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Chapter 1

Random Experiments

Typical examples involve rolling a die, dealing cards from a shuffled deck of 52
cards, spinning a wheel with a pointer, and timing customer arrivals. The first
two examples are of a �������� type, the last two a ��	��	
�
� type (each
type requiring a totally different approach).

1.1 Important definitions

S�
��� ����� of a specific random experiment is a collection of all possible
(complete) outcomes; these are called ��
��� ���	��. There is a certain flexi-
bility as to what information to keep.

1.1.1 Examples

Rolling three dice: Here, we may need to keep track of the numbers (of dots)
shown, but sometimes it is sufficient to consider only two possibilities -
success (getting a six) or failure (anything else). Secondly, we may want
to keep track of each particular die (in which case 3, 5, 1 is considered a
different outcome from 1, 5, 3, for the total of 63 = 216 possibilities), or
we may give up on this (the 3 dice look identical and are impossible to tell
apart) and consider only how many ones, twos, ... do we get (the sample
space will then consist of only

�
8
3

�
= 56 outcomes). For a very good reason

(it is then easier to assign probabilities), we usually do the former.

Dealing five cards If we need to keep track of the order in which the cards are
dealt, the sample space will consist of P 52

5 = 311, 875, 200 simple events, if
we only care about the resulting hand (the usual case), then we have only�
52
5

�
= 2, 598, 960 of those. This time, it is easy to assign probabilities

either way.

Spinning wheel The sample space consists of all real numbers from the [0, 2π)
interval (the angle at which the pointer stops). The number of simple

3



4 CHAPTER 1. RANDOM EXPERIMENTS

events is thus a ‘continuos’ infinity (as opposed to countable infinity).

E��	�� are subsets of the sample space; we denote them A, B, C, ... and
use a Venn diagram to visualize them. They are usually defined by specifying
a condition the outcome must meet, e.g. ‘the total number of dots is 13’ (when
rolling three dice), or ‘the hand contains exactly 2 spades’ (when dealing five
cards).

We can utilize S��-������ to help us deal with events; only the terminology
changes: Universal set Ω is now called the sample space, an element of Ω is a
simple event, a subset of Ω is an event and the empty set ∅ is called 	
��
���	�.

We continue to use the words �	���������	 (notation: A∩B, representing
the collection of simple events common to both A and B ), 
	��	 (A∪B, simple
events belonging to either A or B or both), and ��
���
�	� (A, simple events
not belonging to A ).

1.1.2 Counting formulas

Suppose we need to select n objects (symbols, numbers, etc.) out of total of K
of these; in how many ways can this be done

• when (unrestricted) repetition of symbols is allowed, and the order of
selection matters: we have K choices to fill each of our n ‘boxes’, resulting
(applying the 

�����������	 ���	�����) in

K ·K · . . . ·K
n factors

= Kn

possible ways,

• the n selected objects must be all different (sampling �����
� �������-

�	�); their order still matters: similarly, we have K, K − 1, K − 2,
K − n+ 1 choices to fill, one by one, our n boxes, resulting in

K · (K − 1) · . . . · (K − n+ 1)
n factors

=
K!

(n−K)!
= PK

n

possible ways (note that when these objects are playing cards, n! of these
possibilities yields the same card hand),

• select n different objects, but the order in which they come is irrelevant
(e.g. we may reach into a bag of marbles and select three of them, all at
once - there is no order!): now, we simply remove the n! redundancy of
the previous set of possibilities, getting

PK
n

n!
= CK

n

possible ways,
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• repetition allowed but the order does not count (we have K choices of
fruit, such as apples, bananas, etc. and we need to buy n pieces, any way
we like - n apples is fine, if we get lazy): here we use n circles (representing
our n choices) and K−1 bars (dividing the n circles into K groups of any
size - including 0), and permute them to get all possible ways of selection,
which is �

n+K−1
n

�

The last part of this argument is based on yet another important formula
which counts the number of different ‘words’ (codes, etc.) we get by permuting
a specific collection of letters (numbers, symbols, etc.), e.g. aabbbbbccc. The
answer (for this particular example) is

�
2+5+3
2,5,3

�
=

10!

2!5!3!
= 2520

To understand its logic, we start with 10 empty boxes, select 2 of them to place
the letter a - this can be done in

�
10
2

�
ways - then, out of the remaining 8 boxes,

we select 5 to place the letter b; after that, c is placed in each of the remaining
3 empty boxes. Multiplying the choices, we get

�
10
2

�
·
�
8
5

�
=

10!

2!8!
· 8!

5!3!
=

10!

2!5!3!

thus proving the original formula.
A special case of this: having K distinct letters; the formula then reduces

to K! permutations.

1.2 Set-Theory rules (Boolean Algebra)

• Both ∩ and ∪ (individually) are ��


������ and �����������
• Intersection is �������
���� over union: A ∩ (B ∪ C ∪ ...) = (A ∩ B) ∪
(A ∩C) ∪ ...

• Similarly, union is distributive over intersection: A∪ (B ∩C ∩ ...) = (A∪
B) ∩ (A ∪C) ∩ ...

• ‘Trivial’ rules: A∩Ω = A, A∩∅ = ∅, A∩A = A, A∪Ω = Ω, A∪∅ = A,

A ∪A = A, A ∩A = ∅, A ∪A = Ω, Ā = A

• Also, when A ⊂ B (A is a �
���� of B), we get: A∩B = A and A∪B = B

• D�M����	 L���: A ∩B = A ∪B, and A ∪B = A ∩B, or in general
A ∩B ∩C ∩ ... = A ∪B ∪C ∪ ...

and vice versa (i.e. ∩ ↔ ∪)
Definition: A and B are called (mutually) ����
���� or ������	� when

A ∩B = ∅
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1.3 Probability of Events

First, we need to assign a probability to each simple event; this is easy when
they are all equally likely (due to a symmetry of the experiment). In general,
this probability is defined as the relative frequency of its occurrence in a long

run (by this, we always mean a limit of infinitely many independent repetitions
of the experiment). To find a probability of an event A, we simply add the
probabilities of the simple events A consists of.

Note that

• this will work only when dealing with discrete sample spaces (which we
are reviewing first, leaving the continuous case for later),

• the general definition of probability (as relative frequency of occurrence)
implies that, for most events, we can never know its exact value. This
gives us two choices: we can ignore this problem and denote the unknown
probabilities p, q, etc. (calling them ����
�����) - this is how the field
of P���������� deals with the issue, or we can concentrate on the actual
estimation of these parameters, entering the realm of S���������.

This is why this course consists of two parts: we study Probability first,
Statistics next.

1.4 Rules of probability

Pr(A ∪ B) = Pr(A) + Pr(B) but only when A ∩ B = ∅. This implies that
Pr(A) = 1− Pr(A) as a special case.

This also implies that Pr(A ∩B) = Pr(A)− Pr(A ∩B).
For any A and B (possibly overlapping) we have

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)
This can be extended to

Pr(A ∪B ∪C) = Pr(A) + Pr(B) + Pr(C)

−Pr(A ∩B)− Pr(A ∩C)− Pr(B ∩C) + Pr(A ∩B ∩C)
etc.

Using these rules, it is always possible to express the probability of any
expression (involving events, their complements, unions and intersections) as a
linear combination of probabilities of ‘pure’ (i.e. no unions nor complements)
intersections.

Example:

Pr
�
(Ā ∩ B̄ ∩C) ∪ C̄

�
= Pr(A ∪B ∩C) + Pr(C̄)− Pr(∅)

= Pr(C)− Pr
�
C ∩ (A ∪B)

�
+ 1− Pr(C)

= 1− Pr((A ∩C) ∪ (B ∩C))
= 1− Pr(A ∩C)− Pr(B ∩C) + Pr(A ∩B ∩C) �
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1.4.1 Conditional probability

of B given A is the long-run relative frequency of an simple event from B when
keeping only the outcomes which met condition A. This is the corresponding
notation, and the formula for computing it based on ordinary probabilities:

Pr(B|A) ≡ Pr(A ∩B)
Pr(A)

All basic formulas of probability remain true conditionally, e.g.:

Pr(B|A) = 1− Pr(B|A)
Pr(B ∪C|A) = Pr(B|A) + Pr(C|A)− Pr(B ∩C|A),

etc.
Another useful formulas are: the ����
�� �
��

Pr(A ∩B) = Pr(A) · Pr(B|A)
Pr(A ∩B ∩C) = Pr(A) · Pr(B|A) · Pr(C|A ∩B)

etc.,
and the �����-����������� ���

��

Pr(B) = Pr(B|A1) · Pr(A1) + Pr(B|A2) · Pr(A2) + ...+Pr(B|Ak) · Pr(Ak)
where A1, A2,...Ak is a ��������	 of the sample space, meaning: the individual
Ais must be mutually exclusive (no gaps) and their union must cover the whole
sample space (no overlaps).

Example: There are two ‘black’ boxes, one with 2 red and 5 blue marbles, the
other one has 3 red and 3 blue marbles. One of the boxes is selected at
random an two marbles are drawn from it without replacement.

The probability of selecting the second box and drawing from it two red marbles
is

Pr(B2 ∩ 2 red) = Pr(B2) · Pr(2 red | B2) =
1

2
·
�
3
2

�
�
6
2

� =
1

10

(the product rule).

The probability of getting 2 red marbles (from whichever box) is

Pr(2 red) = Pr(2 red | B1) · Pr(B1) + Pr(2 red | B2) · Pr(B2)

=

�
2
2

�
�

7
2

� · 1
2
+

�
3
2

�
�

6
2

� · 1
2
=

13

105

(total probability formula).

The conditional probability of having selected Box 2 given that both marbles
are red:

Pr(B2 | 2 red) =
Pr(B2 ∩ 2 red)

Pr(2 red)
=

1
10
13
105

=
21

26
= 80.77%

(called Bayes’ rule - not really a new rule though). �
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1.4.2 Independence

of two or more events is a very natural notion (we should be able to readily
tell which events are independent and which are not): when any one of them
happens, this does not affect the probability of the rest of them. i.e.

Pr(B|A) ≡ P (B)

etc.
Independence implies

Pr(A ∩B) = Pr(A) · Pr(B)

for any two independent events,

Pr(A ∩B ∩C) = Pr(A) · Pr(B) · Pr(C)

for any three independent events, etc.
Furthermore, independence of A, B, C, D, ... implies that A∩ B̄ and C̄ ∪D

are also independent (any Boolean combination of one group against a Boolean
combination of another, distinct group). But we must be careful: D ∩ B̄ and
C̄ ∪D are not independent (why?).

Having mutually independent events simplifies one of our previous state-
ments: we can now express the probability of any expression involving such
events in terms of their individual probabilities.

Example: Assuming that A, B, C and D are mutually independent, find

Pr
�
(A ∪ B̄) ∩B ∪C ∩ (C ∪ D̄)

�

= 1− Pr
�
(Ā ∩B) ∪B ∪C ∪ (C̄ ∩D)

�

Now,
Ā ∩B ⊂ B

implies that
(Ā ∩B) ∪B = B

Similarly,

C ∪ (C̄ ∩D) = (C ∪ C̄) ∩ (C ∪D) = Ω ∩ (C ∪D) = C ∪D

This simplifies the original probability to

1− Pr(B ∪C ∪D) = Pr(B̄ ∩ C̄ ∩ D̄)

=
�
1− Pr(B)

�
·
�
1− Pr(C)

�
·
�
1− Pr(D)

�
�



Chapter 2

Random Variables (discrete
type)

A ��	��
 �������� (RV for short) returns a number for every possible out-
come of a random experiment. For the same random experiment, one can define
several random variables; we denote them X, Y, Z, ... Technically, a RV is a
mapping from the sample space into the set of real (or integer) values; thus,
representing a fairly abstract notion.

One should appreciate the difference between random variables and events

(the former assigns, to each simple event, a number, the latter yes or no, de-
pending on whether the corresponding condition has been met or not).

2.1 Univariate pmf

We can always compute the probability that a random variable (say X) has a
specific value (say i) by adding the probability of all simple events which result
in this value of X. Doing this with all possible values of X establishes the so-
called probability �������
���	 of X. Often, it is possible to express the result
of this exercise in terms of a ����������� 
��� �
	����	 (pmf for short),
defined by

fX(i) ≡ Pr(X = i)

(when this becomes too difficult, a table summarizing this information will do
just fine). Clearly, the total of these probabilities when summing over all possible
values of X must equal to 1.

Example: Defining X as the number of spades in a randomly dealt five-card
hand, we have

fX(i) =

�
13
i

�
·
�

39
5−i

�
�
52
5

� (2.1)

9



10 CHAPTER 2. RANDOM VARIABLES (DISCRETE TYPE)

where 0 ≤ i ≤ 5 is the corresponding �
����� (the interval of possible
values of X); this is important to include whenever specifying a pmf. �

Once we know the distribution of a RV, we can resolve any related issue with-
out having to go back to the original random experiment (which now, we don’t
even need to specify); we thus lose the ‘real-world’ connection, but expediency
forces us to do that sooner or later.

A ��	�����	�� pmf of X given that an event A has happened is computed
by

fX(i | A) ≡
Pr(X = i ∩A)

Pr(A)

Summing these over all (conditionally) possible values of i must still yield 1;
conditional distributions in general have all the usual properties of an ordinary
distribution.

2.2 Bivariate (joint) pmf

of two random variables is similarly an expression for computing the following
probabilities

fX,Y (i, j) ≡ Pr(X = i ∩ Y = j)

and specifying the 2D support (the set of admissible i and j values).
Based on this, one can always find the corresponding 
����	�� pmf of X

by

fX(i) =
�

All j|i
f(i, j)

where j|i indicates the ��	�����	�� interval of j values (of the random variable
Y ) given a specific i (the value of X). Note that this marginal distribution of
X is the same as the ‘univariate’ distribution of X defined originally - the name
‘marginal’ refers only to the way the X distribution was extracted from the
joint distribution.

Similarly, one can find the marginal distribution of Y.

2.2.1 Examples

Using a table: Sometimes it is difficult (practically impossible) to express all
bivariate probabilities as a simple function of i and j; in that case an
explicit table will do just fine, e.g.

X = 0 1 2 3
Y = 0 7

50 0 0 0 7
50

1 6
50

4
50 0 0 10

50
2 2

50
6
50

1
50 0 9

50
3 0 5

50
8
50

2
50

15
50

4 0 0 5
50

4
50

9
50

15
50

15
50

14
50

6
50
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The table also displays both marginal distributions (thus explaining their
name). �

Dealing 5 cards The bivariate pmf of the number of spades (X) and the num-
ber of diamonds (Y ) dealt is given by

fX,Y (i, j) =

�
13
i

��
13
j

��
26

5−i−j
�

�
52
5

�

with the following support

0 ≤ j ≤ 5− i while 0 ≤ i ≤ 5

or, equivalently

0 ≤ i ≤ 5− j while 0 ≤ j ≤ 5

The marginal distribution of X is of course the same as (2.1). �

2.2.2 Conditional pmf

of X, given an (observed) value of Y , is defined by

fX(i|Y = j) ≡ Pr(X = i |Y = j) =
fX,Y (i, j)

fY (j)

where i varies over its conditional interval, given Y = j. By boldfacing j we
emphasize the fact that j has now a specific value and is thus no longer a
variable of the conditional (univariate) distribution (only i is); at best j can be
considered a ����
���� of this distribution.

This is clearly an (important) special case of a conditional distribution, as
introduced two sections ago.

Example: Using our previous example, we get

i = 1 2 3
fX(i|Y = 3) 5

15
8
15

2
15

�

2.2.3 Independence

of two random variables X and Y means that the outcome of X cannot influence
the outcome of Y (and vice versa) - something we can always gather directly
from the nature of the experiment.

This implies that
fX,Y (i, j) = fX(i) · fY (j)

for every possible combination of i and j, further implying that the joint pmf
becomes redundant (we can always build it from the corresponding marginals).
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2.3 Multivariate distribution

is an extension of these concepts to three or more RVs. The corresponding
conditional distributions can themselves be bivariate (or multivariate), e.g.

fX,Y (i, j | Z = k) ≡ Pr(X = i ∩ Y = j | Z = k) =
fX,Y,Z(i, j,k)

fZ(k)

as opposed to

fX(i | Y = j ∩ Z = k) ≡ Pr(X = i | Y = j ∩Z = k) =
fX,Y,Z(i, j,k)

fY,Z(j,k)

(the possibilities quickly multiply). We will not go into any more detail.



Chapter 3

Expected Values

3.1 Expected value of a RV

also called its 
��	 corresponds (empirically) to its average value obtained in
a long run of repeated, independent experiments. It is computed by

µX ≡ E(X) ≡
�

All i

i · fX(i) (3.1)

(a weighted average of the potential values - the weights being the probabilities),
where the summation is over all possible values of i. It can be visualized as a
center of mass of the corresponding probability histogram.

3.2 EV of a function of a RV

First, one has to realize that plugging X into an algebraic expression (such as
X

1+X2 ) creates a new random variable (say U); this is called a ���	����
����	
of X. To get the expected value of U, one does not need to know its pmf (getting
it is difficult) - one can find it using the pmf of X, thus:

E[g(X)] =
�

All i

g(i) · fx(i)

where g is any function (usually a simple expression).

Note that, in general, E[g(X)] �= g (E[X]). For example, E[ X
1+X2 ] �= µx

1+µ2x
.

An exception is a ��	��� ���	����
����	 of X; it is true that

E(a ·X + c) = a · µX + c

where a and c are arbitrary constants.

13
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3.3 EVs related to bivariate distribution

When g is any function of two arguments, g(X,Y ) is again a new (single) random
variable (say V ). And again, we do not need to know is (univariate) pmf (very
difficult to build) to be able to compute its expected value, by

E [g(X,Y )] =
�

All i,j

g(i, j) · fX,Y (i, j)

where the i, j summation is over the 2D support of the X,Y distribution.
The result does not equal to g(µx, µy) in general, except when the transfor-

mation is linear :

E (a ·X + b · Y + c) = a · µX + b · µY + c

Note that this is true regardless whether X and Y are independent or not (a
common misconception).

The previous formula easily extends to any number of variables:

E (a1X1 + a2X2 + ...+ akXk + c) = a1µ1 + a2µ2 + ...+ akµk + c

where µi ≡ E (Xi) . Again, independence is not required.
Nevertheless, independence of X and Y does help when dealing with an

expected value of a product of RVs, thus:

E(X · Y ) = µX · µY

and

E [g1(X) · g2(Y )] = E [g1(X)] · E [g2(Y )]

These can be extended to a product of any number of independent RVs.

3.4 Moments (univariate)

S�
��� moments:

E(Xk)

C�	���� moments:

E
�
(X − µX)

k
�

There are also ��������� moments (introduced later).
This implies that we have yet another name for expected value: it is the

first-order (k = 1) simple moment.
Of the central moments, the most important is the second one, also called

the �����	�� of X

Var(X) = E
�
(X − µX)

2
�
= E(X2)− µX

2
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(prove the last equality). Its square root is the ���	���� ��������	 of X,
notation: σx =

�
Var(X) (or ‘sigma’ of X). Any variance is clearly non-

negative (a sum of non-negative contributions), equal to zero only in the case of
a ����	����� distribution (X can have only one value, i.e. it is a non-random
constant).

The mean and variance are two most important ��������������� of a
univariate distribution.

The interval µ− σ to µ+ σ always contains the ‘bulk’ of the distribution -
anywhere from 50 to 90%.

For a linear transformation of X, i.e. U ≡ aX + c, we get

Var(U) = a2Var(X)

which implies

σu = |a| · σx

3.5 Joint moments

S�
��� moments:

E(Xk · Ym)

C�	���� moments:

E
�
(X − µX)

k · (Y − µY )
m
�

The most important of these is the �������	�� of X and Y , equal to the
1st, 1st central moment:

Cov(X,Y ) ≡ E
�
(X − µx) · (Y − µy)

�
= E(X · Y )− µx · µy

It is equal to zero when X and Y are independent, but not the reverse: zero co-
variance does not necessarily imply independence. Clearly, Cov(X,Y ) = Cov(Y,X);
also, Cov(X,X) = Var(X). Together with the individual means and variances,
covariance is the most important characteristic of a bivariate distribution.

