BROCK UNIVERSITY

Progress Examination: December 2000	Number of Pages: 4
Course: MATH 4F21	Number of students: 2
Date of Examination: Dec. 12, 2000	Number of Hours: 3
Time of Examination: 14:00 -17:00	Instructor: J. Vrbik

This is an open-book exam. Full credit given for 7 complete answers.

1. Consider a branching process with six initial members (Generation 0), and the following probability distribution for the number of offsprings (of any of its members):

#	0	1	2	3	
Pr:	0.31	0.26	0.23	0.20	

Find:

- (a) The expected value and standard deviation of the number of members of Generation 4.
- (b) The probability that this generation will have more than 17 members.
- (c) The probability of ultimate extinction.
- (d) The probability of getting extinct during the first five generations.
- 2. For a Markov chain with the following transition probability matrix

	0	0	0.24	0.76	0	0 -
	0	0	0.48	0.52	0	0
m	0	0	0	0	0.69	0.31
$\mathbf{r} =$	0	0	0	0	0.82	0.18
	0.37	0.63	0	0	0	0
	0.12	0.88	0	0	0	0

compute, exactly (i.e. using fractions)

(a)

$$\lim_{n\to\infty}\mathbb{P}^{3n+1}$$

- (b) fixed probability vector,
- (c) long-run proportion of visits to State 4.

3. Solve the following difference equation

$$a_{i+1} - 3a_i + 2a_{i-1} = 2^i + 1$$

where $a_0 = 3$ and $a_{12} = 3$.

- 4. If S indicates getting a six when rolling a die, and F means getting any other number, find the probability generation function of:
 - (a) the number of trials to generate the pattern

SFFSF

for the first time, and the corresponding mean and standard deviation.

- (b) the *additional* number of trials to generate the same pattern the second time (the two occurrences are allowed to overlap)
- (c) the *total* number of trials to generate altogether *five* occurrences of this pattern (again, consecutive occurrences may overlap).
- 5. For a Markov chain with the following probability transition matrix

[1	0	0	0	0
0	1	0	0	0
0.21	0.13	0.32	0.11	0.23
0.13	0.05	0.27	0.34	0.21
0.10	0.19	0.31	0.25	0.15

and the following initial distribution

State	1	2	3	4	5
Pr:	0.07	0.12	0.26	0.31	0.24

compute:

- (a) the probability of ending up in State 1,
- (b) expected value and standard deviation of the number of transitions till absorption,
- (c) expected number of visits to State 4.

- 6. Using the transition probability matrix of the previous question, compute:
 - (a) $\Pr(X_7 = 1 \mid X_5 = 3 \cap X_2 = 4)$ (b) $\Pr(X_5 = 3 \cap X_7 = 1 \mid X_2 = 4)$ (c) $\Pr(X_5 = 3 \mid X_7 = 1 \cap X_2 = 4)$
- 7. Consider the following random experiment: Three dice are rolled, followed by flipping a coin as many times as the total number of dots on the dice. Find:
 - (a) the probability generating function of the number of heads thus obtained,
 - (b) the corresponding mean and standard deviation.
- 8. Consider a branching process with four initial members, and the distribution of the number of offsprings having the following probability generating function:

$$F(s) = \exp\left(\frac{9s - 9}{20 - 10s}\right)$$

Compute the mean and standard deviation of total progeny, assuming:

- (a) the process is left to run till extinction,
- (b) the process is run for five generations only (hint: using Maple, find the corresponding probability generating function first).

- 9. If the pattern *HTHTH* is played against *TTHHTT* (assuming a coin is flipped till one of these is generated), find:
 - (a) the probability of *HTHTH* winning,
 - (b) the expected duration of the game,
 - (c) the probability that the game will take more than 40 flips.
- 10. Do a complete classification of states of the following transition probability matrix:

0	0	0	0	0	0	0	×]
0	×	0	0	×	0	0	0
×	0	×	X	0	Х	×	×
×	X	0	X	×	Х	0	×
0	Х	0	0	×	0	0	0
0	0	0	0	0	0	0	×
×	0	Х	Х	0	Х	Х	×
L×	0	0	0	0	Х	0	0