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(Univariate) distribution of X: Example:

X = 0 1 2 3
Pr: 3
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µ = 0 · 3
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+ 1 · 4
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Var(X) = E
(
(X − µ)2

)
= E

(
X2
)
− µ2 = 21
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−
(
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=
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⇒ σ =
√
0.89 = 0.9434

Skewness =
E
(
(X − µ)3

)

σ3
(dimensionless)

Kurtosis =
E
(
(X − µ)4

)

σ4

Transforming X

Y = (X − 2)2

defines a new RV Y with its own (not so easy to construct - topic of Chapter 9)
distribution. BUT, it is still easy to compute its expected value (and variance),
thus

E (Y ) = (0− 2)2 · 3
10
+ (1− 2)2 · 4

10
+ (2− 2)2 · 2

10
+ (3− 2)2 · 1

10
=
17
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E (g(X)) =
∑

All i

g(i) · Pr(X = i)

Note that the answer is NOT equal to (µ− 2)2 !!!
In general

E (g(X)) =
∑

All i

g(i) · Pr(X = i) �= g(µ)

There is one important exception to this, when the transformation is linear,
meaning Y = a ·X + b, in which case

E (Y ) = a · µ+ b
Var(X) = a2 ·Var(X)

Bivariate case: We have to be able to construct two marginal distributions
and any one of the conditional distributions, eg.

X | Y = −1 1 2 3
Pr: 12
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base on which we can compute E (X | Y = −1) , Var(X | Y = −1) etc.
Bivariate transformation:

U = h(X,Y )
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Not so easy to find the new (univariate) distribution of U, but easy enough to
find the moments of U, e.g. U = (X − Y )2 by building a table of the values of
U, thus

1 4 9 16
0 1 4 9
1 0 1 4

then multiplying each of these values by the corresponding (bivariate) probabil-
ity and adding the results over the whole table, getting

E (U) =
4 · 12 + 9 · 13 + 16 · 8 + 15 + 9 · 10 + 9 + 6

100
= 4.13

In general:

E (h(X,Y )) =
∑

All i,j

h(i, j) · Pr(X = i ∩ Y = j) �= h(µx, µy)

Important exception, when the (bivariate) transformation is linear, ie. U =
a ·X + b · Y + c

E (a ·X + b · Y + c) = a · µx + b · µy + c
Var (a ·X + b · Y + c) = a2Var(X) + b2Var (Y )

+2ab ·Cov(X,Y )

Covariance of X and Y is defined as their (1st , 1st) joint central moment,
namely

Cov(X,Y ) = E
(
(X − µx) · (Y − µy)

)

Independence of X and Y (easy to tell) implies that

Pr(X = i ∩ Y = j) = Pr(X = i) · Pr(Y = j)

for any i, j pair, implying that we no longer need a table of their joint probabil-
ities - all we need is the two individual (univariate) distributions. Independence
implies that in general

E (g(X) · h(Y )) = E (g(X)) · E (h(Y ))

Special case: Cov(X,Y ) = 0 (but not reverse)! This simplifies the formula for
Var of linear combination (of any number of independent RVs).
Correlation coefficient is defined by

ρ =
Cov(X,Y )

σx · σy
also dimensionless

(equal to zero when X and Y are independent). One can show that −1 ≤ ρ ≤ 1.
Final (important) definition of probability generating function (PGF) of a

univariate distribution:

P (z) = E
(
zX
)
= p0 + p1z + p2z

2 + p3z
3 + ...
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enables us to compute (rather easily) the factorial moments of X:

E (X) = P ′(z)|z=1
E (X(X − 1)) = P ′′(z)|z=1

E (X(X − 1)(X − 2)) = P ′′′(z)|z=1

When X and Y are independent

PX+Y (z) = Px(z) · Py(z)

Special case: when X1, X2, ...Xn are IID (called random independent sam-
ple)

Psum (z) = P (z)
n

Central Limit Theorem (aka Normal approximation) claims that the cor-
responding

∑n

i=1Xi (a single RV) has the mean of nµ and variance of nσ2 (which
follows from the above rules), and its distribution is approximately Normal
(with the same mean and variance). This implies that

Pr

(
n∑

i=1

Xi ≤ c
)

	 Pr
(
Z <

c̃− nµ√
n · σ

)
=

1√
2π

rhs∫

-∞

exp

(
−z

2

2

)
dz

where Z is a RV having the standardized (mean 0, variance equal to 1) Normal
distribution. When sampling a discrete distribution, cmust be slightly increased
(to c̃) to lie exactly half way between two potential values of the sum; this is
the so-called continuity correction.