The �������
���� ��� �� �������	�� states that

Cov(a1X1 + a2X2 + c, Y ) = a1Cov(X1, Y ) + a2Cov(X2, Y )

This can be extended to any number of RVs, and to the Y part as well.
A related quantity is the ����������	 ���������	� between X and Y :

ρxy =
Cov(X,Y )

σx · σy
(this is the Greek letter ‘rho’). The absolute value of this coefficient cannot be
greater than 1.
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Proof: For any λ

Var(X − λ · Y ) = Var(X) + λ2Var(Y )− 2λCov(X,Y ) ≥ 0

The LHS has its smallest value at λ which makes the corresponding deriva-
tive, namely

2λVar(Y )− 2Cov(X,Y )

equal to zero; this is clearly

λs =
Cov(X,Y )

Var(Y )

Substituting this λs for λ in the original inequality yields

Var(X) +
Cov(X,Y )2

Var(Y )2
·Var(Y )− 2

Cov(X,Y )

Var(Y )
· Cov(X,Y )

= Var(X)− Cov(X,Y )2

Var(Y )
≥ 0

Divide by Var(X) to get: 1 ≥ ρ2
xy. �

Note that
ρaX+c,Y = ±ρxy

depending on the sign of a.
Variance of aX + bY + c is equal to

a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

Independence would make the last term equal to zero (and disappear).
This can be extended to a linear combination of any number of RVs:

Var(a1X1 + a2X2 + ...akXk + c) = a2
1Var(X1) + a2

2Var(X2) + ....+ a2
kVar(Xk)

+2a1a2Cov(X1,X2) + 2a1a3Cov(X1,X3) + ...+ 2ak−1akCov(Xk−1,Xk)

Mutual independence of the Xs removes the last line.

3.6 Probability generating function (PGF)

requires the RV have only integer values (negative integers are OK). It is defined
by

P (s) ≡ E
�
sX

�
=

�

All i

si · fX(i)

where s is a real (auxiliary, i.e. having no direct connection to any probabilities)
variable.

When X and Y are independent, we get

PX+Y (s) = Px(s) · Py(s)
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which represents the easiest way to find the distribution of X + Y (otherwise,
one has to construct the so called ��	���
���	 of the two pmf’s).

This can be extended to any independent sum. When, furthermore, the
independent RVs have the same distribution,

PX1+X2+...+Xk(s) = P (s)k

It is also obvious that
P ′(s)|s=1 = E (X)

and
P ′′(s)|s=1 = E [X(X − 1)] = E

�
X2

�
− E (X)

(these are the ��������� moments). This is often the easiest way of deriving
the mean and variance of an integer-valued RV.

Example: The PGF of the number of dots obtained when rolling a die is

P (s) =
s+ s2 + s3 + s4 + s5 + s6

6

This implies that

µ = P ′(s)|s=1 =
1 + 2 + 3 + 4 + 5 + 6

6
=

7

2

σ2 = P ′(s)|s=1 +
7
2 −

�
7
2

�2

= 2+3·2+4·3+5·4+6·5
6 + 7

2 −
�

7
2

�2
=

35

12

By expanding P (s)3, we get the individual probabilities of the total num-
ber of dots when rolling three dice. �

3.7 Conditional expected value

is simply an expected value computed using a conditional distribution, e.g.

E(X|Y = j) =
�

All i|j
i · fX(i|Y = j)

etc. Empirically, it represents the long-run average of the X values, keeping
only those outcomes which resulted in Y = j.

This is a special case of a conditional expected value of X given an event A,
computed by

E(X|A) =
�

All i | A
i · fX(i|A)

In this context we get what we call the �����-��������-���
� ���

��
(an extension of the total-probability formula), namely

E(X) =
k�

j=1

Pr(Aj) · E(X|Aj)

where A1, A2, ...Ak is a partition of the sample space (k may be infinite).
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Chapter 4

Common Discrete
Distributions

First, we review univariate distributions. It helps to recall three summation
formulas:

n�

i=0

�
n

i

�
aibn−i = (a+ b)n binomial Theorem

∞�

i=0

ai =
1

1− a
provided |a| < 1

∞�

i=0

ai

i!
= ea

The next three distributions are based on what can be called a ‘roll of a die’
type of experiment.

4.1 Binomial

X is the total number of �
������� in a series of n independent trials, each
����� having only two possible outcomes (success or failure, with the probability
of p and q ≡ 1−p, respectively). The sample space consists of all n-letter ‘words’
built based on a two-letter (S and F ) alphabet, such as FFSFSSS...FS. The
corresponding probability of each of these simple events is pjqn−j , where j is
the number of letters S (the remaining n− j letters are all F ). The probability
that X = i (for any specific i, which can be as small as 0 and as large as n) is
clearly equal to piqn−i, multiplied by the number of words having exactly i S‘s
and n−i F ’s (luckily, they all have the same probability). We know that there is
exactly

�
n
i

�
such words in our sample space; this implies that the corresponding

19
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pmf is

Pr(X = i) ≡ f(i) =

�
n

i

�
piqn−i where 0 ≤ i ≤ n

Based on this, we can find the PGF by

P (s) =
n�

i=0

�
n

i

�
piqn−isi = (q + p s)n

(the binomial theorem ‘in reverse’).
There are several ways of finding the expected value and variance ofX (direct

summation using (3.1) is the hardest); differentiating the PGF is relatively easy,
but we prefer yet another method, namely: X can also be defined as a sum of
n independent RVs of the so called Bernoulli type, i.e.

X = X1 +X2 + ...+Xn

where Xj is the number of successes in Trial j. Each of these RVs has a very
simple distribution, namely

Xj 0 1
Pr q p

(4.1)

with the mean of p and the variance of p− p2 = pq. For their independent sum
(of n) we thus get

µ = np

Var(X) = npq

Notation: Xǫ B(n, p). Note that one needs to know the value of two ��-
��
����� (n and p) to fully specify this distribution.

Examples: Rolling a die 20 times (or, equivalently, rolling 20 dice) and
counting the number of sixes; flipping a coin 14 times and counting the number
of heads; playing a series of independent games and counting the number of
wins; drawing 6 marbles (���� �������
�	�, i.e. returning the marble after
each draw) from a box containing 32 marbles, 12 of which are red, and counting
the number of red marbles in our sample of 6; etc.

4.2 Geometric

X is defined as the number of trials to get the first success in an independent
series of trials of the type described in the last section. The sample space now
consists of the following (infinitely many) simple events: S, FS, FFS, FFFS,
..., implying that

Pr(X = i) ≡ f(i) = pqi−1 where i ≥ 1
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The corresponding PGF is therefore

P (s) = ps+ pqs2 + pq2s3 + pq3s4 + ...

= ps(1 + qs+ q2s2 + q3s3 + ...) =
ps

1− qs

based on which we get

µ =

�
ps

1− qs

�′					
s=1

=
p(1− qs) + qps

(1− qs)2

				
s=1

=
p

(1− qs)2

				
s=1

=
1

p

since 1− q = p, and

Var(X) =

�
ps

1− qs

�′′					
s=1

+
1

p
− 1

p2
=

2pq

(1− qs)3

				
s=1

+
1

p
− 1

p2

=
2(1− p)

p2
+
1

p
− 1

p2
=

1

p2
− 1

p
=

1

p

�
1

p
− 1

�
=

q

p2

Notation: Xǫ G(p). Clearly, a one-parameter distribution.

Example: The number of rolls of a die to get the first six; the number of
flips of a coin to get the first head; the number of games to play to get the
first win; the number of marbles to draw (with replacement) to get the first red
marble; etc.

Note: Sometimes, we want to count only the failures before getting the first
success (we call this the 
������� geometric distribution); for the new,
modified X (clearly equal to the old X − 1) we have:

f(i) = pqi where i ≥ 0

P (s) =
p

1− qs

µ =
1

p
− 1 =

q

p

The variance, naturally, remains the same.

4.3 Negative Binomial

X is now the number of trials until (and including) we get the kth success. It
is clearly a sum of k independent random variables of the geometric type; this
yields immediately (using the formulas for dealing with an independent sum of
RVs):
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P (s) =

�
ps

1− qs

�k

µ =
k

p

Var(X) =
kq

p2

Only the pmf is yet to be found (there is no such simple rule here) by using the
following argument: for X to have the value of i, one must get k − 1 successes
(anywhere) within the first i − 1 trials (we know how to answer this using
the binomial distribution), followed by a success in the last (ith) trial, whose
probability is p. Multiplying the two yields

f(i) =

�
i− 1

k − 1

�
pkqi−k ≡

�
i− 1

i− k

�
pkqi−k where i ≥ k

One can get the same answer (try it) by Taylor-expanding the above PGF (thus
double-checking the correctness of both formulas).

Notation: Xǫ NB(k, p)
Example: Number of times to roll a die till the 3rd six is obtained, etc.

Note: Similarly to the Geometric distribution, we can defined a 
������� ver-
sion of this distribution by counting only the failures - try figure out the
new version of the previous formulas.

4.4 Hypergeometric

Suppose there are N objects (such as marbles), K of which have some special

property (e.g. being red), placed in a ‘black box’ and properly mixed (we
assume that these numbers are known to us). Drawing n of these randomly and
�����
� �������
�	� (dealing cards from a well-shuffled deck is another
good example) X is the number of the special objects (red marbles, spades,
aces, etc.) found in this sample

Finding the corresponding pmf is relatively easy: there is
�
K
i

�
ways of se-

lecting i ‘special’ object,
�
N−K
n−i

�
ways of selecting n − i of the ‘other’ objects;

multiplying the two yields the number of different samples of this kind. Divid-
ing by the total number of samples of n objects thus results in the following
formula:

Pr(X = i) ≡ f(i) =

�
K
i

�
·
�
N−K
n−i

�
�
N
n

� where max(0, n−N+K) ≤ i ≤ min(n,K)

Note that the range of possible values of i gets kind of tricky, but Maple is
forgiving (we may always take i to go from 0 to n - when any of these become
impossible, the formula returns 0).
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This time, the general expression for the corresponding PGF is too compli-
cated to be of much use (it involves a hypergeometric function; this gives the
name to the distribution itself, in case you have wondered). But realize that
we can still construct it for any specific case by using Maple (but not to derive
general formulas for the mean and variance).

To do that, we again express X in the X1+X2 + ...+Xn manner, where Xj

is the number of ‘special’ objects obtained in the jth draw (visualize dealing n
cards and placing them, separately from each other, face down; Xj is then the
number of diamonds we see by turning the jth card - zero or one, of course).
Since each Xj still has the distribution of (4.1), with p =

K
N (can you see why?),

for the expected value of X we get an analog of the np formula, namely

µ = n · K
N

To get the variance of X is more complicated; it is now equal to

Var(X1) +Var(X2) + ...+Var(Xn) +

2Cov(X1,X2) + 2Cov(X1,X3) + ...+ 2Cov(Xn−1,Xn)

Luckily, due to the obvious symmetry of the experiment, all n variances have
the same value of pq = K

N · N−KN , and all
�
n
2

�
covariances also have the same

value, which can be derived by finding first

E (X1 ·X2) = Pr (X1 = 1 ∩X2 = 1) =
K

N
· K − 1

N − 1

(why is it so simple?) which implies

Cov(X1,X2) = E (X1 ·X2)− E (X1) · E (X1) =
K

N
· K − 1

N − 1
− K

N
· K
N

=
K

N
· N(K − 1)−K(N − 1)

N(N − 1)
= −K(N −K)

N2(N − 1)

(negative, as expected). Putting it all together:

Var(X) = nVar(X1) + n(n− 1)Cov(X1,X2) = n · K
N
· N −K

N
− n(n− 1)

K(N −K)

N2(N − 1)

= n · K
N
· N −K

N
·
�
1− n− 1

N − 1

�
= n · K

N
· N −K

N
· N − n

N − 1

The first part of the formula is an analog of the binomial npq (with p = K
N ); the

last factor makes sure that the variance becomes 0 when n = N (as it should -
right?).

Notation: Xǫ HG(n,N,K) - a three-parameter distribution.
Example: Dealing 5 cards from a well shuffled deck and counting the num-

ber of spades; drawing 6 marbles (all at once) from a box with 32 marbles, 12
of which are red, and counting the number of red marbles in the sample; etc.

Note that this distribution becomes binomial when sampling is done ����
�������
�	�.
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4.5 Poisson

Assume that customers arrive at a store randomly, at a constant average rate
of λ per hour, and let X be the number of customers who will arrive during the
next T hours.

To find the probability ofX = i we first realize that its expected value should
equal to Λ ≡ λ · T. We then subdivide T into n tiny subintervals of length T

n
and assume that each of these subintervals will receive an arrival with the (very
small - that is why we can ignore the possiblity of more than one arrival in any
such interval) probability of p = Λ

n (to make the expected number of arrivals
equal to Λ), independently of what will happen at all the other subintervals.
We are thus approximating the distribution of X with a binomial distribution
with n trials. The corresponding PGF is

Pn(s) =

�
1− Λ

n
+
Λ

n
s

�n

To eliminate the possibility that a subinterval may occasionally receive more

than one arrival, we must take the n → ∞ limit of the previous expression,
getting

P (s) = exp

�
Λ(s− 1)

�

yielding the resulting PGF of the Poisson distribution.
Finding the corresponding pmf is easy; since

P (s) ≃ exp (−Λ) · exp
�
1 + Λs+

Λ2s2

2!
+
Λ3s3

3!
+ ...+

Λisi

i!
+ ...

�

f(i) =
Λi

i!
· exp (−Λ) i = 0, 1, 2, 3, ...

(the coefficient of si in the corresponding Taylor expansion). Furthermore,

µ =


eΛ(s−1)

�′				
s=1

= ΛeΛ(s−1)
			
s=1

= Λ

Var(X) =


eΛ(s−1)

�′′				
s=1

+Λ− Λ2 = Λ2eΛ(s−1)
			
s=1

+Λ− Λ2 = Λ

The variance of the Poisson distribution is thus equal to its mean.
Notation: Xǫ P(Λ)
Example: Number of customers arriving at a specific store during the next

10 minutes, knowing that the average (long-run) arrival rate is 27.4 customers
per hour.



Chapter 5

Multivariate Discrete
Distributions

This time, there are only two ‘common’ cases to consider, by generalizing first
the binomial and then the hypergeometric distribution to allow more than just
two types of outcome at each trial.

5.1 Multinomial

This is an extension of the binomial distribution, in which each trial can result in
3 (or more) possible outcomes (not just S or F). Below, for the sake of simplicity,
we use 3 possibilities; the formulas make it quite obvious how to deal with 4
etc. (6 is of course quite common). We denote the three possible outcomes as
W, L and T.

The trials are again repeated, independently, n times; this time we need
three RVs, say X, Y and Z, which count the total number of outcomes of the
first, second and third type, respectively, assuming that their probabilities in
each trial are p1, p2 and p3 (again, respectively). The sample space consists of all
n-letter words built out of the three-letter alphabet, e.g. TLLWWTT......WWL,
each having the probability given by pi1p

j
2p
k
3 , where i, j and k is the number of

Ws, Ls and Ts found within the word.

To find the Pr(X = i ∩ Y = j ∩ Z = k) for any specific selection of the i, j
and k integers, we simply need to multiply the last probability (of any one such
word) by the number of words with exactly i Ws, j Ls and k Ts; we know that
this number is given by

�
n

i,j,k

�
. This leads to the following tri-variate pmf:

fxyz(i, j, k) =

�
n

i, j, k

�
pi1p

j
2p
k
3

for any 3 non-negative integers i, j, k which add up to n.

25
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The corresponding joint PGF is given by

Pxyz(s1, s2, s3) = (s1p1 + s2p2 + s3p3)
n

(use the multinomial theorem to prove it), and can be used to compute

E (X · Y ) = ∂2(s1p1 + s2p2 + s3p3)
n

∂s1∂s2

				
s1=s2=s3=0

= n(n− 1)p1p2

which implies

Cov(X,Y ) = n(n− 1)p1p2 − np1 · np2 = −np1p2

since the marginal distributions are obviously binomial (following the corre-
sponding formulas). The last formula clearly applies to any pair of multinomial
RVs (one must only replace p1 and p2 accordingly).

Example: Rolling a die 10 times (or, equivalently, rolling 10 dice) and counting
the number of sixes (X), ones (Y ) and any other number of dots (Z).
With the help of these formulas, we are able to answer questions about
W ≡ X − Y (the net win in a game where we get paid $1 for each six but
have to pay $1 for each one), etc. Note that the corresponding PGF is

Pw(s) = Pxyz(s, s
−1, 1) =

�
s

6
+

1

6 s
+
4

6

�10

and that

E(W ) = 10 · 1
6
− 10 · 1

6
= 0

(a ���� ��
�), and

Var(X) = 10 · 1
6
· 5
6
+ 10 · 1

6
· 5
6
+ 2 · 10 · 1

6
· 1
6
=

10

3

The probability of breaking even is the constant term in the expansion of
Pw(s), namely

3308 407
15 116 544 = 21.89%. �

5.2 Multivariate Hypergeometric

is, similarly, an extension of the univariate hypergeometric distribution to the
case of having 3 (or more) types of objects (placed and mixed in the proverbial
‘black box’). Assuming that the number of objects of Type 1, Type 2 and Type
3 type is K1, K2 and K3 respectively (where K1 +K2 +K3 = N), we get

fxyz(i, j, k) =

�
K1

i

��
K2

j

��
K3

k

�
�
N
n

�

where X, Y and Z count the number of objects of each respective type, found
in a random sample of n objects, drawn without replacement (all at once, if you
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wish). Naturally, i+ j+ k = n; otherwise, i, j and k can be any 3 non-negative
integers such that 0 ≤ i ≤ K1 and 0 ≤ j ≤ K2 and 0 ≤ k ≤ K3. Translating
this into three consecutive ranges for the values of i, then (conditionally, given
i) for the values of j, and finally (given i and j) for the values of k is rather
complicated in general, but we can afford to be sloppy, as explained earlier (the
formula returns zero when used with an impossible combination of i, j, k values).

The marginal distribution of X (and Y, and Z) is clearly univariate hyper-
geometric (introduced a few sections ago), with obvious parameters. This yields
the individual expected values and variances of each X, Y and Z (etc., if there
are more than three types of objects).

But this time we have yet another important formula, namely

Cov(X,Y ) = −n · K1

N
· K2

N
· N − n

N − 1

and its obvious modification for any other pair of the original RVs.

Proof: Since we do not have a PGF to work with, we must express both X
and Y in terms of what happened in each individual draw, namely

X = X1 +X2 + ...+Xn

Y = Y1 + Y2 + ...+ Yn

where Xj (Yj) is the number of objects of Type 1 (2) obtained in Draw
j (each of these RVs can equal to either 0 or 1). Using the distributive
law of covariance to compute Cov(X,Y ), we get n contributions of the
Cov(X1, Y1) type and n(n − 1) contributions of the Cov(X1, Y2) type -
due to the obvious symmetry of the experiment (again: visualize dealing
cards face down), all the Cov(Xj , Yj) values, and all Cov(Xj , Yk) where
j �= k, are the same. Now,

E (X1 · Y1) = Pr(X1 = 1 ∩ Y1 = 1) = 0

E (X1 · Y2) = Pr(X1 = 1 ∩ Y2 = 1) =
K1

N
· K2

N − 1

imply that

Cov(X1, Y1) = 0− K1

N
· K2

N
= −K1K2

N2

Cov(X1, Y2) =
K1

N
· K2

N − 1
− K1

N
· K2

N
=
K1K2

N

�
1

N − 1
− 1

N

�
=

K1K2

N2(N − 1)

Putting it together:

Cov(X,Y ) = −nK1K2

N2
+
n(n− 1)K1K2

N2(N − 1)
= −nK1K2

N2

�
1− n− 1

N − 1

�

= −n · K1

N
· K2

N
· N − n

N − 1

(negative, as expected). �
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Note that sometimes we have objects (such as the ace of spades) which do
not fit this description (belonging to both types). If their number (in the original
‘black box’) is K1,2 we can find the covariance between the number of objects
of Type 1 (call the corresponding RV U) and Type 2 (RV V ), found in a sample
of n, by

Cov(U, V ) = Cov(U0 + T, V0 + T )

= −n ·


K1−K1,2

N · K2−K1,2

N +
K1−K1,2

N · K1,2

N +
K1,2

N · K2−K1,2

N − K1,2

N · N−K1,2

N

�
· N −n
N−1

= −n ·
�
K1

N
· K2

N
− K1,2

N

�
· N − n

N − 1

where U0 (V0) is the number of objects of Type 1 (2) which are not of the mixed
type, whereas T is counting only those of the mixed type; the original formulas
then apply to each of these three RVs - the distributive law of covariance then
does the rest.

