KNOW YOUR DISTRIBUTIONS!! Discrete (integer-valued) Univariate

Name counts the number of pmf $\binom{n}{i}p^{i}q^{n}$ $\mathcal{B}(n,p)$ successes in n trials pq^{i-1} $\mathcal{G}(p)$ trials to get the first S $\mathcal{NB}(k,p)$ ${}^{-1}_{-1})p^kq^{i-k}$ trials to get k of them Λ^{i} $\cdot \, e^{-\Lambda}$ $\mathcal{P}(\Lambda)$ customers in fixed time il (K-K. n-i $\mathcal{HG}(n, K, N)$ spades in a hand of n

formulas for mean, variance, PGF (support, modified \mathcal{G} and \mathcal{NB}). Important result: $P(z)^n$ is the PGF of an independent sum of n such RVs (no need for CLT)!

Multivariate

Multi-	pmf	Covariance
nomial	$\binom{n}{i,j,k}p_1^ip_2^jp_3^k$	$-np_1p_2$
variate \mathcal{HG}	$\frac{\binom{K_1}{i} \cdot \binom{K_2}{j} \cdot \binom{K_3}{k}}{\binom{N}{n}}$	$-n \cdot \frac{K_1 K_2}{N^2} \cdot \frac{N-n}{N-1}$

Continuous (real-valued)

Univariate

Name	pdf	relates to
$\mathcal{U}(a,b)$	$\frac{1}{b-a}$	spinning wheel
$\mathcal{E}(eta)$	$rac{\exp\left(-rac{x}{eta} ight)}{eta}$	time of next arrival
$gamma(\alpha,\beta)$	$\frac{x^{\alpha-1}\exp\left(-\frac{x}{\beta}\right)}{\Gamma(\alpha)\beta^{\alpha}}$	time of $\alpha^{\rm th}$ arrival
$\mathcal{N}\left(\mu,\sigma ight)$	$\frac{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}{\sqrt{2\pi}\cdot\sigma}$	CLT
beta (k,m)	$\frac{\Gamma(k+m)\cdot x^{k-1}(1-x)^{m-1}}{\Gamma(k)\Gamma(m)}$	uniform order statistics
$\mathcal{C}\left(\tilde{\mu}, \tilde{\sigma}\right)$	$rac{ ilde{\sigma}}{\pi\cdot[ilde{\sigma}^2+(x- ilde{\mu})^2]}$	laser beam behind screen

their mean, variance, MGF.

Bivariate Normal $(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho)$ Standardized pdf

$$f(z_1, z_2) = \frac{\exp\left(-\frac{z_1^2 + z_2^2 - 2\rho \cdot z_1 z_2}{2(1-\rho^2)}\right)}{2\pi\sqrt{1-\rho^2}}$$

MGF

$$\exp\left(\frac{\sigma_{1}^{2}t_{1}^{2}+\sigma_{1}^{2}t_{2}^{2}+2\rho\cdot\sigma_{1}\sigma_{2}t_{1}t_{2}}{2}+\mu_{x}t_{1}+\mu_{y}t_{2}\right)$$

How does it 'generate moments' (differentiate, then substitute $t_1 = t_2 = 0$).

Marginal distribution of X

$$\mathcal{N}(\mu_x, \sigma_x)$$

Conditional distribution of X given $Y = \mathbf{y}$

$$\mathcal{N}\left(\mu_x + \rho \cdot \sigma_x \cdot \frac{\mathbf{y} - \mu_y}{\sigma_y}, \sigma_x \sqrt{1 - \rho^2}\right)$$

Any other **general** (continuous) bivariate distribution: Be able to find marginal pdf

$$f_X(x) = \int_{\text{All } y|x} f(x,y) dy$$

conditional pdf

$$f_{X|Y}(x) = \frac{f(x, \mathbf{y})}{\int_{\text{All } x|\mathbf{y}} f(x, \mathbf{y}) dx}$$

and answer any probability question about X and Y. Sampling from univariate $\mathcal{N}(\mu, \sigma)$

$$\begin{split} \bar{X} \ \epsilon \ \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \\ \frac{\bar{X} - \mu}{\sqrt{n}} \ \epsilon \ \mathbf{t}_{n-1} \\ \frac{(n-1)s^2}{\sigma^2} \ \epsilon \ \chi_{n-1}^2 \quad \text{same as} \quad \text{gamma}\left(\frac{n-1}{2}, 2\right) \\ \frac{s_1^2}{s_2^2} \ \epsilon \ \mathsf{F}(n_1 - 1, n_2 - 1) \quad \text{(independent)} \end{split}$$

Sampling from *any* other distribution (CLT):

$$\bar{X}$$
 is approximately $\mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Transforming Y = g(X)

$$F_Y(y) = \Pr\left(g(X) \le y\right)$$

or

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{g^{-1}(y)}{dy} \right|$$

More difficult: U = h(X, Y)

$$F_U(u) = \Pr(h(X, Y) \le u)$$

${\cal N}(0,1)^2$ χ^2_1		
$rac{\mathcal{N}(0,1)}{\sqrt{rac{\chi_m^2}{m}}} (ext{independent}) t_m$		
$\frac{\frac{\chi_m^2}{m}}{\frac{\chi_k^2}{k}} \text{(independent)} F(m,k)$		
$-eta \cdot \ln(\mathcal{U}(0,1))$ $\mathcal{E}(eta)$		
$\sum_{i=1}^{k} \mathcal{E}(\beta)$ (independent) gamma (k, β)		
$\frac{\operatorname{gamma}(k,\beta)}{\operatorname{same+gamma}(m,\beta)} (\operatorname{independent}) \operatorname{beta}(k,m)$		

Special case: find pdf of $X_1 + X_2$ (independent) by convolution. Some transformations worth remembering (symbolically)

Order statistics

$$f_{(i)}(x) = \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} (1 - F(x))^{n-i} f(x)$$

$$f_{(i,j)}(x,y) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} \times$$

$$F(x)^{i-1} (F(y) - F(x))^{j-i-1} (1 - F(y))^{n-j} f(x) f(y)$$

and \tilde{X} is approximately $\mathcal{N}\left(\tilde{\mu}, \frac{1}{2f(\tilde{\mu})\cdot\sqrt{n}}\right)$ - we can deal with it exactly. Parameter estimation

Find ML and MM estimators of one or two parameters and their variances (in case of MLE, differentiate between regular - use RCV - or not).

Find (jointly) sufficient statistic(s); these (as well as any estimators) must be functions of the X_i s only - not containing θ or λ !