− a

�
X2 − a

2 + ab+ b2

2

	
+ ...

b̂ = a+
4a+ 2b

b− a

�
X̄ − a+ b

2

	
+

3

b− a

�
X2 − a

2 + ab+ b2

2

	
+ ...

which leads to Var(â) =
2(b− a)2
15n

, Var
�
b̂
�
=
2(b− a)2
15n

, and ρâ,b̂ =
1

4
.

• Laplace. Since E (X) = 0 (not a function of a and/or b), the MM technique
does not work!

Joint sufficient statistics

The idea is similar to the unvariate case: simplify the joint pdf of X1,
X2, ...Xn, delete factors free of θ and λ, delete factors free of the Xis, and
if in what remains you find only two combinations (i.e. single-valued functions)
of the Xis, there are the two sufficient statistics for estimating θ and λ. They
contain all the information there is about the values of the two paramteters,
meaning that any sensible estimators should be built out of these sufficient
statistics (any other estimators can be improved by properly designed functions
of sufficient statistics). The trouble is that sufficient statistics may not always
exist; but when they do, they enable us to build the ‘best’ estimators (with the
smallest variance-covariance matrix). This provides justification for calling the
MLEs the ‘best’ even in the non-regular case (as they will always be functions
of sufficient statistics). In the regular case, each sufficient statistic is invariably
a sample sum or a product (see our examples); in the latter case, it is advisable
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to take its ln, thus converting it into the corresponding sum of logarithms (an
equivalent way of presenting it, as it contains the same information).
Examples:

• Normal

�n
i=1 exp

�
−(Xi − µ)

2

2σ2

	

(2π)n/2σn
=

exp

�
−
�n
i=1X

2
i − 2µ

�n
i=1Xi + nµ

2

2σ2

	

(2π)n/2σn

implying that
�n
i=1X

2
i and

�n
i=1Xi are jointly sufficient for estimating

µ and σ.

• gamma

�n
i=1X

α−1
i exp

�
−Xi
β

	

Γ(α)nβn α =

(
�n
i=1Xi)

α−1
exp

�
−
�n
i=1Xi

β

	

Γ(α)nβn α

making it obvious that
�n
i=1Xi and

�n
i=1Xi or, equivalently

�n
i=1 lnXi

are jointly sufficient for estimating α and β.

• For Cauchy, such a separation becomes impossible (there are no sufficient
statistics for this estimation).

• Log-normal

�n
i=1 exp

�
−(lnXi − a)

2

2b2

	

(2π)n/2bn
�n
i=1Xi

=

exp

�
−
�n
i=1(lnXi)

2 − 2a�n
i=1 lnXi + na

2

2b2

	

(2π)n/2bn
�n
i=1Xi

implying that
�n
i=1(lnXi)

2 and
�n
i=1 lnXi are jointly sufficient for esti-

mating a and b.

• Uniform (non-regular)

�n
i=1Ga,b[Xi]

(b− a)n =
Ga,b[X(1)]GX(1),b[X(n)]

(b− a)n

Here X(1) and X(n) are jointly sufficient for estimating a and b.
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