If nothing else, one should remember that the covariance between the number
of aces and the number of spades found in a random hand of cards (of any size)
is always equal to zero (as the last formula clearly indicates).

Example: Consider dealing, randomly, five cards from the standard deck of 52,
and counting the number of spades (X1), diamonds (X2), clubs (X3) and
hearts (X4) - this time, we have 4 types of objects (that is why we have
switched to using a different notation - this way, we never run out of the
alphabet).

Let us now make this into a game in which one is paid $3 for each spade dealt,
but has to pay $2 for each diamond and $1 for each club, i.e.

W = 3X1 − 2X2 −X3

Our formulas imply that

E(W ) = 3 · 5 · 13
52
− 2 · 5 · 13

52
− 5 · 13

52
= 0

(a fair game again),

Var(X) = 5 · 13
52 · 39

52 · 47
52 ·

�
32 + (−2)2 + (−1)2

�

−2 · 5 · 13
52 · 13

52 · 47
52 · (3 · (−2) + 3 · (−1) + (−2) · (−1)) = 1645

104

To answer a probability question about W, we would have to first build,
and then expand in powers of s, its PGF

Pw(s) =
5�

i,j,k=0

�
13
i

��
13
j

��
13
k

��
13

5−i−j−k
�
s3i−2j−k

�
52
5

�

Here, we are taking advantage (by being rather sloppy when specifying the
summation’s limits) of the fact that binomial coefficients with a negative
bottom number (also, when the bottom number is bigger than the top
number) are equal to zero. �
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Continuous RVs

These are characterized by having, potentially, any real value (from a specific
interval), which implies that the probability of each such number is always equal
to zero (ignoring the fact that no measurement can ever be made exactly)! So
we are facing a big problem: adding individual probabilities is no longer feasible
as a means of finding probability of events. The way out of this conundrum is
provided by the introducing the following new concept:

6.1 Probability density function (pdf)

of a RV X is defined by

fX(x) ≡ lim
ε→0

Pr(x ≤ X < x+ ε)

ε

Note that we are using the same notation (fX) for a pdf as we used for a pmf
- this should not create any confusion, as we always know what kind of RV
we are dealing with. Furthermore (unlike most textbooks), we consistently use
i, j, k, ... to denote integers and x, y, z... to imply real values (in the latter
case, x indicates a value of X, etc.). Due to this, the X subscript of fX(x)
becomes redundant, and can be removed (writing f(x) instead), which we do
from now on whenever we can.

Also note that values of this function do not represent a probability of any
event; they must be non-negative, but may occasionally exceed 1 (all the way
to plus infinity).

Given f(x), we can compute the probability of X resulting in a value from
a specific interval by

Pr(a < X < b) = Pr(a ≤ X < b) = Pr(a < X ≤ b) =

Pr(a ≤ X ≤ b) =

b�

a

f(x) dx

29
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The result is the same regardless whether the boundary values are included or
not (a marked difference from the discrete case).

Note that f(x) needs to be often defined in a piecewise manner (as we will
see shortly).

6.2 Distribution function (cdf)

or more fully the �


������ �������
���	 �
	����	 is defined by

F (x) ≡ Pr(X ≤ x) =

x�

−∞

f(u) du

Clearly, it is always a non-decreasing function of x.

At this point we must point out another crucial difference between discrete
and continuous RVs: in a discrete case, being able to compute the individual

probabilities is always sufficient (with the help of a computer if necessary) to
find any other probability (just by adding these); in a continuous case, to com-
pute any probability we always need to integrate f(x), and cdf does it for us
analytically and ‘in advance’ (if we cannot find F (x) analytically, we can al-
ways integrate fX(x) numerically ; this is another big contribution of today’s
computers).

Univariate example: The (note that it is discontinuous) function

f(x) =





2
3(1 + x) when − 1 ≤ x < 0
4
3(1− x) when 0 ≤ x < 1
0 otherwise

represents a legitimate pfd of a RV (since it is non-negative and integrates
to 1). Realize that it is a single function of x (regardless of how many
different expressions we need to define it).

The corresponding cdf is

F (x) =





0 when x < −1
1
3(1 + x)2 when − 1 ≤ x < 0
1− 2

3(1− x)2 when 0 ≤ x < 1
1 when 1 ≤ x

Note that, unlike f(x), F (x) is (and must always be) a continuous and non-
decreasing function of x. Also note that F ′(x) = f(x), with the exception
of x = 0 where f(x) has a discontinuity and F ′(x) does not exist. They
make a lot of fuss about these things in Calculus; luckily, we do not have
to (same as whether to use ≤ or <). �
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6.3 Bivariate (multivariate) pdf

is defined by

f(x, y) = lim
ε→0
δ→0

Pr(x ≤ X < x+ ε ∩ y ≤ Y < y + δ)

ε · δ

This formula could actually be made more general by using any small 2D
region surrounding the (x, y) point in the numerator, the region’s area in the
denominator, and then squeezing this region (in whichever way) down to the
point itself.

To find the probability of the (X,Y ) values falling inside a specific 2D region
R (one can always visualize R as a ‘target ’ to be hit - or missed) is computed
by

��

R

f(x, y)dxdy

Recall that computing a double integral is done by two consecutive univariate
integrations (students find this quite challenging in terms of specifying the upper
and lower limits of the inner and outer integral). But again, Maple comes to
the rescue; its latest versions make even this task quite easy (we may like to
bypass Maple occasionally and do things ‘by hand’, not to get too lazy).

When f(x, y) is constant (over its support, 0 otherwise), corresponding to
the so called 
	����
 distribution (all points of the ‘target’ are equally likely
to be hit), the value of the above integral equals to the constant value of f(x, y)
multiplied by the area of R; this means that we can normally get the answer
‘geometrically’, bypassing any integration.

The extension to three or more RVs should be obvious.

6.3.1 Marginal distributions

Given a bivariate pdf fX,Y (x, y), we can eliminate one RV, say Y , and get the
marginal pdf of X by

fx(x) =

�

All y|x

fxy(x, y) dy

Note that the range of integration is conditional (i.e. both the lower and upper
limit may depend on x). On the other hand, the resulting interval of possible
x values is marginal (i.e. y is out of the picture) - making it depend on y is a
common mistake!

Also note that, in this case, we have reverted to using subscripts, to empha-
size that fX and fX,Y are two very different functions.
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6.3.2 Conditional pdf

of X given that Y has been observed to result in a specific value y is computed
by a simple substitution, thus:

fx(x | Y = y) =
fxy(x,y)

fy(y)

valid in the corresponding conditional range of x values. Note that the denom-
inator requires us to find the marginal pdf of X first (this can be bypassed by
simply ‘normalizing’ fX,Y (x,y) - dividing it by a constant which adjusts the
total conditional probability to 1).

Bivariate example: One can easily verify that

fxy(x, y) =

�
2x(x− y) when − x < y < x while 0 < x < 1
0 otherwise

represents a legitimate joint pdf of two RVs (say X and Y ), since it is
always non-negative and integrates (over all x-y plane) to 1.

The corresponding X marginal (easy) is

fx(x) =

�
2x

� x
−x(x− y)dy = 4x3 when 0 < x < 1

0 otherwise

The Y marginal (more difficult, unless done by Maple) is

fy(y) =





2
� 1

y
x(x− y)dx = 2

3 − y + 5
3y

3 when − 1 < y < 0

2
� 1

−y x(x− y)dx = 2
3 − y + 1

3y
3 when 0 < y < 1

0 otherwise

One should realize that (when done ‘by hand’), this cannot be done with-
out visualizing the 2D support of the bivariate pdf.

The conditional pdf of X given that Y = −1
2 is

fx(x | Y = −1
2) =





2x(x+ 1
2)

2
3 +

1
2 − 5

24

=
24

23
x+

48

23
x2 when 1

2 < x < 1

0 otherwise

Finally

Pr(X + Y < 1) = 1− Pr(X + Y > 1) = 2

� 1

1/2

x

� x

1−x
(x− y) dy dx =

7

48
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6.3.3 Independence

of X and Y implies that fxy(x, y) = fx(x) · fy(y), with the usual consequences
(same as in the discrete case), most notably fx(x | Y = y) = fx(x); each
conditional distribution equals to its marginal counterpart (‘I don’t care about
Y ’ kind of result). This can be extended to the case of three or more RVs.

We should be able to tell independence from the specific form of fxy(x, y):
whenever this pdf is separable (meaning it is a product of a function of x and a
function of y) and the conditional range of x is (algebraically) independent of
y (i.e. neither the lower limit of this range, nor the upper limit depends on y)
- or the other way round - (same as saying that the support’s boundaries can
be only straight lines parallel to one or the other coordinate axis), X and Y are
independent.

6.4 Expected value

of a continuous RV is computed by

E(X) =

�

All x

x · f(x)dx

Similarly:

E[g(X)] =

�

All x

g(x) · f(x)dx

where g(..) is an arbitrary function.
In the bivariate case this becomes

E[g(X,Y )] =

��

All x,y

g(x, y) · f(x, y)dxdy

Simple moments, central moments, variance, covariance, etc. are defined in
the same manner as in the discrete case (except now, instead of summation, we
integrate). Also, all previous formulas for dealing with linear combinations of
RVs still hold, without change.

Example: Using the pdf of the Univariate example, we get

E(X) =
2

3

� 0

−1

x(1 + x)dx+
4

3

� 1

0

x(1− x)dx =
1

9

E

�
X

1 +X2

�
=

2

3

� 0

−1

x

1 + x2
(1 + x)dx+

4

3

� 1

0

x

1 + x2
(1− x)dx

=
1

6
π +

1

3
ln 2− 2

3
= 0.08798

Similarly, using the Bivariate example

E

�
X

1 + Y 2

�
= 2

� 1

0

x2

� x

−x

(x− y)

1 + y2
dy dx =

2

3
�
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6.4.1 Moment generating function (MGF)

For continuous RVs we lose the concept of PGF; this is replaced MGF, defined
by

M(t) ≡ E
�
etX

�
=

�

All x

et·x · f(x) dx

where t is a real (auxiliary) variable.

Main results

•
E(Xk) = M (k)(t)

			
t=0

where (k) denotes the kth derivative with respect to t. This implies the
following Taylor expansion of a MGF:

M(t) ≃ 1 + E(X) · t+ E(X2)
t2

2
+ E(X3)

t3

3!
+ E(X4)

t4

4!
+ · · ·

• For two independent RVs, we have

MX+Y (t) =Mx(t) ·My(t)

This can be extended to any number of mutually independent RVs.

• And, finally
MaX+c(t) = ect ·Mx(at)

Unfortunately, converting a MGF back to the corresponding pdf is rather dif-
ficult (it requires knowledge of Fourier-transform theory) - we may still attempt
to do it in our labs.

Example: For the RV of our Univariate example, we get

M(t) =
2

3

� 0

−1

ex·t(1 + x)dx+
4

3

� 1

0

ex·t(1− x)dx =
2

3
· 2e

t + e−t − t− 3

t2

Note that the result has a removable singularity at t = 0. �

The concept can be extended to a bivariate distribution, namely

Mxy(t1, t2) = E
�
et1X+t2Y

�
=

��

All x,y

et1x+t2y · f(x, y) dxdy

We can now find E
�
Xk · Y m

�
by

∂k+mMX,Y (t1, t2)

∂tk1∂t
m
2

				
t1=t2=0
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This implies that MX,Y (t1, t2) has the following bivariate Taylor expansion:

1 + µXt1 + µY t2 + E(X
2)
t21
2
+ E(Y 2)

t22
2
+ E(X · Y )t1t2 + ... (6.1)

It is also very easy to find the corresponding marginal MGFs:

Mx(t1) = Mxy(t1, t2 = 0)

My(t2) = Mxy(t1 = 0, t2)
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Chapter 7

Common Continuous
Distributions

First we recall a few key integration formulas:

�
xadx =

xa+1

a+ 1
+C a �= −1

�
dx

x
= ln |x|+C

�
eb·xdx =

eb·x

b
+C

�
xke−xdx = C − k!e−x

�
1 + x+

x2

2
+
x3

3!
+ ...+

xk

k!

�

The last formula implies that

� ∞

0

xke−xdx = k! (7.1)

Now we go over a few basic examples of continuos distributions; more will
be introduced in the Transformation Chapter.

7.1 Uniform

Random experiment: Visualize a spinning pointer with a dial labelled by
real numbers from a (at 0 degrees) to b (at 180 degrees, thus coinciding with a);
X is the value on the dial at which the pointer stops. All real outcomes from a
to b are thus equally likely.

This implies that its pdf is constant on the (a, b) interval, equal to zero

37
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otherwise.

f(x) =

� 1

b− a
when a ≤ x ≤ b

0 otherwise

F (x) =





0 when x < a
x− a

b− a
when a ≤ x ≤ b

1 when x > b

µ =
a+ b

2

σ =
b− a√
12

Proof:

E (X) =
1

b− a

� b

a

x dx =
b2 − a2

2(b− a)
=

(b− a)(b+ a)

2(b− a)
=

a+ b

2

E
�
X2

�
=

1

b− a

� b

a

x2 dx =
b3 − a3

3(b− a)
=

(b− a)(a2 + ab+ b2)

3(b− a)
=
a2 + ab+ b3

3

implying

σ2 =
a2 + ab+ b3

3
−
�
a+ b

2

�2

=
4a2 + 4ab+ 4b3 − 3a2 − 6ab− 3b3

12

=
a2 − 2ab+ b3

12
=

(b− a)2

12
�

Notation: Xǫ U(a, b)

Note: Let us introduce H�������� �
	����	 defined by

H(x) =
�

0 when x < 0
1 when x ≥ 0

With its help, we can rewrite the above pdf in the following manner

f(x) =
H(x− a)−H(x− b)

b− a

having the advantage of being correct for any x (convenient when using
Maple).

7.2 Exponential

Random experiment: Customers arriving at a store randomly (and indepen-
dently of each other) at the (long run) average rate of λ (arrivals per unit of
time); X is the time till the next arrival (from now).
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To find the corresponding cdf at a time x we divide the (0, x) interval into
n (many) subintervals of the same length x

n , and assume that the probability

of an arrival at any of these subintervals is λ·x
n , and that this is independent

of what happens at any of the other subintervals; note that this makes the
expected number of arrivals within the (0, x) time interval equal to λ · x. Using
this model, the probability that X > x, which is the value of 1−F (x), is given
by �

1− λ · x
n

�n

(no arrivals in any of these subintervals). The only trouble with this model is
that, during any of the subintervals, we may get more than one arrival! How
do we fix that? Simple: by increasing the value of n indefinitely; in the n→∞
limit we thus get

F (x) =

�
0 when x < 0
1− exp (−λ · x) when 0 ≤ x

where λ is the only parameter of this distribution. Alternately (which is more
common), one can use the average time between consecutive arrivals, namely
β ≡ 1

λ , instead, getting

F (x) = 1− exp

�
−x
β

�
when 0 ≤ x

(‘0 otherwise’ will be assumed from now on). This implies

f(x) =

exp

�
−x
β

�

β
when 0 ≤ x

for the corresponding pdf, which consists of the numerator (a function of x) and
the denominator, which is the 	��
���"�	� ��	���	� (the full area of the

numerator), i.e. β =
�∞

0
exp



−x
β

�
dx.

This yields the following MGF:

M(t) =
1

β

� ∞

0

exp


−x
β + t · x

�
dx =

1

β


t− 1

β

� exp


−x
β + t · x

�			
∞

x=0
=

1

1− β · t

assuming that t < 1
β (the fact that a MGF exists only when t is ‘small’ is of no

consequence to us - we need not worry about these things). Taylor-expanding

this MGF yields M(t) ≃ 1 + β · t+ 2β2 t2

2 + ... which implies that

µ = E (X) = β

E
�
X2

�
= 2β2
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further implying

σ2 = E
�
X2

�
− µ2 = β2

The standard deviation of an exponential distribution is thus equal to its mean
value.

Notation: Xǫ E(β)

7.2.1 Median

The 
����	 µ̃ of a (continuous) distribution is defined by

Pr(X < µ̃) = Pr(X > µ̃) =
1

2

It is usually found by solving

F (µ̃) =
1

2

In the case of an exponential distribution, we get

µ̃ = β · ln 2

by solving

1− exp


− µ̃
β

�
=

1

2

Since ln 2 = 0.69315, the median of an exponential distribution is substantially
smaller than the corresponding mean (e.g. µ = 5 min but µ̃ = 3 min 28 sec).

Note that when Y = g(X) and g is a non-decreasing (non-increasing) func-
tion of X, then

µ̃Y = g(µ̃X)

Remember that this is true for the two medians, but not for the corresponding
means (as we already know).

Proof:

Pr (Y < µ̃Y ) = Pr


g(X) < g(µ̃X)

�
= Pr (X < µ̃X) =

1

2

in the non-decreasing case, and

Pr (Y < µ̃Y ) = Pr


g(X) < g(µ̃X)

�
= Pr (X > µ̃X) =

1

2

in the non-increasing case. �

For example, when X is exponential with the mean of β, the median of
Y = X

1+X is simply β·ln 2
1+β·ln 2 .
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7.3 Gamma

This distribution is defined as a sum of k independent RVs, all having the E(β)
distribution (i.e. the time from now until the kth arrival). This means that we
have, immediately (‘for free’, so to speak):

µ = k β

σ =
√
kβ

M(t) =
1

(1− β · t)k

The corresponding pdf must therefore equal to

f(x) =

xk−1 exp

�
−x

β

�

(k − 1)! · βk
when 0 ≤ x

Proof: We show that this f(x) results in the correct MGF:

M(t) =

�∞
0 xk−1 exp

�
−x
β
+ t · x

�
dx

(k − 1)! · βk

=

�∞
0 ( 1

β − t)k−1xk−1 exp


−x · ( 1

β − t)
�
( 1
β − t)dx

( 1
β − t)k(k − 1)! · βk

=

�∞
0

uk−1 exp (−u) du
( 1
β − t)k(k − 1)! · βk

=
1

(1− β · t)k

using the u = ( 1
β − t)x substitution and (7.1). �

The corresponding cdf is

F (x) = 1− exp

�
−x

β

�
·
k−1�

i=0

�
x

β

�i
when 0 ≤ x

which can be proven by simple differentiation (using the product rule, all terms
but one cancel out).

Notation: Xǫ gamma(k, β)

7.3.1 Introducing the Γ function

The gamma distribution has two parameters, β which must be positive and k
which (until now) was a positive integer. Surprisingly, all the above formulas
(with the obvious exception of cdf) remain valid when k is allowed to have a
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positive real value (to emphasize that, we will call it α rather than k), as long
as we replace (k − 1)! in the denominator of f(x) by Γ(α), defined as

Γ(α) ≡
� ∞

0

xα−1e−xdx

(clearly the correct normalizing constant of the f(x) numerator).
Note that we have also lost the original interpretation of X as the time till

the kth arrival - there is no such thing as the 3.1784th arrival - but non-integer
values of k are useful in other context (as we will discover later).

The main properties of the Γ function are: Γ(k) = (k − 1)! for an integer
argument, and

Γ(α) = (α− 1) · Γ(α− 1)

Γ(1) = 0! = 1

Γ(1
2) =

√
π

Proof of the last statement:

Γ(1
2) =

� ∞

0

exp(−x) dx√
x

=
√
2

� ∞

0

exp(−z2

2 )z dz

z
=
√
π

using the x = z2

2 substitution and () of the next section. �

7.4 Normal (standardized)

This distribution will be properly introduced in the next chapter; here we just
summarize the key formulas.

This distribution is so important that we reserve the letter Z to denote the
corresponding RV.

f(z) =

exp

�
−z

2

2

�

√
2π

when −∞ < z <∞

µ = 0

σ = 1

M(t) = exp

�
t2

2

�

The cdf does not have a simple analytical form (in terms of the ‘usual’ func-
tions; it is a new, ‘special’ function); we can always compute probabilities by
integrating f(z).

