BROCK UNIVERSITY

Progress Examination: December 1999	Number of Pages: 3
Course: MATH 4F21	Number of students: 3
Date of Examination: Dec. 14, 1999	Number of Hours: 3
Time of Examination: 14:00 -17:00	Instructor: J. Vrbik

This is an open-book exam. Full credit given for 7 complete answers.

1. Find

0	.3	.7	0	0	¹⁰⁰⁰ [
0	0	0	1	0	
0	0	0	1	0	
1	0	0	0	0	
.2	.2	.1	.2	.3	

2. Consider a branching process with three initial members, and the number of offsprings having the distribution with the following PGF

$$F(s) = \exp(s^2 - 1)$$

- (a) Compute the probability of ultimate extinction of this process.
- (b) Find the expected number of members of the 6^{th} generation and the corresponding standard deviation.
- (c) What is the probability that the first generation will consist of exactly two members?
- 3. Do the complete classification of the following TPM (\times indicates a nonzero entry, \cdot implies zero):

Γ	•	•	•	•	X	•	\times
	•	•	•	•	X	•	\times
	•	•	•	Х	•	•	•
;	×	×	•	•	•	•	•
	•	•	Х	•	•	Х	•
	•	•	•	Х	•	•	•
	•	•	X	•	•	×	•

For each periodic class, find the subclasses.

Page 2 of 3

4. Using the following TPM

find $Pr(X_3 = 2 \cap X_1 = 3)$, given that the initial state is drawn from the distribution

X_0	1	2	3	4
\Pr	.25	.35	.25	.15

Also, what is the probability of visiting State 2 before State 3?

- 5. Find the expected number of flips of a coin and the corresponding standard deviation to generate the pattern HTTHTT.
- 6. Find the solution to the following difference equation

$$4a_{i+1} - 8a_i + 3a_{i-1} = \frac{3}{2^i} + 1$$

such that $a_{-2} = \frac{209}{9}$ and $a_4 = \frac{195}{8}$.

7. Consider a branching process with *three* initial members, and the number of offsprings having the distribution with the following PGF

$$F(s) = (0.6 + 0.4 e^{s-1})^2$$

- (a) Compute the expected value and standard deviation of total progeny of this process.
- (b) What is the probability that Generation 5 is the first one with no members.

8. Compute the expected number of transitions till absorption and the corresponding standard deviation, given that

$$\mathbb{P} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ .2 & .2 & .6 & 0 & 0 \\ .3 & .3 & .4 & 0 & 0 \\ .2 & .2 & .1 & .3 & .2 \\ .1 & .1 & .3 & .4 & .1 \end{bmatrix}$$

and the process starts in State 5. Also, what is the expected number of visits to State 3?

- 9. If the pattern HTHH is played against HHT, find its probability of winning. Also, find the expected duration of the game (in terms of number of flips).
- 10. Find $\stackrel{\vee}{\mathbb{P}}$ (the time-reversed TPM) of the following Markov chain

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & .3 & .7 & 0 \\ 0 & .6 & .3 & .1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Is the Markov chain reversible?