
Sufficient Statistic

To find it (call it Ψ), expand
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f(Xi | θ) into as many factors as possible,

ignore those without θ; if those with θ contain only a single combination of all
the Xis (usually a sample sum such as

�
n

i=1Xi,
�
n

i=1X
2
i
,
�
n

i=1 lnXi, etc. in
the regular case, an order statistic such as X(n) in the non-regular one). Such
Ψ may not always exist (try it with Cauchy!) - we are then out of luck.

Then, find E (Ψ) (easy in both cases - univariate integration required) which
must be (usually a simple) function of θ, say g(θ). Make it equal to Ψ and solve

for θ̂ = g−1(Ψ), which is (in general only) an asymptotically unbiased (sufficient)
estimator. In the regular case its variance must tend to (as n −→∞) RCV.

When g is non-linear, computing this θ̂’s exact bias (let alone removing it)
is always theoretically possible but practically very difficult (since it usually
involves n-dimensional integration) and we will not even try it (being happy
with its asymptotic behaviour).

The concept of sufficient estimator is superseded by ML estimator, which
yields practically the same answer (when sufficient estimator exists), and results
in MVaUE in all other cases (why would then anyone want to do anything else?).

This time it’s easier to work with
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ln f(Xi | θ), seen as a function of θ (the

Xis being ‘fixed’ at their observed values) called ln of the Likelihood function
(LF for short), and simply maximize it by varying θ. The value of θ which
achieves this is the MLE. It is guaranteed to (uniquely) exist, be asymptotically
unbiased, asymptotically RC efficient (in the regular case), and overall ‘best’

otherwise. The only slight (and only occasional) problem is that this θ̂ may not
have a neat analytic form (can be computed only numerically - no problem in
the age of computers!).

Estimators thus produced (by either technique) are then always of ‘highest
quality’. This is definitely not the case with Method-of-Moments estimator
which is constructed by solving E (X) = X̄. Since E (X) is a function of θ, say

h(θ), this yields θ̂ = h−1(X̄); the estimator is thus always a function of the
sample mean X̄. This is fine when X̄ is sufficient (giving the same answer as
the other two techniques), but inefficient in all other cases (grossly inefficient
particularly in non-regular situations). Besides, it does not work when E (X)
is indefinite (Cauchy). It’s difficult to understand why would anyone bother to
use it.
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