Some proofs: To show that
√
2π is the correct normalizing constant of f(z), we

have to use the following trick: instead of evaluating
�∞
−∞ exp



− z2

2

�
dz,
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we compute

� ∞

−∞
exp

�
−z

2
1

2

�
dz1 ×

� ∞

−∞
exp

�
−z

2
2

2

�
dz2

=
��

whole plane

exp


− z21+z22

2

�
dz1dz2

=

� 2π

0

� ∞

0

exp

�
−r

2

2

�
r drdθ = 2π

� ∞

0

e−udu = 2π

with the help of polar coordinates and the u = r2

2 substitution. This
implies that � ∞

−∞
exp

�
−z

2

2

�
dz =

√
2π (7.2)

To derive the corresponding MGF is now quite easy:

M(t) =
1√
2π

� ∞

−∞
exp

�
−z

2

2
+ t · z

�
dz

=
1√
2π

� ∞

−∞
exp

�
−z

2 − 2zt

2

�
dz

=
exp(− t2

2 )√
2π

� ∞

−∞
exp

�
−z

2 − 2zt+ t2

2

�
dz

=
exp(− t2

2 )√
2π

� ∞

−∞
exp

�
−(z − t)2

2

�
dz

=
exp(− t2

2 )√
2π

� ∞

−∞
exp

�
−u

2

2

�
du = exp(−t

2

2
)

since the value of the last integral is
√
2π. �

Taylor-expanding

exp(
t2

2
) ≃ 1 +

t2

2
+ ...

verifies that the mean of this distribution is 0 and the variance (and the standard
deviation) equal to 1.

Notation: Zǫ N (0, 1)

7.4.1 Normal (general)

A new variable can be introduced by linearly transforming Z, thus:

X ≡ σ · Z + µ

where σ > 0.
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Note that a linear transformation preserves the shape of the pdf (the new
fX(x) looks exactly the same as the old fZ(z), just the scale is different). We
now get

fX(x) =

exp

�
−(x− µ)2

2σ2

�

√
2π · σ

µX = µ

σX = σ

MX(t) = exp

�
t2σ2

2
+ µ · t

�

The last three lines are based on previous formulas; to get the new pdf we have
to learn how to transform RVs (done shortly).

Notation: Zǫ N (µ, σ)



Chapter 8

Central Limit Theorem

This section links Probability with Statistics, yielding the most important result
of these areas of study.

8.1 Sampling a distribution

A ��	��
 �	����	��	� ��
��� (RIS) of ��"� n from a specific distribution
is a collection of n independent RVs X1, X2, ...Xn, each of them having this
distribution (this is achieved by performing the corresponding experiment, in-
dependently, that many times). It is important to realize that, being RVs, they
have not been observed to attain any specific value yet (the n repetitions of the
experiment are yet to be done). The Xs are sometimes referred to as being IID
(independent, identically distributed).

A ��
��� ��������� is any function (expression) of these n RVs, thus defin-
ing a new (single) RV. A prime example is provided by the so called

8.1.1 Sample mean

defined as the simple average of the Xi’s, thus

X̄ ≡
�n

i=1 Xi

n

The sample mean (unlike all the other ‘means’ we have seen before), is clearly a
RV, having its own expected value (we could also call it the ‘mean of the sample
mean’), variance, and distribution (also called, in this context, its ��
���	�
�������
���	). The obvious task is to relate these to the distribution from
which the sample is drawn (the sampled distribution - the names get confusing!).

This is easy to do for the expected value and variance:

E
�
X̄
�
=

�n
i=1 E (Xi)

n
=

�n
i=1 µ

n
=

n · µ
n

= µ

45
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and

Var
�
X̄
�
=

1

n2

n�

i=1

Var (Xi) =
n · σ2

n2
=

σ2

n

Note that this implies

σX̄ =
σ√
n

(one of the most important formulas of Statistics).
But how about the distribution itself, namely: how does the shape of the

distribution of X̄ (in terms of its pdf) relate to pdf of the distribution from
which we sample (of the individual, single Xs)?

When n = 1, the answer is simple: the two distributions are identical.
But, as soon as we reach n = 2, the two shapes will already visibly differ (as

an example, compare the E(1) and γ(2, 1) distributions).
And, as n increases (e.g. the gamma(n, 1) distribution), something very sur-

prising happens: the resulting shape has nothing to do with the original distri-
bution; it looks the same in all cases (regardless which distribution we sample)!
What exactly is this common ���
������ (implying n→∞) distribution?

8.1.2 Stating the CLT

We now prove that the pdf of

Zn ≡
X̄ − µ

σ√
n

(8.1)

approaches, as n → ∞, the pdf of the standardized Normal distribution (as
defined earlier).

Note that Zn is standardized (i.e. it has the mean of 0 and standard deviation
equal to 1) for each value of n (only its shape changes).

Proof: Instead of dealing with pdf, we find the limit of the corresponding MGFs
(a lot easier).

First we note that (8.1) can be rewritten as follows:

Zn =
n�

i=1

Xi − µ

σ
√
n
≡

n�

i=1

Ui√
n

which is a sum of independent, identically distributed RVs (note that the
Ui are all also standardized). The MGF of Zn is therefore the MGF of a
single Ui√

n
, raised to the power of n.

We know that the MGF of Ui√
n
can be expanded in the following manner:

1 +
E(Ui)√

n
· t+ E(U2

i )

n
· t

2

2
+
E(U3

i )

n3/2
· t

3

6
+
E(U4

i )

n2
· t

4

24
+ ...

= 1 +
1

n
· t

2

2
+

α3

n3/2
· t

3

6
+
α4

n2
· t

4

24
+ ...
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where α3 and α4 is the skewness and kurtosis (respectively) of the original
Xi distribution. This means that the MGF of Zn is

�
1 +

1

n
· t

2

2
+

α3

n3/2
· t

3

6
+
α4

n2
· t

4

24
+ ...

�n
(8.2)

and all we have to do is finding the n→∞ limit.

One has to recall (from Calculus) that

lim
n→∞

�
1 +

a

n
+

b

n3/2
+ ...

�n
= ea

(terms with higher-than-one power of n in the denominator do not affect
it) to see that the limit of (8.2) is

lim
n→∞

MZn(t) = exp

�
t2

2

�

clearly identifiable as the MGF of N (0, 1). �

We may then use the CLT to approximate the distribution of X̄ by the
Normal distribution with the mean of µ and the standard deviation of σ√

n
.

The accuracy of this approximation increases with n and deteriorates when n
becomes too small. How small is ‘small’ depends on the distribution from which
we sample; for some such distributions n ≥ 10 may be more than sufficient, for
others, averaging even thousands of observations may not be enough! The usual
requirement that n be at least 30 should thus be seen only as a rule of thumb
which can be applied to most, but definitely not to all situations.

Example: A standard deck of cards is shuffled and 10 cards are dealt from it;
let X represent the number of spades obtained. This is repeated, indepen-
dently, 30 times. Use the Normal approximation to find the Pr

�
X̄ > 3

�
.

Solution:

Pr
�
X̄ > 3

�
≃ Pr


 X̄ − 10 · 1

4�
10· 14 · 34 · 4251

30

>
90.5
30 − 2.5

0.22687




= Pr (Z > 2.2774) = 1√
2π

� ∞

2.2774

exp


− z2

2

�
dz = 1.138%

Here one should realize that, when the total number of spades one gets in
30 rounds of this experiment is 90, the X̄ > 3 condition is still not met
(90 is the largest value still not contributing), whereas 91 is the first value
which meets this condition; note that in our computation we took the
average of the two values (namely 90.5) - this is called the ��	��	
���
���������	 and it helps to improve the approximation’s accuracy.

In this case it is possible to find (with the help of PGF) the exact answer,
which turns out to be 1.226%. The error of the approximation is thus only
0.088%.
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8.2 Sampling a bivariate distribution

This time, the RIS consists of n independent pairs of (X,Y ) observations; it
is important to realize that the Xs are mutually independent and so are the
Y s; furthermore Xi is also independent of Yj when i �= j, but Xi and Yi are
correlated (for each i from 1 to n). Their (common) covariance (let us denote
it C) can be computed based on the bivariate distribution being sampled.

For the two resulting sample means X̄ and Ȳ the univariate formulas still
hold, namely

E
�
X̄
�

= µx

Var(X̄) =
σ2
x

n
E
�
Ȳ
�

= µy

Var(Ȳ ) =
σ2
y

n

but how about their covariance? Well, it is not to difficult to see that

Cov(X̄, Ȳ ) =

�n
i,j=1Cov(Xi, Yj)

n2
=

�n
i=1Cov(Xi, Yi)

n2
=
C

n

due to the distributive law of covariance. This implies that

ρX̄,Ȳ =
C
n

σX√
n
· σX√

n

=
C

σX · σX
= ρ

i.e. the correlation coefficient between the two sample means is the same as the
correlation coefficient between a single pair of X,Y values (unlike the variances,
which both decrease with n).

8.2.1 Bivariate CLT

Taking the same approach as in the univariate case (skipping some of the details)
and defining

Ui ≡ Xi − µx
σx

Vi ≡ Yi − µy
σy

we can expand the joint MGF of ( Ui√
n
, Vi√

n
) using (6.1):

1 +
t21
2n

+
t22
2n

+
ρ

n
t1t2 + ...
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Raising this to the power of n and taking the n→∞ limit yields the joint MGF
of the two standardized sample means, getting

exp

�
t21 + t22 + 2ρ t1t2

2

�
(8.3)

This corresponds to the so-called

8.2.2 Standardized bivariate Normal

distribution, which has the following joint pdf:

f(z1, z2) =

exp

�
−z

2
1 + z2

2 − 2ρ z1z2

2(1− ρ2)

�

2π
�
1− ρ2

everywhere

where we have removed the subscripts from ρ (it is helpful to plot a few examples
- use Maple). Let us verify (by a relatively simple double integration) that this
distribution has a joint MGF given by (8.3).

� ∞

−∞

� ∞

−∞
exp

�
−z

2
1 + z2

2 − 2ρ z1z2

2(1− ρ2)
+ t1z1 + t2z2

�
dz1dz2

=

� ∞

−∞
exp

�
−z

2
2 − 2t2z2(1− ρ2)

2(1− ρ2)

�� ∞

−∞
exp

�
−z

2
1 − 2ρ z1z2 − 2t1z1(1− ρ2)

2(1− ρ2)

�
dz1dz2

= exp

�
t21(1− ρ2)

2

�� ∞

−∞
exp

�
−z

2
2 − 2t2z2(1− ρ2)− ρ2z2

2 − 2ρ z2 t1(1− ρ2)

2(1− ρ2)

�
×

� ∞

−∞
exp

�
−
�
z1 − ρ z2 − t1(1− ρ2)

�2

2(1− ρ2)

�
dz1dz2

= exp

�
t21(1− ρ2)

2

�� ∞

−∞
exp

�
−z

2
2 − 2t2z2 − 2ρ z2 t1

2

�
dz2 ×

�
2π(1− ρ2)

= exp

�
t21(1− ρ2) + t22 + t21ρ

2 + 2ρt1t2
2

�� ∞

−∞
exp

�
−(z2 − t2 − ρ t1)2

2

�
dz2 ×

�
2π(1− ρ2)

= exp

�
t21 + t22 + 2ρt1t2

2

�
× 2π

�
(1− ρ2)

yet to be divided by 2π
�
(1− ρ2); this yields (8.3). �

It is obvious that both marginals of this distribution are N (0, 1), i.e. stan-
dardized Normal; let us find the conditional distribution of Z1 given Z2 = z.
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This is a routine exercise:

f(z1|Z2 = z) =
f(z1, z)

exp(−z2

2 )√
2π

=

exp

�
z2

1 + z
2 − 2ρ z1z− z2 + z2ρ2

2(1− ρ2)

�

√
2π ·

�
1− ρ2

=

exp

�
(z1 − ρ z)2

2(1− ρ2)

�

√
2π ·

�
1− ρ2

which can be easily identified asN (ρ z,
�
1− ρ2); one should be able to visualize

this.

Note that ρ = 0 does imply that Z1 and Z2 are independent (true only for
the Normal distribution).

8.2.3 General bivariate Normal

distribution results from re-scaling Z1 and Z2, thus:

X = σxZ1 + µx
Y = σyZ2 + µy

(Please note that these two RVs are no longer the X and Y of the distribution
which we sampled two sections ago.) Also note that such a linear transformation
does not change the value of a correlation coefficient; X and Y thus have the
same ρ as the original Z1 and Z2 pair did.

This also implies that any further linear transformation of either X or Y (or,
individually, each X and Y, e.g. U = 3X−4 and V = −2Y +7) will result in the
new pair still having a bivariate Normal distribution - only the corresponding
means and sigmas need to be recomputed. The new correlation coefficient ρuv
will have the same absolute value as that of ρxy, but it will change sign whenever
the linear coefficients (3 and −2 of our example) have opposite signs.

In a more complicated transformation of the U = 5X − 3Y + 2 and V =
4X + 2Y − 4 type, the joint distribution of U and V also remains bivariate
Normal, but this time we have to recompute ρU,V as well as the two means and
sigmas.

Notation: (X,Y )ǫN (µX , µY , σX , σY , ρ); we need five parameters to specify
this distribution.

The corresponding marginal distributions of (individually) X and Y are
N (µx, σx) and N (µy, σy) respectively. This follows from their joint MGF (the
next formula) by substituting t2 = 0 and t1 = 0 respectively.

The joint pdf of the new pair gets kind of messy, but it is a routine exercise
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to spell it out as well (we will not do it at this point). The joint MGF becomes

Mxy(t1, t2) = E
�
eX·t1+Y ·t2� = E

�
eσxZ1·t1+σyZ2·t2� eµxt1+µyY t2

= exp

�
σ2
x · t21 + σ2

y · t22 + 2Cov(X,Y ) · t1t2
2

+ µxt1 + µyt2

�

The conditional distribution of X given Y = y equals the conditional distri-

bution of σxZ1 + µx given Z2 =
y−µy
σy

, namely

N
�
µx + σxρ

y− µy
σy

, σx
�
1− ρ2

�

To answer a probability question about such X and Y, we can always convert
it into a question about Z1 and Z2 and (double) integrate the corresponding
pdf.
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Chapter 9

Transforming RVs

In this chapter we investigate the following issue: Given the distribution of
X, how do we find the distribution of Y ≡ g(X) for any specific function g.
We will deal exclusively with continuous distributions (the discrete case is less
interesting and more messy).

We refer to X as the old RV, Y is the new RV (X is ���	����
�� into
Y ).

Eventually, we also learn how to transform two RVs into one or two new
RVs, etc.

9.1 Univariate case

by which we mean transforming one old RV into one new RV.
There are two techniques for doing this: the cdf technique (more general

but also computationally more clumsy) and the pdf technique (it requires the
transformation to be one-to-one, but it is then more elegant and faster).

9.1.1 Distribution-function (or F ) technique

works as follows: we find the cdf of the new RV Y by computing Pr(Y ≤ y) =
Pr (g(X) ≤ y) . This amounts to solving the g(X) ≤ y inequality for X (usually
resulting in an interval of values), and then integrating f(x) over this interval.

Cauchy example: ConsiderXǫ U(−π
2 ,

π
2 ); this corresponds to a spinning wheel

with a two-directional pointer, say a laser beam attached to it, where X is
the pointer’s angle from a fixed direction when the wheel stops spinning.
We want to know the distribution of Y = σ̃ tan(X)+ µ̃; this represents the
location of a dot our laser beam would leave on a screen placed σ̃ units
from the wheel’s center, with a scale whose origin is µ̃ units off center.

Solution: We start by writing down

Fx(x) =
x+ π

2

π
=

x

π
+
1

2
when − π

2
< x <

π

2
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To get Fy(y) we proceed as follows:

Pr


σ̃ tan(X)+ µ̃ ≤ y

�
= Pr

�
X ≤ arctan(

y − µ̃

σ̃
)

�
=

Fx

�
arctan(

y − µ̃

σ̃
)

�
=

1

π
arctan(

y − µ̃

σ̃
) +

1

2

where y can have any real value. Usually, we can relate better to the
corresponding pdf, namely

fy(y) =
1

π
· σ̃

σ̃2 + (y − µ̃)2

This function looks superficially similar to the Normal pdf (it is bell
shaped), but its properties are very different. �

The distribution we have just discovered is so important that we dedicate
the next section to it; we call it the

Cauchy distribution

Since the
∞�
−∞

y · fY (y) dy integral leads to ∞−∞, its mean does not exist (its

�	����	���), similarly, its variance has an infinite value. Yet it possesses a clear
center at y = µ̃ and a well-defined width equal to σ̃. But if these are not the
mean and standard deviation, what are they?

The answer: µ̃ is the so called 
����	 of the distribution, defined (for any
distribution, not just Cauchy) as the unique solution to

F (µ̃) =
1

2

(the corresponding RV has a 50% chance to be smaller than µ̃), and σ̃ is its
semi-inter-quartile range (#
������ ��������	 for short), defined by

σ̃ ≡ QU −QL

2

where QU and QL are the 
���� and ����� #
�������, i.e. solutions to
F (QU) =

3
4 and F (QL) =

1
4 respectively. One can easily verify that, in the case

of Cauchy distribution, QL = µ̃− σ̃ and QU = µ̃+ σ̃.
Notation: Y ǫ C(µ̃, σ̃)

More examples

of a univariate transformation.

Example: Let X have the following pdf:

f(x) = 6x(1− x) when 0 < x < 1

with the understanding (from now on) of: zero otherwise. Find the pdf of
Y = X3.
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Solution: First we realize that 0 < Y < 1. Secondly, we find

Fx(x) = 6

x�

0

(x− x2) dx = 6(
x2

2
− x3

3
) = 3x2 − 2x3

And finally:

Fy(y) ≡ Pr(Y ≤ y) = Pr(X3 ≤ y) =

Pr(X ≤ y
1
3 ) = Fx(y

1
3 ) = 3y

2
3 − 2y

This easily converts to

fy(y) = 2y−
1
3 − 2 when 0 < y < 1

(zero otherwise - one last time). Note that when y → 0 this pdf becomes
infinite. �

Example (transforming Uniform to Exponential): Let Xǫ U(0, 1). Find
and identify the distribution of Y = − lnX (its support is obviously 0 <
y <∞).

Solution: First we need Fx(x) = x when 0 < x < 1. Then

Fy(y) = Pr(− lnX ≤ y) = Pr(X ≥ e−y)

= 1− Fx(e
−y) = 1− e−y when y > 0

This implies
fy(y) = e−y when y > 0

which can be identified a E(1). Note that Y = −β · lnX (where β > 0)
would be E(β).

Example (introducing χ2
1): Assuming that Zǫ N (0, 1), find the distribution

of Y = Z2.

Solution:

Fy(y) = Pr(Z2 ≤ y) = Pr(−√y ≤ Z ≤ √y) = FZ(
√
y)− FZ(

√
y).

Since we do not have an explicit expression for FZ(z) it would appear that
we are stuck at this point, but we can still get the corresponding fY (y)
by simple differentiation:

fy(y) =
dFy(y)

dy
=
dFz(

√
y)

dy
− dFz(−√y)

dy

=
1

2
y−

1
2 fz(

√
y) +

1

2
y−

1
2 fz(−

√
y) =

y−
1
2 e−

y
2√

2π

when y > 0. This can be identified as the gamma(1
2 , 2) distribution, but

due to its importance, we also call it a ���-�#
��� distribution with one

degree of freedom. Note that its MGF is thus equal to (1− 2t)−1/2. �
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General chi-square

is defined as the distribution of a sum of k independent RVs of the N (0, 1) type.
Its MGF is thus given by

M(t) =


(1− 2t)−1/2

�k
=

1

(1− 2t)k/2

which can be identified as MGF of the gamma(k2 , 2) distribution (we know all its
properties already). It is also called the chi-square distribution with k (integer)
degrees of freedom and denoted χ2

k.

Linear transformation

Note that any RV X can be transformed into Y = σX+µ where σ > 0 becomes
the so-called ����� (scaling) parameter, and µ is the �������	 parameter of
the new distribution. Often Y represents the original X expressed in new units
(ie. converting temperature from Celsius to Fahrenheit, weight from kilograms
to pounds, distance from km to miles, etc.), thus preserving the shape of the
distribution This implies that

Fy(y) = Pr (σX + µ ≤ y) = Pr

�
X ≤ y − µ

σ

�
= Fx

�
y − µ

σ

�

fy(y) =
1

σ
· fx

�
y − µ

σ

�

In each of these cases, any formula relating to X can then be easilty converted
into a corresponding formula for Y. This means that, by understanding the
C(0, 1), N (0, 1), E(1) and U(0, 1) distributions, we can then easily deal with
C(µ̃, σ̃), N (µ, σ), E(β) and U(a, b), since µ̃, µ and a are the respective location
parameters and σ̃, σ and b− a are similarly the scaling parameters.

