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COMMON DISCRETE DISTRIBUTIONS

Binomial (p, n)
Experiment: n independent trials of ’roll of a die’ with two possibilities,

Success and Failure (probability p and q = 1− p respectively).
Sample space has 2n simple events of the FSS...SF type, each having the

probability of piqn−i where i is the # of Ss.
X is defined as # of Ss.

f(i) =

(
n

i

)
piqn−i i = 0..n

P (z) =
n∑

i=0

f(i)zi = (q + pz)n

- use (a+ b)n formula to prove

µ = n(q + pz)n−1p
∣∣
z=1

= np

Var(X) = n(n− 1)(q + pz)n−2p2
∣∣
z=1

+ np− n2p2 = npq

Special case when n = 1 is called ’Bernoulli distribution’
Geometric p

Same type of experiment, done till getting the first S, X defined as the
number of trials.

f(i) = p · qi−1 i = 1, 2, 3, ....

P (z) = pz

∞∑

i=1

(qz)i−1 =
pz

1− qz

µ = P ′(z)|z=1 =
1

p

Var(X) = P ′′(z)|z=1 + µ− µ
2 =

q

p2

X − 1 (counting only the failures) has the so-called ’modified’ geometric distri-
bution.

Negative Binomial (p, k) counts the trials till the kth Success - obviously
a sum of k independent RVs of the previous type.

P (z) =

(
pz

1− qz

)k

µ =
k

p

Var(X) =
kq

p2

f(i) = p ·

(
i− 1

k − 1

)
pk−1qi−k i = k, k + 1, k + 2, ....



2

Can be easily adjusted for the ’modified’ case (of counting failures only).
Hypergeometric (N,K, n)
Experiment: From N physical objects (cards, marbles, etc.), K of which are

’special’ in some sense (spades, aces, red marbles, etc.), select randomly and
without replacement n; X is the # of special objects in your sample.
Sample space consists of

(
N
n

)
’orderless’ selections, of which

(
K
i

)
·
(
N−K
n−i

)

contain exactly i special objects (use multiplication principle).This implies

f(i) =

(
K
i

)
·
(
N−K
n−i

)

(
N
n

) i = 0, 1...n

The range can actually be narrower (eg. when K < n), but luckily the binomial
coefficients take care of it (becoming 0 in any such case)!
The formula for P (z) is tricky (we won’t use it) - we can still easily build

P (z) numerically. That means it is now more difficult to find the mean and
variance. This is how we can do it: Put each of the selected marbles under a
cup before observing its colour; our X then ’splits’ into

X = X1 +X2 + ...+Xn

where all the Xi have Bernoullli-type distribution, but they are NOT indepen-
dent! This yields

E (X) =
n∑

i=1

E (Xi)
sym
= n · E (X) = n ·

K

N

and

Var(X) =
n∑

i=1

Var (Xi) + 2
∑

i<j

Cov(Xi,Xj) =

n ·Var(X1) + n(n− 1)Cov(X1,X2) =

n ·
K

N
·
N −K

N
·
N − n

N − 1

Note the similarity with the binomial npq formula, except for the last ’cor-
rection’ factor, which makes the 2 formulas identical when n = 1 (check) and
makes the last formula equal to 0 when n = N (check). Also note that X
would have Binomial distribution with p = K

N
if this sampling were done WITH

replacement!
Poisson Λ
Experiment: customers are arriving at a store (library, gas station, etc.)

randomly and independently of each other, at an average rate of λ per hour. X
is the # of customers arriving during a specific time interval of length T.
As an approximation, we can subdivide the time interval into n equal-length

subintervals and assume that during each of these a customer arrives with a
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(tiny) probability of pn =
λT
n
(note that this makes the corresponding expected

value equal to Λ
def
= λ · T ). This implies that

Pn(z) =

(
1−

Λ

n
+
Λ

n
z

)n
−→
n→∞

exp (Λ(z − 1))

(this ’model’ becomes perfect only in the n→∞ limit). From P (z) we can get
everything else:

µ = Λ

Var(X) = Λ2 +Λ− Λ2 = Λ

and, from

e−Λ · eΛz =

(
1 + Λz +

Λ2z2

2!
+
Λ3z3

3!
+
Λ4z4

4!
+ ...

)
· e−Λ

we get

f(i) =
Λi

i!
· e−Λ i = 0, 1, 2, ....

Note that the sum of 2 (or more) independent Poisson RVs is also Poisson (with
Λ = Λ1 +Λ2) - clear from PGF.

Binomial and Hypergeometric extended to MULTIVARIATE (we
do trivariate only)
Binomial becomesMultinomial by assuming that in each trial there are 3

possibilities (winning, losing and tying a game) with probabilities p1, p2 and p3
respectively (they have to add up to 1).
It‘s easy to see how to extend the samples space (to consist of 3n simple

events), implying that

Pr(X = i ∩ Y = j ∩Z = k) =

(
n

i, j, k

)
pi1p

j
2
pk3

whenever i, j, k ≥ 0 and i+ j + k = n

ie. i = 0..n, j = 0..n− i and k = n− i− j

whereX represends the # of wins, etc. The marginal distribution of X is clearly
B (p1, n) , etc., the only new formula we need is

Cov(X,Y ) = −np1p2

Proof:

Cov(X1 +X2 + ...+Xn, Y1 + Y2 + ....+ Yn) =

n∑

i=1

Cov(Xi, Yi) = n · Cov(X1, Y1)
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(finish in class).
Multivariate Hypergeometric

Now we assume that there is K1 red, K2 blue and K3 green marbles (in a
box of N = K1 +K2 +K3). By a similar extension of the sample space we get

fx,y,z(i, j, k) =

(
K1

i

)(
K2

j

)(
K3

k

)

(
N
n

)

for any possible combination of i, j and k

Again, all the marginals are clearly of the univariate hypergeometric type,
the only extra formula (badly) needed is

Cov (X,Y ) = −n ·
K1

N
·
K2

N
·
N − n

N − 1

(again, note the parallel with the multinomial formula, except for the extra
correction term). This time

Cov(X1 +X2 + ...+Xn, Y1 + Y2 + ....+ Yn) =

n · Cov(X1, Y1) + n(n− 1)Cov(X1, Y2) = ....