In the case of gamma(α,β) distribution, while β remains a scale parameter
(inherited from exponential), α is the so-called ����� parameter; distinct values
of α lead to distributions of different shapes and properties.

9.1.2 The pdf (or f) technique

is a bit faster and usually somehow easier (technically) to carry out, but it
works for one-to-one (typically either increasing or decreasing - such functions
are called 
�	���	�) transformations only (e.g. it would not work in our last
Y = Z2 example). This can be easily established by plotting the transformation
function over the support of the old RV (i.e. ignoring values which cannot
happen; one can also ignore individual, ie. single-point exceptions to the one-
to-one rule).

Incidentally, note that for monotone transformations

µ̃Y = g(µ̃X)
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i.e., unlike the mean, the median does transfrom according to g. In any such
(monotone) case, we get

Fy(y) = Pr(g(X) < y) =

�
Pr(X < g−1(y)) = Fx

�
g−1(y)

�
increasing

Pr(X > g−1(y)) = 1− Fx
�
g−1(y)

�
decreasing

To build the pdf of Y = g(X), all we have to do is

fy(y) = ±fx
�
g−1(y)

�
· dg

−1(y)

dy
= fx

�
g−1(y)

�
·
				
dg−1(y)

dy

				

(similar to what we do when replacing

�
fx(x) dx by

�
... dy integration).

The proof rests on the following picture:

The procedure then consists of three simple steps (after verifying that the
transformation is one-to-one and establishing the interval of possible Y values
as a by-product), namely:

(i) Solve the Y = g(X) equation for x (in terms of y), switching to small
letters; we denote this solution by x(y) - this is always a specific function
of y.

(ii) Substitute x(y) for the argument of fX(x), getting a function of y.

(iii) Multiply this by
			dx(y)

dy

			 .
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This results in fy(y) of the new RV.
Let us quickly re-do the examples used to demonstrate the cdf technique.

• Xǫ U(−π
2 ,

π
2 ) and Y = σ̃ tan(X) + µ̃

Solution:

x(y) = arctan(
y − µ̃

σ̃
)

fx(x(y)) =
1

π

fy(y) =
1

π
· dx(y)

dy
=

1

π
· σ̃

σ̃2 + (y − µ̃)2

where y can have any real value. �

• f(x) = 6x(1− x) when 0 < x < 1, and Y = X3

Solution:

x(y) = y1/3

fx(x(y)) = 6y1/3(1− y1/3)

fy(y) = 6y1/3(1− y1/3) · 1
3
y−2/3 = 2(y−1/3 − 1)

when 0 < y < 1. �

• Xǫ U(0, 1) and Y = − lnX

Solution:

x(y) = e−y

fx(x(y)) = 1

fy(y) = 1 · e−y = e−y when y > 0 �

Let us now move on to

9.2 Bivariate Transformations

First we discuss the case of transforming two RVs into a single one.

9.2.1 The cdf (or F ) technique

follows essentially the same pattern as the univariate case:
The new random variable Y is now defined by Y ≡ g(X1,X2), where we know

the bivariate distribution of X1 and X2 (they are not necessarily independent,
even though in most of our examples they are).
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We find
Fy(y) = Pr(Y ≤ y) = Pr (g(X1,X2) ≤ y)

by realizing that the g(X1,X2) ≤ y inequality corresponds to (for each y) a 2D

region in the (x1, x2) plane. Once we establish how this region looks like, all
we need to compute is the double integral of f(x1, x2) over this region. The
technique is thus simple in principle, but not in technical details.

Example (ratio of two exponentials): Suppose that X1 and X2 are inde-

pendent RVs, both from E(1), and Y =
X2

X1
. Note that we would be getting

the same answer were both X1 and X2 from E(β), as long as it is the same

(positive) β.

Solution:

Fy(y) = Pr

�
X2

X1
≤ y

�
= Pr(X2 ≤ y X1) =

��

0≤x2≤yx1

e−x1−x2 dx1 dx2

=

∞�

0

e−x1
y x1�

0

e−x2 dx2dx1 =

∞�

0

e−x1(1− e−y x1)dx1

=

∞�

0



e−x1 − e−x1(1+y)

�
dx1 = 1− 1

1 + y
when y > 0

This implies that

fy(y) =
1

(1 + y)2
when y > 0

which is an example of a RV having an infinite mean and variance (some-
times we say that they ‘do not exist’, meaning that they do not have
finite values). It is also a special case of a so-called Fisher distribution
(introduced later). �

Example - sum of two U(0, 1): To find FY (y) of Y = X1 + X2, where the
two Xs are independent, each having the U(0, 1) distribution, we must
integrate their joint pdf, identically equal to 1, over the following region
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when 0 < y < 1. This answer is simply the area of the corresponding

triangle, equal to y2

2 .

Similarly, when 1 < y < 2, Pr(X1 +X2 < y) is equal to 1 minus the area of
the following triangle

which yields 1− (2−y)2

2 . Differentiating, we get the corresponding pdf:

fy(y) =

�
y 0 < y < 1
2− y 1 < y < 2

�

χ2
2 example: This time Z1 and Z2 are independent RVs from N (0, 1) and Y =

Z2
1 + Z2

2 (we have done this already and know the answer, but let us
proceed anyhow).

Solution:

Fy(y) = Pr(Z2
1 + Z2

2 ≤ y) =
1

2π

��

z21+z22≤y

e−
z21+

2
2

2 dz1dz2

go polar
=

1

2π

2π�

0

√
y�

0

e−
r2

2 · r drdθ w= r2

2=

y
2�

0

e−wdw = 1− e−
y
2

when y > 0. This is the cdf of E(2) - same as χ2
2. �

Convolution example: Assume that X1 and X2 are independent RVs whose
pdf is f1(x1) and f2 (x2) respectively. Find the distribution of Y = X1 +
X2.

Solution:

Fy(y) = Pr(X1 +X2 ≤ y) =

��

x1+x2≤y

f1(x1) · f2(x2)dx1dx2

=

� ∞

−∞
f1(x1) ·

�� y−x1

−∞
f2(x2)dx2

�
dx1
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Differentiating it with respect to y (remember how it is done?) results in

fy(y) =

� ∞

−∞
f1(x1) · f2(y − x1)dx1

≡
� ∞

−∞
f1(x) · f2(y − x)dx

Doing it the other way around must yield the same answer:

fy(y) =

� ∞

−∞
f2(x) · f1(y − x)dx

Combining two pdfs in this manner is called their ��	���
���	. �

Special cases of convolution

• When X1 and X2 are independent and each has the U(0, 1) distribution,
the pdf of Y ≡ X1 +X2 is

fy(y) =

� min(1,y)

max(0,y−1)

1 dx =

�
y when 0 < y < 1
2− y when 1 < y < 2

We will call this (rather informally) the triangular distribution. �

• Replacing U(0, 1) by C(0, 1), whose pdf is f(x) = 1
π · 1

1+x2 , we get

fy(y) =
1

π2

∞�

−∞

1

1 + x2
· 1

1 + (y − x)2
dx =

2

π
· 1

4 + y2

(for any real y).

The last result can be easily converted to the pdf of U = Y
2 = X1+X2

2 (the
sample mean of two observations), yielding

fu(u) = 2 · fy(2u) = 2 · 2
π
· 1

4 + (2u)2
=

1

π
· 1

1 + u2

Thus, the sample mean has the same Cauchy distribution as each of the
two individual observations (furthermore, this can be extended to a sample
of any size). This is a shocking result: it implies that the sample mean
of even millions of values from a Cauchy distribution cannot estimate the
location of its center (of the laser gun hidden behind a screen) any better
than a single observation!!? We knew that the CLT (which requires µ and
σ to be finite) would break down in this case, but few of us expected this.
But, if the sample mean fails so spectacularly to locate the center, is there
something else (a different sample statistic) we could use for this purpose?
Something which would improve (in terms of its standard deviation getting
smaller) when the sample size increases. We address this issue later.
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• Replacing C(0, 1) by E(β), the pdf of Y = X1 +X2 is

fy(y) =
1

β2

y�

0

exp(−β x) exp(−β(y − x)) dx =
y exp(−β y)

β2 y > 0

which can be identified as the pdf of gamma(2,β) - we had expected that,
did not we? �

9.2.2 The pdf (or f) technique

works somehow faster, even though it may appear to be more complicated. It
is based on the same principles as when changing variables in a double integral.

Example: Using polar coordinates, this is how we would deal with the following
double integral

� ∞

−∞

� ∞

−∞

1

2π
exp

�
−z

2
1 + z2

2

2

�
dz1dz2 =

� 2π

0

1

2π

� ∞

0

exp

�
−r

2

2

�
r dr dθ

=

� 2π

0

1

2π
dθ ×

� ∞

0

exp

�
−r

2

2

�
r dr

implying that, when Z1 and Z2 and independent standardized Normal,

R =
�
Z2

1 + Z2
2 is a RV with a pdf equal to r exp



− r2

2

�
when 0 < r <∞,

and Θ = arctan(Z2, Z1) is Uniform(0, 2π).

The technique thus requires the following steps:

• It can work only for one-to-one (i.e. ‘invertible’) transformations. The
necessary (but not sufficient) condition to make this possible requires
transforming two old RVs into two new RVs. This implies that the new
RV Y ≡ g(X1,X2) must be accompanied by yet another arbitrarily chosen
function of X1 and/or X2 (taken to be the second new RV). We usually
choose this auxiliary RV in the simplest possible manner, i.e. we make it
equal to X2 (or X1). We then re-label the original Y as Y1 and call the
auxiliary RV Y2. We then:

• Invert the transformation, i.e. solve the two equations y1 = g(x1, x2)
and y2 = x2 for x1 and x2 (ie. express each x1 and x2 in terms of y1

and y2). Getting a unique solution guarantees that the transformation is
one-to-one.

• Substitute this solution x1(y1, y2) and x2(y2) into the joint pdf of the
old X1,X2 pair (yielding a function of y1 and y2).

• Multiply the resulting function by the transformation’s J������	, de-

fined as

					
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

					 . This yields the joint pdf of Y1 and Y2. At the same
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time, we must establish the 2D region of possible (y1, y2) values (this is
often the most difficult part of the procedure - this should be done by
spelling out the conditional range of Y2 and the marginal range of Y1).

• Eliminate Y2 (the ‘phoney’ RV) by dy2 integration of the joint pdf of Y1

and Y2 over the conditional range of Y2.

We will go over a few examples.

‘Catching fish’ example: X1, X2ǫ E(1), independent; Y ≡ X1

X1+X2
(the time

of the first ‘catch’, relative to the time needed to catch two fish). Again,
changing E(1) to E(β), as long as it is the same β for both Xs, does no
affect the answer, since X

β ǫ E(1) when XǫE(β).

Solution: Re-labelling Y as Y1 and adding Y2 ≡ X2, we get

x1y1 + x2y1 = x1

y2 = x2

which implies

x2(y2) = y2

x1(y1, y2) =
y1 · y2

1− y1

Substitute into f(x1, x2) = e−x1−x2 getting

e
−y2



1+

y1
1−y1

�
= e−

y2
1−y1

Multiply it by 				
y2

1−y1+y1
(1−y1)2

y1
1−y1

0 1

				 =
y2

(1− y1)2

getting

f(y1, y2) =
y2 · e−

y2
1−y1

(1− y1)2
when 0 < y1 < 1 and y2 > 0

Eliminate Y2 by

∞�

0

y2 · e−
y2

1−y1

(1− y1)2
dy2 =

1

(1− y1)2
· (1− y1)

2 = 1 when 0 < y1 < 1

using
∞�

0

xke−
x
a dx = k! · ak+1 (9.1)

The distribution of Y is thus U(0, 1). �
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Another example: Same X1 and X2 as in the previous example, Y = X2

X1

(solved earlier, using the F technique).

Solution: This time, we reverse the labels: Y1 ≡ X1 and Y2 = X2

X1
⇒ x1 = y1

and x2 = y1 · y2 (to simplify our notation, x1 and x2 are functions of y1

and y2 only implicitly). Substitute into e−x1−x2 to get e−y1(1+y2), times
				
1 0
y2 y1

				 = y1

yields the joint pdf when y1 > 0 and y2 > 0. Eliminate y1 by

∞�

0

y1e
−y1(1+y2)dy1 =

1

(1 + y2)2

when y2 > 0. Thus

fy(y) =
1

(1 + y)2
when y > 0

(eliminating the now-redundant subscript). �

Beta distribution

Let X1 and X2 be independent RVs from the gamma distribution with param-
eters (k, β) and (m,β) respectively, and let Y1 ≡ X1

X1 +X2
. This is the relative

time needed to catch the first k fish out of k +m (‘relative’ means: divided by
the total time).

Solution Using a previous argument, one can show that β ‘cancels out’, and
we can assume that β = 1 without affecting the answer. Since x1(y1, y2),
x2(y2) and the Jacobian is the same as in the ‘fishing example’, all we
need to do is to substitute into

f(x1, x2) =
xk−1

1 xm−1
2 e−x1−x2

Γ(k) · Γ(m)

and multiply by the Jacobian, getting

f(y1, y2) =
yk−1

1 yk−1
2 ym−1

2 e
− y2
1−y1

Γ(k)Γ(m)(1− y1)k−1
· y2

(1− y1)2

when 0 < y1 < 1 and y2 > 0. Integrating over y2 with the help of (9.1)
results in:

yk−1
1

Γ(k)Γ(m)(1− y1)k+1

∞�

0

yk+m−1
2 e

− y2
1−y1 dy2

=
Γ(k +m)

Γ(k) · Γ(m)
· yk−1

1 (1− y1)
m−1
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when 0 < y1 < 1. This is a pdf of a new two-parameter distribution
denoted beta(k,m). As a by-product of this exercise, we have effectively
proved the following formula:

1�

0

yk−1(1− y)m−1dy =
Γ(k) · Γ(m)

Γ(k +m)

for any k,m > 0. This enables us (skipping the details) to find the distri-
bution’s mean

k

k +m

and variance
km

(k +m+ 1) (k +m)
2

It is easy to see that the distribution of 1− Y = X2

X1+X2
is also beta, what

are its two parameters? Note that beta(1, 1) is the same distribution as
U(0, 1). Also note that k and m do not need to be integers (as long as
they are both positive).

Student t distribution

We start with two independent RVs X1ǫ N (0, 1) and X2ǫ χ
2
m, and introduce a

new RV by Y1 ≡
X1�
X2

m

. The resulting distribution is called Student’s t distri-

bution with m degrees of freedom, notation: tm.

Solution: Introducing Y2 ≡ X2, we get

x2 = y2

x1 = y1 ·
�
y2

m

Substituting into

f(x1, x2) =
e−

x21
2√
2π

· x
m
2 −1

2 e−
x2
2

Γ(m2 ) · 2
m
2

and multiplying by

				
�

y2
m

1
2 · y1√

m y2

0 1

				 =
�
y2

m

results in

f(y1, y2) =
e−

y21y2
2m√
2π

· y
m
2 −1

2 e−
y2
2

Γ(m2 ) · 2
m
2
·
�
y2

m
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when y2 > 0 (and any real y1). To eliminate y2, we do

1√
2πΓ(m2 ) 2

m
2
√
m

∞�

0

y
m−1
2

2 e−
y2
2 (1+

y21
m )dy2

=
Γ(m+1

2 ) · 2m+1
2

√
2πΓ(m2 ) · 2

m
2
√
m


1 +

y21
m

�m+1
2

=
Γ(m+1

2 )

Γ(m2 )
√
mπ

· 1


1 +

y21
m

�m+1
2

Note that when m = 1, this results in

1

π
· 1

1 + y2
1

which is the C(0, 1) distribution. When m → ∞ (m > 30 is sufficient to
be reasonably close to this limit) we get

exp


−y21

2

�

√
2π

clearly the N (0, 1) distribution. Due to the f(y1) = f(−y1) symmetry of
the pdf, the corresponding mean is zero (when is exists, i.e. when m ≥ 2).
The variance can be computed (skipping the details) to have the following
value:

m

m− 2

when m ≥ 3 (for m = 1 and 2, the variance is infinite).

Fisher F distribution

LetX1 andX2 be independent, having the χ
2
k and χ

2
m distribution, respectively,

and let Y1 ≡
X1

k
X2

m

. The resulting distribution is called Fisher’s F distribution with

k and m degrees of freedom (numerator, followed by denominator). Notation:
Fk,m.

Solution: Introducing Y2 ≡ X2, we get

x2 = y2

x1 =
k

m
y1y2

The Jacobian the equals to k
my2. Substituting into

x
k
2−1
1 e−

x1
2

Γ(k2 ) · 2
k
2

· x
m
2 −1

2 e−
x2
2

Γ(m2 ) · 2
m
2
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and multiplying by the Jacobian yields

( km)
k
2

Γ(k2 )Γ(
m
2 ) · 2

k+m
2

y
k
2−1
1 · y

k+m
2 −1

2 e−
y2(1+

k
m
y1)

2

when y1 > 0 and y2 > 0. Integrating over y2 (from 0 to ∞) yields the
following final formula

f(y1) =
Γ(k+m

2 )

Γ(k2 )Γ(
m
2 )

(
k

m
)
k
2 · y

k
2−1
1

(1 + k
my1)

k+m
2

when y1 > 0, The corresponding expected value is

m

m− 2

when m ≥ 3 (the mean is infinite for m = 1 and 2); the variance equals

2m2(k +m− 2)

(m− 2)2(m− 4)k

when m ≥ 5 (infinite for m = 1, 2, 3 and 4). It is obvious that
1

Y
also has

the Fisher’s distribution (what are its degrees of freedom?).

9.3 More on Sampling

At this point, we need to return (for a while) to our discussion of random
independent sampling.

9.3.1 Sample variance

Recall the definition of RIS of size n from a specific distribution as a collection
of n RVs yet to be observed, independently, from this distribution. We have
already dealt with the sample mean X̄, and we know that, for large enough
n, it has, approximately, the N (µ, σ√

n
) distribution. The question of what is

‘large enough’ is usually answered by saying that n must be bigger than 30, but
in reality it does depend on the distribution from which we sample (for some
of them we get a good fit even when n = 10, but there are others where even
millions would not suffice - such as playing a lottery).

In addition to X̄ we now define the so called ��
��� �����	�� by

s2 ≡
�n

i=1(Xi − X̄)2

n− 1

where s, the corresponding square root, is the ��
��� ���	���� ��������	
(the sample variance does not have its own symbol).
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To find its expected value, we first simplify its numerator thus

n�

i=1

(Xi − X̄)2 =
n�

i=1

�
(Xi − µ)− (X̄ − µ)

�2

=
n�

i=1

(Xi − µ)2 − 2(X̄ − µ)
n�

i=1

(Xi − µ) + n · (X̄ − µ)2

=
n�

i=1

(Xi − µ)2 − n · (X̄ − µ)2

implying that

E

�
n�

i=1

(Xi − X̄)2

�
=

n�

i=1

Var(Xi)− n ·Var(X̄)

= n σ2 − n · σ
2

n
= σ2(n− 1) (9.2)

Later on, we also need

Cov(X̄,X1) =
1

n

n�

i=1

Cov(Xi,X1) =
1

n
Cov(X1,X1) + 0

=
1

n
Var(X1) =

σ2

n

Note that Cov(X̄,X2), Cov(X̄,X3), ... must clearly have the same value.
Dividing (9.2) by n− 1 yields

E(s2) = σ2

Does this imply that s ≡
��n

i=1(Xi − X̄)2

n− 1
have the expected value of σ?

The answer is ‘no’ in general, s is usually (slightly) ������, meaning that

E(s) �= σ

(‘bias’ is the difference between the two).

Note: The bar notation can be used for the sample average of any function of
Xi; for example �n

i=1(Xi − X̄)2

n

can be written as
(X − X̄)2

or (less cryptically) expanded to read

X2 − X̄2
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The last simplification is possible because

n�

i=1

(Xi − X̄)2 =
n�

i=1

Xi
2 − 2X̄

n�

i=1

Xi + nX̄2

=
n�

i=1

Xi
2 − 2nX̄2 + nX̄2 =

n�

i=1

Xi
2 − nX̄2

9.3.2 Sampling from N(µ, σ)

To be able to say anything more about s2, we need to know the distribution from
which we are sampling. We will thus assume that the distribution is Normal,
with the mean µ and variance σ2. This immediately simplifies the distribution
of X̄, which must also be Normal (with the mean µ and standard deviation of
σ√
n
, as we already know) for any sample size n (not just ‘large’).

Proof: Since the MGF of the individiual Xis is

M(t) = exp


σ2t2

2 + µ · t
�

the MGF of X̄ is therefore

M
�
t
n

�n
= exp



σ2t2

2n2 + µ · tn
�n

= exp


σ2t2

2n + µ · t
�

which implies that the corresponding distribution is N (µ, σ√
n
). �

9.3.3 MGF of s2

The (n + 1)-dimensional distribution of Xi − X̄ and X̄ is jointly Normal,
described by the usual parameters (means, variances and covariances);
what is important here is that all n covariances between X̄ and each of
the Xi − X̄ are zero; this implies that X̄ will be independent of any RV
built out of the Xi − X̄’s such as

�n
i=1(Xi − X̄)2

σ2

At the same time, we know that this last RV is equal to

�n
i=1(Xi − µ)2

σ2
− n

σ2
· (X̄ − µ)2

which implies that

n�

i=1

�
Xi − µ

σ

�2

=
n�

i=1

�
Xi − X̄

σ

�2

+
n

σ2
· (X̄ − µ)2
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Since the RHS RVs are independent, we can correspoindingly relate the
three MGFs (of which we know the first and last) to get:

1

(1− 2t)n/2
=

1

(1− 2t)(n−1)/2
· 1

(1− 2t)1/2

This proves that
�n

i=1

�
Xi − X̄

σ

�2

has the χ2
n−1 distribution (and is

independent of X̄).

The important consequence of this is that

X̄ − µ
s√
n

also has the tn−1 distribution, since

X̄ − µ
s√
n

=

X̄ − µ
σ√
n

�
s2(n−1)

σ2

n− 1

≡ Z�
χ2n−1
n−1

Furthermore, the ratio of two sample variances based on two independent

RISs (of sizes n1 and n2 respectively) from the same Normal distribution is
equal to

s2
1

s2
2

=

(n1−1)s21
(n1−1)σ2

(n2−1)s22
(n2−1)σ2

≡
χ2n1−1
n1−1

χ2n2−1
n2−1

and therefore has the Fisher Fn1−1,n2−1 distribution.

Example (Student): For a RIS of size 15 from N (µ, σ), compute

Pr

		X̄ − µ

		 ≤ s

3

�

Solution: This equals

Pr

�			 X̄−µs ·
√
15
			 ≤

�
5
3

�
= Pr

�
|t14| ≤

�
5
3

�

=
Γ( 152 )

Γ( 142 )
√

14π

�
�

5
3

−
�

5
3



1 + y2

14

�− 15
2

dy = 78.24%

This implies (you learned it in MATH 2P82) that X̄ ± s
3 constitutes the

so called 78.24% ��	����	�� �	������ for the value of µ (assumed un-
known, together with σ). Note that, for an actual sample, both X̄ and s
would be easily computable numbers.
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Continuation (chi-square): Similarly, compute

Pr (0.9σ ≤ s ≤ 1.1σ)

Solution: This equals

Pr


14 · 0.92 ≤ 14s2

σ2 ≤ 14 · 1.12
�
= Pr

�
1134
100 ≤ χ2

14 ≤ 1694
100

�

=
1

6!27

� 1694
100

1134
100

y6 exp(−y
2 )dy = 39.98%

implying that
s

1.1
≤ σ ≤ s

0.9

is the corresponding 39.98% confidence interval for the (unknonwn) value
of σ.

Continuation (Fisher): Suppose another person takes his own RIS of size
12 from the same distribution; find the probability that the two sample
variances will not differ from each other by more than a factor of 1.3 .

Solution:

Pr

�
1

1.3
<

s2
1

s2
2

< 1.3

�
=

Γ( 14+11
2 )(14

11)
7

Γ(14
2 )Γ(

11
2 )

� 1.3

1/1.3

y6(1+14
11y)

− 14+11
2 dy = 34.77%
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Chapter 10

Order Statistics

In this section we consider a RIS of size n from a continuous distribution (not
necessarily Normal), calling the individual, independent, would-be observations
X1, X2, ..., Xn. Based on these, we define a new set of RVs denoted X(1),
X(2), ....X(n) (some textbooks use Y1, Y2, ...Yn) to be the smallest sample value
(X(1)), the second smallest value (X(2)), ..., the largest value (X(n)). Even
though the original Xi’s were independent, X(1), X(2), ..., X(n) are clearly
strongly correlated. They are called the first, the second, ..., and the last ��-
��� ���������, respectively. When n is odd, X(n+12 ) is also called the sample


����	; notation: X̃.

10.1 Distribution of X(i)

It is obvious that Pr(Xk ≤ x) = F (x) for each of the original (not yet arranged
from smallest to largest) observations, where F (x) is the distribution function
of the sampled distribution. Since these events are independent of each other,
the probability of exactly j of them happening is equal to (using Binomial pmf)

�
n

j

�
F (x)j

�
1− F (x)

�n−j

This implies that the distribution function of X(i) is given by

F(i)(x) =
n�

j=i

�
n

j

�
F (x)j

�
1− F (x)

�n−j

(to have X(i) ≤ x requires at least i of the original, yet unsorted observations be
≤ x, right?). This formula then enables us to answer any probability question
about X(i). In principle, it should easily yield the corresponding pdf, by simple
differentiation. Unfortunately, this results in a rather messy expression which
requires extensive simplification (all terms but one cancel out, but in fairly non-
trivial manner) before revealing its final form. To find it, it is easier to start

73
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from scratch, utilizing the original, formal definition of a pdf. This leads to

f(i)(x) ≡ lim
△→0

Pr(x ≤ X(i) < x+△)
△

= lim
△→0

�
n

i− 1, 1, n− i

�
F (x)i−1F (x+△)− F (x)

△
�
1− F (x+△)

�n−i

=
n!

(i− 1)!(n− i)!
F (x)i−1

�
1− F (x)

�n−i
f(x) (10.1)

To understand how we computed Pr(x ≤ X(i) < x +△), realize that i − 1 of
the original Xj observations must be smaller than x, one must be between x
and x+△, and the rest must be bigger than x. The resulting pdf has the same
support as the original distribution.

We will go over a few examples.

Exponential example Consider a RIS of size 7 from E(β = 23min .); this can
be interpreted as seven equally skilled fishermen independently catching
one fish each, assuming the that long-run average time to catch a fish is
23 minutes.

• Find Pr(X(3) < 15 min .), i.e. the probability that the third catch of the
group will not take longer than 15 min .

Solution: First find the probability that any one of the original 7 independent

observations is < 15 min .: Pr(Xi < 15 min .) = 1− e−
15
23 = 0.479088 ≡ p.

We interpret the same sampling as a binomial experiment, where a value
smaller than 15 min. defines a success, and a value bigger than 15. min .
represents a failure. The question is: what is the probability of getting at

least 3 successes (the complement of ‘no more than 2’)? Using binomial
probabilities, we get

1−
�
q7 + 7pq6 +

�
7

2

�
p2q5

�
= 73.77% �

• Now, find the mean and standard deviation of X(3).

Solution: First we have to construct the corresponding pdf. By (10.1) this
equals:

7!

2!4!
(1− e−

x
β )3−1(e−

x
β )7−3 · 1

β
e−

x
β =

105

β
(1− e−

x
β )2e−

5x
β

where β = 23 min . This yields the following mean of X(3):

105

∞�

0

x · (1− e−
x
β )2e−

5x
β
dx

β

( xβ→u)
= 105β

∞�

0

u · (e−5u − 2e−6u + e−7u)du

= 105 · 23
�

1
52 − 2

62 +
1
72

�
= 11.72min .
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The second simple moment E(X2
(3)) is similarly

105β2

∞�

0

u2·(e−5u−2e−6u+e−7u)du = 105·232
�

2
53 − 4

63 +
2
73

�
= 184.0min .2

implying that

σX(3)
=
�
184− 11.722 = 6.830min .

Note that if each fisherman continued fishing (after getting his first, sec-
ond, ... catch), the distribution of the time of the third catch of the group
would be gamma(3, 23

7 ), with the mean of 9.86 min . and σ = 5.69 min .;
naturally, somehow shorter than our previous answer. �

Note: By a different approach, one can derive the following general formulas
(applicable only for sampling from Exponential distribution):

E(X(i)) = β
i−1�

j=0

1

n− j

Var(X(i)) = β2
i−1�

j=0

1

(n− j)2

Verify that these give the same answers as our lengthy computation above.

Uniform example: Consider a RIS of size 5 form U(0, 1). Find the mean and
standard deviation of X(2).

Solution: The corresponding pdf is

5!

1!3!
x(1− x)3 when 0 < x < 1

which can be readily identified as beta(2, 4); we have: X(i)ǫ beta(i, n+1−i)
in general. By previous formulas

E(X(2)) =
2

2 + 4
=

1

3

and

Var(X(2)) =
2× 4

(2 + 4)2(2 + 4 + 1)
=

2

63

implying that σX(2)
= 0.1782. �

Note: These results can be easily extended to sampling from U(a, b) by utilizing
the

Y = (b− a)X + a

transformation.
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10.1.1 Sample median

is one of the most important order statistics, denoted X̃ and equal to (when n
is odd, i.e. n = 2k+1) X(k+1). This means that k observations are smaller than

X̃ and k are bigger than X̃. When n is even (i.e. n = 2k) we make

X̃ =
X(k) +X(k+1)

2

To simplify things, we will assume that n is odd from now on.
Let us see what happens to X̃ when n is large. One can show that its pdf

then (in the n→∞ limit) becomes approximately Normal, with the mean of µ̃
(the sampled distribution’s median) and the standard deviation of

1

2f(µ̃)
√
n

Proof: The sample median X̃ ≡ X(k+1) has the following pdf:

n!

k! · k!F (x)
k
�
1− F (x)

�k
f(x)

where k ≡ n−1
2 . To explore what happens when n → ∞, we introduce a

new RV by
Y ≡ 2(X̃ − µ̃)f(µ̃)

√
n

We build its pdf in the usual three steps:

x = µ̃+ y
2f(µ̃)

√
n

n!
k!·k! · F (µ̃+

y
2f(µ̃)

√
n
)k


1− F (µ̃+ y

2f(µ̃)
√
n
)
�k

f(µ̃+ y
2f(µ̃)

√
n
)(10.2)

and multiply this by 1
2f(µ̃)

√
n

To take the limit of the resulting pdf, we utilize the following Taylor ex-
pansion:

F (µ̃+ y
2f(µ̃)

√
n
) ≃ F (µ̃) + F ′(µ̃) y

2f(µ̃)
√
n
+ F ′′(µ̃)

2
y2

4f(µ̃)2n + ... =

1
2 +

y
2
√
n
+ f ′(µ̃)

2
y2

4f(µ̃)2n + ...

which implies that

1− F (µ̃+ y
2f(µ̃)

√
n
) ≃ 1

2 − y
2
√
n
− f ′(µ̃)

2
y2

4f(µ̃)2n + ...

Multiplying the two results yields

F (µ̃+ y
2f(µ̃)

√
n
)


1− F (µ̃+ y

2f(µ̃)
√
n
)
�
≃ 1

4 −
y2

4n + ...

the dots implying terms proportional to

1
n3/2

, 1
n2 , ...



10.1. DISTRIBUTION OF X(I) 77

which do not affect the subsequent limit. Substituting into (10.2) and
multiplying by the Jacobian results in

n!
2·4k·k!·k!·√n ·



1− y2

n + ...
�n−1

2 ·
f

�
µ̃+

y
2f(µ̃)

√
n

�

f(µ̃)

Taking the n → ∞ limit leads to (note that the limit of the first term -
hard to figure out - must match the limit of the second term):

1√
2π

exp


−y2

2

�

This is the pdf of N (0, 1). As a by-product (of no further consequence to
us), we have just derived the so called Wallis formula

(2k+1)!

22k+1·k!·k!·
√

2k+1
−→
k→∞

1√
2π

And, since
X̃ = µ̃+ Y

2f(µ̃)
√
n

the distribution of the sample median (for a large, fixed n) must be, ap-
proximately, N (µ̃, 1

2f(µ̃)
√
n
). �

We will now go over a few examples.

Cauchy example: Consider a RIS of size 1001 from C(0, 1). Find Pr(−0.1 <
X̃ < 0.1), both exactly and using the Normal approximation. Compare
with Pr(−0.1 < X̄ < 0.1).

Solution: Let us recall that, for this Cauchy distribution, we have

f(x) =
1

π
· 1

1 + x2

F (x) =
1

2
+

1

π
arctan(x)

By direct integration of the exact pdf we get

Pr(−0.1 < X̃ < 0.1) = 1001!
(500!)2π

� 0.1

−0.1



1
4 −

arctan(x)2

π2

�500
dx

1+x2 = 95.56%

Using the X̃ ǫ̃ N (0, π
2
√

1001
) approximation (somehow easier - especially

without a computer), we get

1√
2π

� 0.2
√
1001
π

−0.2
√
1001
π

exp(−z2

2 )dz = 95.60%

(a decent agreement). For the sample mean we get

Pr(−0.1 < X̄ < 0.1) =
1

π
arctan(x)

				
0.1

x=−0.1

= 6.35%
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only (furthermore, it does not improve with n). Clearly, for a Cauchy dis-
tribution, the sample median is a lot better way of estimating the central
location. Could there be even a better way of doing it - we will address
this issue later. �

Normal example: When sampling from N (µ, σ), is it better to estimate µ by
the sample mean or by the sample median?

Solution: Since
X̄ ǫ N (µ, σ√

n
)

and

X̃ ǫ̃ N (µ,
�

π
2 · σ√

n
)

it is obvious that X̃’s standard deviation (in the context of estimation
called ���	���� �����) is

�
π
2 = 1.253 times bigger than that of X̄.

Thus, this time, we are better off using X̄. To estimate µ to the same
accuracy as X̄ does, X̃ would have to use π

2 = 1.571 times bigger sample;
the sample mean is, in this case, 57.1% more �������	� than the sample
median. �

Example: Consider a RIS of size 349 from a distribution with f(x) = 2x
(when 0 < x < 1). Find Pr(X̃ < 0.75), both exactly and using the Normal
approximation. Also, approximate Pr(X̄ < 0.70).

Solution: By direct integration of the exact pdf we get

2·349!
(174!)2

� 0.75

0

x349(1− x2)174dx = 99.05%

Based on F (x) = x2, the distribution’s median µ̃ equals to 1√
2
. The

Normal approximation thus yieldsPr(Z < 2.26645) = 98.83% (0.22% off).
To deal with the last part of the question we first need

µ = 2
3

σ2 = 1
18

Since
X̄ ǫ̃ N ( 2

3 , 0.0126168)

Pr(X̄ < 0.7) = 99.59

This time, evaluating the exact answer would be short of impossible. �

We mention in passing that X(pn+p), where 0 < p < 1, tends to the Normal
distribution whose mean is the solution to F (x) = p, denoted xp and called
the (100 · p)th �����	���� of the sampled distribution, and whose standard
deviation is

√
p(1−p)

f(xp)·√n .
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10.2 Bivariate pdf

We now construct the joint distribution of two order statistics X(i) and X(j)

(i < j). By our former definition,

f(x, y) = lim
∆→0

Pr(x ≤ X(i) < x+∆ ∩ y ≤ X(j) < y +∆)

∆2

where x is the value of X(i) and y is the value of X(j). To make the event in
parentheses happen, exactly i − 1 observations must have a value less than x,
1 observation must fall in the [x, x + ∆) interval, j − i − 1 observations must
be between x + ∆ and y, 1 observation must fall in [y, y + ∆) interval, and
n− j observations must be bigger than y+ ε. By our multinomial formula, this
probability equals to

�
n

i−1,1,j−i−1,1,n−j
�
F (x)i−1

�
F (x+∆)− F (x)

� �
F (y)− F (x+∆)

�j−i−1 ·
�
F (y +∆)− F (y)

� �
1− F (y +∆)

�n−j

Dividing by ∆2 and taking the ∆→ 0 limit yields

n!
(i−1)!(j−i−1)!(n−j)!F (x)

i−1
�
F (y)− F (x)

�j−i−1 �
1− F (y)

�n−j
f(x)f(y) (10.3)

with L < x < y < H, where L and H is the lower and upper limit (respectively)
of the original support.

Example: Consider a RIS of size 8 from a gamma(2, 3) distribution. Find
Cov(X(3),X(5)) and Pr(X(5) −X(3) > 2).

Solution: For the gamma(2, 3) distribution

f(x) =
x · exp(−x

3 )

9
F (x) = 1−

�
1 + x

3

�
exp(−x

3 )

The joint pdf of X(3) and X(5) is therefore given by

f3,5(x, y) =
8!

2 · 3!F (x)
2
�
F (y)− F (x)

� �
1− F (y)

�3
f(x)f(y) when 0 < x < y

implying

E
�
X(3)

�
≡ µ(3) =

� ∞

0

� y

0

x · f3,5(x, y)dxdy = 3.6163

E
�
X(5)

�
≡ µ(5) =

� ∞

0

y

� y

0

f3,5(x, y)dxdy = 5.8298

Cov(X(3),X(5)) = E



(X(3) − µ(3)) · (X(5) − µ(5))

�
≡

=

� ∞

0

(y − µ(5))

� y

0

(x− µ(3))f3,5(x, y)dxdy = 1.532

Pr(X(5) −X(3) > 2) =

� ∞

2

� y−2

0

f3,5(x, y)dxdy = 47.86%
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Let us now discuss two important special cases of (10.3).

10.2.1 Two consecutive order statistics

namely X(i) and X(i+1) (with values x and y respectively) have therefore the
following joint pdf:

f(x, y) = n!
(i−1)!(n−i−1)!F (x)

i−1
�
1− F (y)

�n−i−1
f(x) f(y)

when L < x < y < H.
This reduces to

n!
(i−1)!(n−i−1)!x

i−1(1− y)n−i−1 0 < x < y < 1 (10.4)

when the sampled distribution is U(0, 1).
Uniform example: Based on this, find the distribution of U = X(i+1) −X(i).

Solution: We introduce a second RV V ≡ X(i). Then

x = v

y = u+ v

Substituting into (10.4) and multiplying by
			 dydu

			 (equal to 1) yields

f(u, v) = n!
(i−1)!(n−i−1)!v

i−1 (1− u− v)n−i−1

when 0 < u < 1 and 0 < v < 1− u. The marginal pdf of u is thus

fU(u) =
n!

(i−1)!(n−i−1)!

1−u�

0

vi−1(1− u− v)n−i−1dv

v=(1−u)z
= n!

(i−1)!(n−i−1)! (1− u)n−1

1�

0

zi−1(1− z)n−i−1dz

= n!
(i−1)!(n−i−1)! (1− u)n−1 Γ(i)Γ(n−i)

Γ(n) = n(1− u)n−1 when 0 < u < 1

which is the same for all i values! The value of the last integral follows
when recalling the beta distribution.

To see what happens to this distribution in the n → ∞ limit, we must first
introduce

W ≡ U · n
(why?). Then, clearly,

fW (w) = n(1− w
n )

n−1
		 du
dw

		 = (1− w
n )

n−1 when 0 < w < n

In the n→∞ limit this pdf tends to

e−w when 0 < w

which we can identify as E(1). This is what we have always used for the
time between two consecutive arrivals (and now we understand why). �
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10.2.2 Sample range

We start by spelling out the joint pdf of the first and last order statistics, X(1)

and X(n) (associated with x and y respectively); another special case of (10.3):

f(x, y) = n(n− 1)
�
F (y)− F (x)

�n−2
f(x)f(y) (10.5)

when L < x < y < H.
Let us now investigate the distribution of the ��
��� ��	�� U ≡ X(n) −

X(1). Taking V ≡ X(1), we get

x = v

y = u+ v

Substituting into (10.5) yields

f(u, v) = n(n− 1)
�
F (u+ v)− F (v)

�n−2
f(v)f(u+ v)

when L < v < H and u < H − v or, equivalently, 0 < u < H − L and
L < v < H − u. This implies that

f(u) = n(n− 1)

� H−u

L

�
F (u+ v)− F (v)

�n−2
f(v)f(u+ v)dv

when 0 < u < H − L. Note that, when H =∞, H − u reduces to ∞.
Uniform example: When we sample U(0, 1), this becomes:

f(u) = n(n− 1)un−2

� 1−u

0

dv = n(n− 1)un−2(1− u)

when 0 < u < 1, which is beta(n− 1, 2) with

µu = n−1
n+1

σ2
u = 2(n−1)

(n+2)(n+1)2

These results can be easily extended to sampling from U(a, b) - just mul-
tiply µu by b−a and σ2

u by (b−a)2. Note that, for large n, σu ≈
√

2·(b−a)
n ;

the standard error of X(n)−X(1) as an estimator of the ‘population’ range

b− a thus goes down to zero with 1
n (not the usual

1√
n
) - a very efficient

way of estimating it! �

10.2.3 Sample mid-range

When the sampled distribution is U(0, 1), the joint pod of X(1) and X(n) sim-
plifies to

f(x, y) = n(n− 1)(y − x)n−2 when 0 < x < y < 1

In this case, let us also find the distribution of U ≡ X(1)+X(n)

2 (sample 
��-
��	��).
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Solution: Including V ≡ X(1) implies

x = v

y = 2u− v

Substituting and multiplying by 2 (Jacobian) yields

f(u, v) = 2n(n− 1) (2u− 2v)
n−2

when 0 < v < 1 and v < u < v+1
2 . To find the U marginal, we have to

consider two cases (not uncommon):

f(u) = 2n−1n(n− 1)

u�

0

(u− v)n−2dv = 2n−1n un−1 when 0 < u < 1
2

and

f(u) = 2n−1n(n−1)
u�

2u−1

(u−v)n−2dv = 2n−1n (1−u)n−1 when 1
2 < u < 1

Note that this defines one, not two ordinary (not conditional) univariate
pdf, with the following properties:

µu = 1
2

σ2
u = 1

2(n+2)(n+1)

(make sure you understand how it is done, based on a two-piece pdf). Also
note that the (approximate) variance of X̄ is 1

12n and that of X̃ equals 1
2n ;

for large n, the sample mid-range is thus a much more efficient estimator
of the distribution’s mid-range than either X̄ or X̃ - this can be easily
generalized to sampling from U(a, b), where a+b

2 is to be estimated. �

Example: Consider a RIS of size 1001 from U(0, 1). Compute and compare the
following probabilities:

Pr(0.499 <
X(1)+X(1001)

2 < 0.501) = 86.52%

Pr(0.499 < X̄ < 0.501) ≃ 8.73%

Pr(0.499 < X̃ < 0.501) ≃ 5.05%

This again demonstrates that, for a uniform distribution, the sample mid-
range is a lot more likely to be close to the true center than either the
sample mean or the sample median. �

In a similar manner we could find the joint pdf of three, four, etc. order
statistics. We mention in passing that the joint pdf of all n order statistics is
given by

n!
n�
i=1

f(x(i)) when L < x(1) < x(2) < ... < x(n) < H
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Note that this (due to their support) makes them highly correlated.
Also, in passing: one can show that the asymptotic (i.e. in the n→∞ limit)

correlation coefficient between two sample percentiles X(p1n+p1) and X(p2n+p2)

is equal to �
p1(1− p2)

p2(1− p1)
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Chapter 11

Estimating Distribution
Parameters

Until now we have studied P����������, proceeding as follows: we assumed pa-

rameters of all distributions to be known and, based on this, computed probabil-

ities of various outcomes. We now make the essential transition to S���������,
which is concerned with the exact opposite: a random experiment is performed
(usually many times) and the individual outcomes recorded; based on these, we
want to estimate values of the distribution parameters (one or more). Until the
last two sections, we restrict our attention to the (easier and most common)
case of estimating only one parameter of a distribution.

Example: Propose to estimate the mean µ of a Normal distribution N (µ, σ),
based on a RIS of size n?

Solution: The sample mean X̄ seems to be a ‘reasonable’ ����
���� of µ.
Note that this name applies to the RV X̄, before the sampling is done; as
soon as the experiment is completed and a particular value of X̄ computed,
this specific number is called an ����
��� of µ.

Immediately, a few related issues comes to mind (and needs to be resolved,
one by one):

• How do we judge the quality of an estimator - is there a criterion or a set
of criteria to help us decide?

• Is it possible to find the best estimator of a parameter, at least in some
restricted sense?

• Would not it be better to use, instead of a single number (the so called
���	� ����
����, which can never precisely agree with the exact value
of the unknown parameter), an interval of values, which can give us a
good idea about the accuracy of the estimate?

The rest of this section tackles the first two issues. We must start with
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11.1 A few definitions

First we allow an ����
���� of a parameter θ to be any sample statistic, say
Θ̂(X1,X2, ....,Xn). Note that, when specifying Θ̂, we may include (in the actual
expression) values of the other parameters, if they are known (also, the sample
size n). We concentrate on estimating parameters with real (rather than integer)
values.

To narrow down our choices, we will first insist that our estimators be 
	-
������, meaning

E(Θ̂) = θ

or at least ���
���������� 
	������ , i.e.

E(Θ̂) −→
n→∞

θ

The E(Θ̂) − θ difference is called the ���� of an estimator, and can be easily
removed (constructing unbiased estimators is thus not a major challenge).

Example: Propose an estimator for the variance σ2 (which thus becomes our
θ) of a N (µ, σ) distribution, assuming that the value of µ is also unknown.

Solution: Starting with

Θ̂ ≡

n�
i=1

(Xi − X̄)2

n

we recall that

E(Θ̂) =
n− 1

n
σ2

Our estimator is thus only asymptotically unbiased. The bias can be easily
removed by defining a new estimator

s2 ≡ n

n− 1
Θ̂

(the sample variance) which is fully unbiased. Since

n− 1

σ2
s2ǫ χ2

n−1

we can also find the variance of s2 to be

Var(s2) =

�
σ2

n− 1

�2

· 2(n− 1) =
2σ4

n− 1

Supplementary: Does this imply that s is an unbiased estimator of σ? The
answer is NO, as we can see from

E

��
χ2
n−1

�
=

1

Γ(n−1
2 ) 2

n−1
2

∞�

0

√
x · xn−3

2 e−
x
2 dx =

√
2Γ(n2 )

Γ(n−1
2 )
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implying

E(s) =
σ√
n− 1

·
√
2Γ(n2 )

Γ(n−1
2 )

≈ σ(1− 1

4n
− 7

32n2
+ ...)

But, we already know how to fix this: use

�
n− 1

2

Γ(n−1
2 )

Γ(n2 )
s

instead; this is a fully unbiased estimator of σ. �

Yet, making an estimator unbiased (or at least asymptotically so) is not

enough to make it even acceptable (let alone ‘good’). Consider estimating µ
of a distribution by taking Θ̂ = X1 (the first observation only), throwing away
the rest of the sample! We get a fully unbiased estimator which is evidently
unacceptable, since we are wasting nearly all of the available information. Thus,
being unbiased is only one essential ingredient of a good estimator, the other
one is its variance, which we would like to keep as small as possible.

This leads to two new definitions:

Definition: C�	�����	� ����
���� must have two properties:

E(Θ̂) −→
n→∞

θ

i.e. be asymptotically unbiased, and

Var(Θ̂) −→
n→∞

0

meaning that its variance must tend to zero with increasing sample size. �

This implies that we can converge on the exact value of θ by indefinitely
increasing the sample size. Nice as it sounds, this represents only the minimal

standard (or even less) to be expected of an estimator - some of them may still
be so wasteful to make them inacceptable. For example, discarding every second
observation to estimate µ by averaging the remaining observations (i.e. wasting
half of our sample) still yields a consistent (but rather silly) estimator.

Definition of MVUE: M�	�


 �����	�� 
	������ ����
���� is an un-

biased estimator whose variance is smaller or equal to the variance of any
other unbiased estimator for all potential values of θ (the ‘unbiased’ re-
quirement is essential: an arbitrary constant may be totally nonsensical
as an estimator in all but ‘lucky-guess’ situations, yet no estimator can
compete with its variance). �

Having such an estimator would of course be ideal, but we run into several
difficulties:



90 CHAPTER 11. ESTIMATING DISTRIBUTION PARAMETERS

• The variance of an estimator is, in general, a function of θ, which means
that we are now comparing functions, not values. It may easily happen
that two unbiased estimators have variances such that one is smaller in
some range of θ values and bigger in another. Neither estimator is then
(uniformly) better than the other, and the MVUE estimator may therefore
not exist.

• Even when the MVUE estimator exists, how do we know that it does and,
finally,

• how do we find it?

To partially answer the second point: luckily, there is a theoretical lower

bound on the variance of all unbiased estimators; when an estimator achieves
this bound, it is automatically MVUE. The relevant details are contained in the
following theorem:

11.2 Cramér-Rao inequality

Consider a parameter θ which does not affect the boundaries of the distribution’s
support (the so-caled ���
��� ����); as an example of two parameters which
are not regular, consider U(a, b).

The variance of any unbiased estimator Θ̂ of such a parameter must meet
the following inequality:

Var(Θ̂) ≥ 1

nE

�

∂ ln f(x|θ)

∂θ

�2
 =

1

−nE


∂2 ln f(x|θ)

∂θ2

� (11.1)

where f(x|θ) stands for the old f(x) - we are now emphasizing its functional
dependence on the parameter θ (it does not imply a conditional pdf - θ is not
a RV).

Proof: Consider a RV X having a general PDF which we θ denote by

f(x|θ)
For example, when this distribution is Exponential, we have

f(x|θ) = exp(−x
θ )

θ

We now transform X into a new RV U , defined by

U =
∂ ln f(X|θ)

∂θ
=

∂f(X|θ)
∂θ

f(X|θ)
e.g. (Exponential)

U =
∂

∂θ

�
−X
θ
− ln θ

�
=

X

θ2 −
1

θ
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It is simple to show that

E(U) =

� H

L

∂f(x|θ)
∂θ

f(x|θ) ·f(x|θ) dx =

� H

L

∂f(x|θ)
∂θ

dx =
∂

∂θ

� H

L

f(x|θ) dx = 0

since � H

L

f(x|θ) dx = 1

for each θ, and interchanging integration and θ-derivative is, in this case,
legitimate (the fact that both L and H are not allowed to depend on θ is
crucial). Similarly

Var(U) = E

!�
∂ ln f(X|θ)

∂θ

�2
"
=

� H

L

�
∂ ln f(x|θ)

∂θ

�2

· f(x|θ) dx

By differentiating

� H

L

∂ ln f(x|θ)
∂θ

· f(x|θ) dx = 0

(proven three lines ago) with respect to θ we get

� H

L

∂2 ln f(x|θ)
∂θ2 · f(x|θ) dx+

� H

L

∂ ln f(x|θ)
∂θ

· ∂f(x|θ)
∂θ

dx

=

� H

L

∂2 ln f(x|θ)
∂θ2 · f(x|θ) dx+

� H

L

�
∂ ln f(x|θ)

∂θ

�2

· f(x|θ) dx = 0

shows that there is a alternate way of computing the variance of U, namely

Var(U) = −E
�
∂2 ln f(X|θ)

∂θ2

�

Out of the two formulas, we can always choose the more convenient one.

And, true enough, for our Exponential example

E (U) =
E(X)

θ2 − 1

θ
=

θ

θ2 −
1

θ
= 0

while the variance of U equals

E

!�
X

θ2 −
1

θ

�2
"
=
E
�
X2

�

θ4 − 2E (X)

θ3 +
1

θ2 =
2θ2

θ4 − 2θ

θ3 +
1

θ2 =
1

θ2

or, using the second formula

−E
�
−2X
θ3 +

1

θ2

�
=

2E (X)

θ3 − 1

θ2 =
1

θ2 (check)
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With these preliminaries under our belt, we are now ready for the main part
of the proof: When taking a RIS of size n from this distribution, the joint
PDF of the individual Xis is simply

n#

i=1

f(xi|θ)

Assuming that Θ̂ is an unbiased estimator of θ, which means that it is a
function of X1, X2, ...Xn, but not of θ, and also

E


Θ̂
�
=

H�
· · ·

�

L

Θ̂ ·
n#

i=1

f(xi|θ) dx1dx2...dxn = θ

(E denoting a multivariate expected value).

Differentiating the last equation with respect to θ yields

H�
· · ·

�

L

Θ̂ ·
�

n#

i=1

fi

�′
dx1dx2...dxn =

H�
· · ·

�

L

Θ̂ ·

�
n�
i=1

fi

�′

n�
i=1

fi

·
n#

i=1

fi dx1dx2...dxn

=

H�
· · ·

�

L

Θ̂ ·
�
ln

n#

i=1

fi

�′
·
n#

i=1

fi dx1dx2...dxn =

H�
· · ·

�

L

Θ̂ ·
�

n�

i=1

ln fi

�′
·
n#

i=1

fi dx1dx2...d

=

H�
· · ·

�

L

Θ̂ ·
n�

i=1

(ln fi)
′ ·

n#

i=1

fi dx1dx2...dxn =

H�
· · ·

�

L

Θ̂ ·
n�

i=1

Ui ·
n#

i=1

fi dx1dx2...dxn

= E

�
Θ̂ ·

n�

i=1

Ui

�
= Cov

�
Θ̂,

n�

i=1

Ui

�
= 1

where, to simplify the notation, we have replaced f(xi|θ) by fi and have
indicated θ-differentiation by a simple prime, i.e.

f ′i ≡
∂f(xi|θ)

∂θ

We know (proved earlier) that in general (for any two RVs)

Cov

�
Θ̂,

n�

i=1

Ui

�2

≤ Var(Θ̂) ·Var
�

n�

i=1

Ui

�
= Var(Θ̂) · nVar (U)

which, in this particular case yields (11.1). The RHS of this inequality
is called the Cramer-Rao variance (CRV) - either version will do, as the
results are the same.
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Note that this proof holds in the case of a discrete distribution as well (each
integration then has to be replaced by the corresponding summation).

For the Exponential distribution the CRV equals to θ2

n (no unbiased estimator
of θ can have a better variance than this, whatever the value of θ is). Since

the expected value of X̄ is θ and its variance equals to θ2

n , the sample mean
is the MVUE of θ (in the particular case of Exponential distribution - not
necessarily true for any other distribution). �

Based on this C-R bound we define the so called �������	�� of an unbiased

estimator Θ̂ as the ratio of the theoretically (perhaps) achievable CRV to the
actual variance of Θ̂, thus:

CRV

Var(Θ̂)

usually expressed in percent. An estimator whose variance is as small as CRV is
called �������	� (note that, from what we know already, this makes it automat-
ically the MVUE estimator of θ). An estimator which reaches 100% efficiency
only in the n→∞ limit is called ���
���������� �������	� (we will take it
- it is usually the best estimator one can find; besides, our samples are usually
large).

One can also define �������� �������	�� of one estimator, say Θ̂1 with
respect to another, say Θ̂2, as

Var(Θ̂2)

Var(Θ̂1)

Normal example: Is X̄ the best way to estimate µ of the Normal distribution
N (µ, σ).

Solution: We know that its variance is σ2

n . To compute C-R bound, we do

∂2

∂µ2

�
− ln(

√
2πσ)− (x− µ)2

2σ2

 
= − 1

σ2

Thus, CRV equals
1
n
σ2

= σ2

n implying that X̄ is MVUE of µ. �

Bernoulli example: Suppose we want to estimate p of a Bernoulli distribution
by the proportion of successes we get in n independent trials (effectively,
the sample mean of the 0 or 1 observations), thus:

Θ̂ =

n�
i=1

Xi

n

The mean of our estimator is np
n = p (unbiased), its variance equals npq

n2 =

pq
n , since

n�
i=1

Xi has the B(n, p) distribution. Is this the best we can do?
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Solution: Let us compute the corresponding CRV (in two steps):

∂2

∂p2
[x ln p+ (1− x) ln p] = − x

p2
− 1− x

(1− p)2

followed by

E

�
X

p2
+

1−X

(1− p)2

�
=

1

p
+

1

1− p
=

1

pq

which implies thatCRV= pq
n . So, the answer is yes, our estimator is

MVUE. �

Poisson example: Similarly, is X̄ MVUE of Λ of the Poisson distribution?

Solution:

∂2

∂Λ2
[x lnΛ− ln(x!)− Λ] = − x

Λ2

E

�
X

Λ2

 
=

1

Λ

which implies that CRV= Λ
n . Since E(X̄) = nΛ

n = Λ and Var(X̄) = nΛ
n2 =

Λ
n , the answer is YES. �

Uniform example: Let us try estimating θ of the uniform distribution U(0, θ).
This is not a regular case, so we don’t have CRV and the concept of
(absolute) efficiency. All we can do is to compute relative efficiency of
two unbiased estimators, say 2X̄ and n+1

n X(n).

Solution: For the former, we get E(2X̄) = θ (check) and Var(2X̄) = θ2

3n . As
for the latter, we realize that

X(n)

θ
ǫ beta(n, 1)

which implies that

E(
n+ 1

n
X(n)) =

n+ 1

n
· n

n+ 1
· θ = θ (check)

and

Var(
n+ 1

n
X(n)) =

θ2

(n+ 2)n

Its relative efficiency with respect to 2X̄ is therefore n+2
3 i.e., in the large-

sample limit, n+1
n X(n) is ‘infinitely’ more efficient than 2X̄. But how can

we establish whether n+1
n X(n) is the ‘best’ unbiased estimator, lacking the

C-R bound? Obviously, something else is needed in a case like this. �

What will help us deal with non-regular cases (such as the previous example)
is the concept of
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11.3 Sufficiency

which not only guarantees that a sufficient estimator is MVUE, but (unlike the
C-R bound) actually helps us find it. Furthemore, the concept of sufficiency can
be used even in cases which are not regular (e.g. it applies to both parameters
of the uniform distribution). The problem is that, for some distributions (such
as Cauchy), sufficient estimators do not exist (this is something we discover only
when we try to find them - it is hard to tell in advance). But, on the plus side,
when they do exist, finding them is quite easy.

Definition: A sample statistic Φ̂(X1,X2, ...Xn) is called a �
������	� ������-
��� (not an estimator yet) for estimating θ when the joint pdf of the
sample can be written as a product of a function of θ and Φ̂ only (no
other xis), and of another function of the xis (but no θ), i.e.

n#

i=1

f(xi|θ) = g(θ, Φ̂) · h(x1, x2, ...xn)

where g(θ, Φ̂) thus takes care of the joint pdf’s θ dependence, including
support boundaries.

Equivalently, and in many cases more easily, we can similarly ‘split’ the loga-
rithm of the joint pdf, into a sum of two such functions, namely

n�

i=1

ln f(xi|θ) = g̃(θ, Φ̂) + h̃(x1, x2, ...xn)

Such an Φ̂ (if it exists) contains all the information relevant for estimating θ.
All we have to do to convert Φ̂ into the best possible estimator of θ is to make
it unbiased (by some transformation, which is usually easy to design). One can
then show that the resulting estimator is MVUE even if it does not reach the
C-R limit (it will reach it asymptotically, i.e. in the n→∞ limit).

Let us go over a few examples.

Bernoulli example: Since the sample’s joint pdf is

px1+x2+...+xn (1− p)n−x1−x2−...−xn

is itself a function of p and of a single combination of the xis, namely
n�
i=1

xi, this last sum (after replacing xi by Xi) is a sufficient statistic for

estimating p (dividing it by n makes it into an unbiased estimator). �

Normal example: Sampling from N(µ,σ), ln of the joint pdf is

− 1

2σ2

n�

i=1

(xi − µ)2 − n ln

√

2πσ
�

2µ
n�
i=1

xi − n µ2

2σ2
− 1

2σ2

n�

i=1

xi
2 − n ln


√
2πσ

�
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where the first term is a function of only a single combination of the xis,
namely their sum, and the µ parameter (the second parameter σ is to be
treated as a known constant); the rest of the expression has no µ in it.
Thus, the sum of the Xis is a sufficient statistics for estimating µ, and X̄
is the corresponding unbiased estimator. �

Exponential example: Since

n#

i=1

f(xi|β) =
1

βn
exp

�
− 1

β

n�

i=1

xi

�

we reach the same conclusion as in the previous two cases (when β is the
parameter to be estimated. To make this example a bit more challenging,
suppose that instead of β, we want to estimate θ ≡ 1

β (the arrival rate);
n�
i=1

Xiǫ gamma(n, 1
θ ) is still a sufficient statistics, but making it unbiased

is now a bit more challenging. Since

E




1
n�
i=1

Xi


 =

θn

(n− 1)!

∞�

0

1

u
· un−1e−θ udu =

θ

n− 1

Θ̂ =
n− 1
n�
i=1

Xi

makes the sum into an unbiased estimator of θ. Its variance can be found
(by a similar integration) to be θ2

n−2 , whereas the corresponding CRV is θ
2

n .

The efficiency of this MVUE is thus n−2
n (less than 100%) - the estimator

is efficient only asymptotically. �

Gamma example: Since

n#

i=1

f(xi|β) =
exp

�
− 1
β

n�
i=1

xi

�

βα n ·

�
n�
i=1

xi

�α−1

Γ(α)n

n�
i=1

Xi a sufficient statistics for estimating β. Similarly,
n�
i=1

Xi would be a

sufficient statistics for estimating α (the two are then jointly sufficient for
estimating α and β, but we will not go into that). Since

E

�
n�

i=1

Xi

�
= n α β
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�n
i=1Xi

n α is the corresponding unbiased estimator (to estimate β in this
manner can thus be done only when the value of α is known). Its vari-

ance equals to β2

n α , which agrees with the C-R bound, making it 100%
efficient. �

Uniform example: Show that X(n) is a sufficient statistic for estimating θ of
the uniform U(0, θ) distribution.

Solution: First introduce

Ga,b(x) ≡
�

1 a ≤ x ≤ b
0 otherwise

(note that it needs to be seen as a function of three arguments). The joint
pdf of X1, X2, ..., Xn can then be written as

1

θn

n#

i=1

G0,θ(xi) =
G0,θ(x(n))

θn
·G0,x(n)(x(1))

where the first factor is a function of θ and x(n), and the second factor is
θ-free. Knowing that

E(X(n)) =
n

n+ 1
θ

we can easily see that n+1
n X(n) is an unbiased and therefore MVUE of θ

(since there is no CRV, the concept of efficiency does not apply here). �

The only difficulty with the approach of this section arises when a sufficient
statistic does not exist (e.g. the case of Cauchy distribution). One can then
resort to using one of the following two techniques for finding an estimator of a
parameter (or joint estimators of two or more parameters). The second of these
is guaranteed to provide MVUE, at least asymptotically; this remains true even
when having to estimate two or more parameters.

11.4 Method of moments

is the simpler of the two; it can find adequate (often MVUE) estimators in
many cases, but when it fails, it fails rather badly. It should be considered
old-fashioned, if not obsolete. That is why we will be as brief as possible.

11.4.1 One-parameter estimation

In this case, the method provides a very simple prescription: since E(X) must
be a (usually simple) function, say g(θ), of the parameter (let us call it θ), we
make g(θ) equal to X̄ and solve for the estimator Θ̂, thus:

Θ̂ ≡ g−1(X̄)

The method clearly fails when E(X) does not exist (such as Cauchy).
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Example: When sampling from a distribution with

f(x) = 2x
a e

−x2

a when x > 0

use this technique to estimate a > 0.

Solution: Since

E(X) =

∞�

0

2x2

a e−
x2

a dx
u=x2

a=

∞�

0

√
aue−udu =

√
aΓ(3

2) =

√
aπ

2

we get

â =
4X̄2

π
Similarly,

E(X2) =

∞�

0

2x3

a e−
x2

a dx
u=x2

a= a

∞�

0

u e−udu = a

which enables us to compute

E
�
X̄2

�
=

nE
�
X2

1

�
+ n(n− 1)E (X1 ·X2)

n2
=

a

n
+
n− 1

n
· aπ
4

implying that

E (â) = a+
a

n
(
4

π
− 1)

This shows that our estimator is unbiased only asymptotically (making
it fully unbiased would be easy). Its variance can be computed with the
help of (to investigate asymptotic efficiency only, these would not even be
needed, as we will see shortly):

E(X3) =

∞�

0

2x4

a e−
x2

a dx
u=x2

a= a
3
2

∞�

0

u
3
2 e−udu =

3a
3
2
√
π

4

E(X4) =

∞�

0

2x5

a e−
x2

a dx
u=x2

a= a2

∞�

0

u2e−udu = 2a2

which imply

E

!�
n�
i=1

Xi

�4
"
=

�
4

4

�
nE(X4

1 ) +

�
4

3, 1

�
n(n− 1)E(X3

1X2) +

�
4

2

��
n

2

�
E(X2

1X
2
2)

+

�
4

2, 1, 1

�
n

�
n− 1

2

�
E(X2

1X2X3) +

�
4

1, 1, 1, 1

��
n

4

�
E(X1X2X3X4)

= a2π
2n4 + 6π(4− π)n3 + (48− 48π + 11π2)n2 − 2(8− 12π + 3π2)n

16

≃ a2π
2n4 + 6π(4− π)n3 + ...

16
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Note that we have discarded terms which do not affect asymptotic effi-
ciency; to get the approximate answer, only the E(X2

1X2X3) and E(X1X2X3X4)
part of the original expansion would have been required.

This results in

Var (â) =

�
4

π

�2


E

&
(
�n

i=1 Xi)
4
'

n4
− E

�
X̄2

�2




=

�
4

π

�2 �
a2π

2n4 + 6π(4− π)n3

16n4
− a2 (πn+ 4− π)2

16n2

�

≃ 4a2(4− π)

πn
+O(

1

n2
)

Since
∂2 ln f(x)

∂a2
=
a− 2x2

a3

the corresponding CRV is
a2

n

The asymptotic efficiency of our estimator is therefore equal to

π

4(4− π)
= 91.49% �

11.4.2 Estimating two parameters

When having to estimate two parameters (say θ1 and θ2), we do something
similar (this time using the sample mean and variance), namely:

E(X) = g(θ1, θ2) ≡ X̄

Var(X) = h(θ1, θ2) ≡ s2

and solving for θ1 and θ2 (expressing each in terms of X̄ and s2) - these are
then the corresponding estimators.

Uniform example: Based on a RIS of size n from U(a, b), estimate both a
and b.

Solution: Since

E(X) = a+b
2 ≡ X̄

Var(X) = (b−a)
12

2 ≡ s2

(≡ is to be read: ‘make it equal to’), solving for a and b yields

â = X̄ +
√
3s2

b̂ = X̄ −
√
3s2
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This proves to be a very inefficient way of estimating a and b, since the
standard error of both estimators is proportional to 1√

n
(we will not bother

to compute them), compared to ML estimators (see the next section)
whose standard error decreases with 1

n , as the sample size increases. �

Beta example: Similarly, sampling from a beta(k,m) distribution, estimate
both n and m.

Solution:

E(X) = k
n+m ≡ X̄

Var(X) = k m
(k+m)2(k+m+1) ≡ s2

imply

k̂ = X̄ ·


X̄(1−X̄)

s2 − 1
�

m̂ = (1− X̄) ·


X̄(1−X̄)

s2 − 1
�

It would be rather difficult to investigate properties (such as bias, etc.) of
these estimators, but they are certainly not expected to be very efficient. �

Estimating three or more parameters, one would have to move to higher
moments of the sampled distribution.

11.5 Maximum-likelihood technique

always performs very well; in general, ML estimators are as good or better than
those found by other techniques, even though they may be only asymptotically

unbiased (but, as we already know, removing bias is usually not too difficult).
The only problem is that, in some cases, they can be found only by solving,
numerically, one or more potentially non-linear equations (i.e. they may not
have the form of a neat analytical expression); in the age of computers, this is
not a major issue.

The way to find MLEs of parameters of a distribution is rather simple (at
least in principle):

In the joint pdf of X1, X2, ..., Xn, i.e. in

n#

i=1

f(xi|θ1, θ2, ...) (11.2)

replace each xi by the actually observed value of Xi, thus obtaining the so called
��&������� �
	����	. Note that (unlike the original pdf), this is a function
of the parameters only (the xis have become fixed numbers).

Then, one has to maximize this likelihood function with respect to θ1, θ2, ...;
the θ-values which achieve the maximum value of (11.2) are the respective ML
estimates. Note that it is frequently easier (but equivalent) to maximize the ln
of the likelihood function instead.
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11.5.1 One-parameter examples

Exponential: Sampling from E(β), find the MLE of β.

Solution: We have to maximize

−n lnβ −
�n

i=1 Xi

β

with respect to β. Making the corresponding first derivative equal to zero
yields:

−n
β
+

�n
i=1 Xi

β2 = 0

implying that β̂ = X̄. We know that the exact distribution of this esti-
mator is gamma(n, βn). �

Uniform: Sampling from U(0, θ), find the MLE of θ.

Solution: We have to maximize

1

θn
G0,θ(X(n)) ·G0,X(n)

(X(1))

with respect to θ; this can be achieved by choosing the smallest possible
value for θ while keeping G0,θ(X(n)) = 1, leading to θ̂ = X(n). We know

that the exact distribution of θ̂θ is beta(n, 1). �

Geometric: Sampling from G(p), find the MLE of p.

Solution: Maximize

n ln p+

�
n�
i=1

Xi − n

�
ln(1− p)

by solving
n

p
−

�n
i=1 Xi − n

1− p
= 0

which yields

p̂ =
n�n

i=1 Xi
= (X̄)−1

We know that the exact distribution of
�n

i=1 Xi is NB(n, p), which would
enable us to investigate basic properties of this estimator. �

Reyleigh: Sampling from a distribution with

f(x) =
2x

a
e−

x2

a when x > 0

find the MLE of a > 0.
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Solution: Maximize

n ln 2− n lna+ ln
n#

i=1

Xi −
�n

i=1 X
2
i

a

by solving

−n
a
+

�n
i=1 X

2
i

a2
0

which implies that

â =

�n
i=1 X

2
i

n
= X2

(unbiased estimator - done earlier). Based on

∂2

∂a2

�
ln(2X)− lna− X2

a

�
=

1

a2
− 2

X2

a3

whose expected value is − 1
a2 , the C-R bound is a2

n . Since

Var(X2) =
Var(X2)

n
=
E(X4)− a2

n
=
a2

n

the MLE is MVUE. �

Normal: Sampling fromN (µ, σ), find the MLE of σ2 assuming that µ is known.

Solution: Maximize
n

2
ln(2π)− n lnσ −

�n
i=1(Xi−µ)2

2σ2

by solving (note that we can differentiate with respect to σ rather than
σ2)

−n
σ
+

�n
i=1(Xi−µ)2

σ3 = 0

which implies that
(σ2 =

�n
i=1(Xi−µ)2

n

Based on

∂2

(∂σ2)2



−1

2 ln(2π)− 1
2 lnσ

2 − (x−µ)2

2σ2

�
= 1

2σ2 −
(x−µ)2

σ6

(this time we do have to differentiate with respect to σ2), whose expected

value is − 1
2σ4 , CRV equals to 2σ4

n . Since

Var(σ̂2) = E

&
�n
i=1[(Xi−µ)2−σ2]2

n

�'
= E[(X−µ)4]−2E[(X−µ)2]σ2+σ4

n

= 3σ4−2σ4+σ4

n = 2σ4

n

the MLE is MVUE. �
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Gamma (estimating β): Sampling from gamma(α, β), find the MLE of β (as-
suming that α is known).

Solution: Maximize

(α− 1) ln
n#

i=1

Xi −
�n

i=1Xi

β − n ln Γ(α)− n α lnβ (11.3)

by solving �n
i=1Xi

β2
− n α

β = 0

for β, getting )β =
X̄

α
. We know that the exact distribution of this esti-

mator is gamma(nα, β
nα). �

Gamma (estimating α): Sampling the gamma(α, β) distribution, find the
MLE of α (assuming that β is known).

Solution: Maximize (11.3) by solving

n�

i=1

lnXi − nψ(α)− n lnβ = 0

where ψ(α) is the so called Euler’s ��� function (also called digamma func-
tion), defined as the α derivative of ln Γ(α). This implies that

ψ(α̂) = ln X
β

which can be easily and uniquely solved for α̂ > 0 (graphically or nu-
merically). Thus, for example, based on the following RIS of size fifteen:
3.82, 4.26, 13.98, 8.06, 4.47, 1.53, 7.70, 1.62, 7.93, 4.93, 3.91, 5.75, 10.99, 6.04, 5.91 and
knowing that β = 1.5, we get

ln X
β = 1.242

and, consequently, α̂ = 3.95 . The asymptotic variance (equal to CRV) of
this estimator is 1

n·ψ′(α) ; this enables us to estimate the standard error of

our estimate as
�

1
15·ψ′(3.95) = 0.48 . �

Cauchy (estimating median): Sampling C(a, 1), find the MLE of a.

Solution: Maximize

−n lnπ −
n�

i=1

ln
�
1 + (Xi − a)2

�

by solving
n�
i=1

Xi−a
1+(Xi−a)2 = 0
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Unfortunately, in this case there is no analytic solution for a. But, as
soon as a RIS is taken, the individual Xis become simple numbers, and
the equation can be easily solved numerically. Thus, for example, when
n = 20 and the corresponding RIS results in 3.67, 0.69, −9.11, −2.07,
−3.89, −3.25, −2.85, 2.60, −3.27, 17.09, −3.72, −2.27, −2.42, −2.88,
−2.28, −2.42, −4.60, −5.37, −4.68, −2.80, one can easily plot the LHS of
the last equation (as a function of a) to see that it intersects the a axis at
−2.91 (to get it accurately enough, one may have to do a bit of zooming
in) which thus becomes the corresponding ML ����
���:

To find the standard error of the answer, we utilize the fact that any MLE
must be (at least asymptotically) 100% efficient. Based on

E

�

∂ ln f
∂a

�2
 
= 1

π

� ∞

−∞

4(x−a)2 dx

(1+(x−a)2)3
= 1

2

the CRV is equal to 2
n ; the standard error of our estimate is thus

√
0.1 =

0.32.

In this context, we recall that the asymptotic variance of the sample median

X̃ (which in this case has the value of −2.825) equals to π2

4n , its efficiency
is thus only 8

π2 = 81.06% (the corresponding standard error is 0.35). But

X̃ has one big advantage: unlike the ML estimator, it does not need to
know the value of the second parameter! Furthermore, X̃ (unlike the
MLE) remains a sensible estimator of distribution’s median even when
the distribution is not quite Cauchy (after all, we may be uncertain not
only about the exact values of various parameters, but about the shape
and nature of the distribution itself). Estimators of this kind (insensitive
to a breakdown of some of our assumptions) are called ���
��. �

11.5.2 Two-parameter examples

Normal: Sampling from N (µ, σ), find the MLEs of both µ and σ.

Solution: Maximize
n

2
ln(2π)− n lnσ −

�n

i=1
(Xi−µ)2

2σ2
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by setting both derivatives equal to zero, i.e.
�n

i=1(Xi−µ)
σ2 = 0

and
−n
σ
+

�n
i=1(Xi−µ)2

σ3 = 0

The first one of these clearly yields µ̂ = X̄, the second one (after substi-
tuting X̄ for µ) yields

σ̂ =

��n
i=1(Xi−X̄)2

n

The properties of the two estimators follow from what we know about the
joint distribution of X̄ and s2.

Uniform: Sampling U(a, b), find the MLEs of a and b.
Solution: Maximize

1

(b− a)n

n#

i=1

Ga,b(Xi) =
Ga,b(X(n))Ga,X(n)

(X(1))

(b− a)n

by choosing a and b as close to each other as the G-functions allow (before
dropping to zero). Obviously, a cannot be any bigger that X(1) and b can-
not be any smaller than X(n), so these are the corresponding MLEs. Based
on the ‘Order Statistics’ chapter, we know how to find their exact joint
distribution. �

Gamma: Sampling from gamma(α, β), find the MLEs of both parameters.

Solution: Maximize (11.3). The two derivatives result in the following two
equations:

n�

i=1

lnXi − nψ(α)− n lnβ = 0

and �n
i=1 Xi

β2 − n α

β
= 0

Based on the second one, we get

)β =
X̄

α̂

The first equation can be then re-written as follows

ln α̂− ψ(α̂) = ln X̄ − lnX

and needs to be solved numerically for α̂ (there is always a unique solu-
tion). Using the RIS of size 15 from the previous section (where we were
estimating the value of α only), we now get

ln X̄ − lnX = 0.1543
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which leads to α̂ = 3.40 and )β = 6.06
3.40 = 1.78 . One can show that their

approximate joint distribution is bivariate Normal, with the two means
given by α and β respectively (i.e. the exact, albeit still unknown values
of the two parameters), and the variance-covariance matrix equal to

1

−n ·


 E



∂2 ln f
∂a2

�
E



∂2 ln f
∂α ∂β

�

E



∂2 ln f
∂α ∂β

�
E



∂2 ln f
∂β2

�


−1

=
1

n
·
!
ψ′(α) 1

β
1
β

α
β2

"−1

=
1

n · (α ψ′(α)− 1)
·
�

α −β
−β β2ψ′(α)

 

This yields (in this particular case - note that we need to use our MLEs to
evaluate the previous matrix) an approximate standard error of α̂ to be

1.18 and that of )β to be 0.67; furthermore, the correlation correlation
between the two is roughly equal to −0.93 (meaning that, when α̂ is

overestimating the value of α, )β is most likely underestimating the value
of β).

Cauchy: Sampling C(a, b), we have to maximize

−n lnπ + 2n ln b−
n�

i=1

ln
�
b2 + (Xi − a)2

�

by solving (numerically)

n�
i=1

Xi−a
b2+(Xi−a)2 = 0

and

n
b −

n�
i=1

b
b2+(Xi−a)2 = 0

Alternately, one can find the same solution graphically, based on the con-
tour plot of the likelihood function itself. Using the RIS of size 20 from
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the previous section, we get

which, after a bit of zooming in, yields â = −2.90 and b̂ = 0.94 . The
corresponding approximate variance-covariance matrix is now

2b2

n
·
�
1 0
0 1

 

which makes both standard errors equal to 0.30; this time, the two esti-
mators are practically uncorrelated.
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Chapter 12

Confidence Intervals

The previous section considered the issue of so called ���	� ����
����	, which
uses a single (originally random) number as an approximation to the parameter’s
true, exact value (we should also realize that we will never know this value).
Doing this gives us no information about how accurate the estimate is; it is
therefore desirable to also have some idea about the size of its error. To provide
that, we build a so called ��	����	�� �	������ (CI) around the estimate,
which tells us (with a specific ����� �� ��	����	��) that the true value of
the parameter should be inside this interval. It is easy to see that saying: ‘we
are 90% confident that the true value of the parameter is inside the 8.3 ± 0.1
interval’ is quite different from a similar statement which places it inside the
8.3± 1.0 limits.

The level of confidence (denoted 1− α in general) is defined as the original
(i.e. before the sample is taken) probability that the resulting CI will contain
the true value of the parameter (depending on how lucky we are when doing the
sampling). Please realize that, after we have collected a sample and converted
it into a CI, there is no randomness left: when we say the true value of the
parameter is inside the CI, we are either 100% right or 100% wrong - that is
why we speak of ‘confidence’ rather than ‘probability’.

From now on, we assume that our samples are taken from N (µ, σ).

12.1 CI for µ

We first assume that, even though the (unknown) value of µ is to be estimated,
we do know the exact value of σ (based on past experience; the implicit assump-
tion being that µ may change in time, but σ does not).

We know that
X̄ − µ

σ/
√
n

has the N (0, 1) distribution. This means (a statement about something yet to

109
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happen) that

Pr

�				
X̄ − µ

σ/
√
n

				 < zα/2

�
= Pr

�		X̄ − µ
		 < zα/2 · σ/

√
n
�
= 1− α (12.1)

where zα/2 is the so called �������� ���
� found from

Pr(Z > zα/2) =
α
2

Once we have taken the sample and evaluated X̄, the same line (12.1) can be
re-written and re-interpreted as follows:

X̄ − zα/2 · σ/
√
n < µ < X̄ + zα/2 · σ/

√
n

claimed with the 1−α level of confidence. Note that the most (by far) commonly
used value of α is 5% (leading to the confidence level of 95%).

12.1.1 σ unknown

In this case, we have to replace σ by the next best thing, which is of course
sample standard deviation s. We know that the distribution of

X̄ − µ

s/
√
n

(12.2)

changes from N (0, 1) to tn−1. This means that we also have to change zα/2 to
tα/2,n−1, the rest remains the same. A 100 · (1− α)% confidence interval for µ
is then constructed by

X̄ − tα/2,n−1 · s/
√
n < µ < X̄ + tα/2,n−1 · s/

√
n

12.1.2 Large-sample case

When n is ‘large’ (n ≥ 30), there is practically no difference between zα/2

and tα/2,n−1, and we can use zα/2 even when σ needs to be replaced by s.
Furthermore, the distribution from which we sample does not even have to be
Normal! The approximate CI for µ is then

X̄ − zα/2 · s/
√
n < µ < X̄ + zα/2 · s/

√
n

claimed with 1− α level of confidence. nσ2 · (X̄ − µ)2


