BROCK UNIVERSITY

Final Examination: April 2018	Number of Pages: 3
Course: MATH 4P84	Number of students: 8
Date of Examination: April 14, 2018	Number of Hours: 3
Time of Examination: 14:00-17:00	Instructor: J. Vrbik

Open-book exam. Full credit given for 18 (out of 27) complete and correct answers; all must be entered in your booklet (as soon as computed); e-mail your Maple to jvrbik@brocku.ca (keep a copy).

1. Consider a Markov chain having the following TPM

	0.64	0	0	0.36	0	0	0	0	0 -
	0.16	0.18	0.12	0.06	0.04	0.08	0.15	0.16	0.05
	0	0	0	0	0.75	0	0	0.25	0
	0.77	0	0	0.23	0	0	0	0	0
$\mathbb{P}=$	0	0	0.23	0	0	0.48	0	0	0.29
	0	0	0	0	0.45	0	0	0.55	0
	0.10	0.14	0.02	0.15	0.13	0.19	0.09	0.06	0.12
	0	0	0.32	0	0	0.55	0	0	0.13
	0	0	0	0	0.13	0	0	0.87	0

- (a) Do a complete classification of its states (into recurrent/transient classes and subclasses). Then compute
- (b) expected number of transitions to reach a recurrent class (and the corresponding standard deviation), given the process starts in State 2,
- (c) $\Pr(X_{204} = 3 \cap X_{206} = 6 \mid X_{210} = 9 \cap X_{213} = 5)$ assuming the process is in its stationary mode (hint: pull out the relevant class, say \mathbb{R} , and find the corresponding $\mathring{\mathbb{R}}$).
- (d) The following four answers must be given in *fractional* form (partial credit given for decimal values)

	$\lim_{n\to\infty}(\mathbb{P}^n)_{4,1}$
(e)	$\lim_{n\to\infty} (\mathbb{P}^{2n+1})_{9,5}$
(f)	$\lim_{n\to\infty}(\mathbb{P}^n)_{7,4}$
(g)	$n \rightarrow \infty$

$$\lim_{n\to\infty}(\mathbb{P}^{2n+1})_{2,6}$$

Course: MATH 4P84 Date: April 14, 2018 Page 2 of 3

2. Consider a branching process with 13 initial members (in Generation 0), whose offspring distribution has the following PGF:

$$P(z) = \frac{1}{2 - \exp(z - 1)}$$

Compute the

- (a) probability that Generation 7 will have more than 25 members,
- (b) expected progeny of the process up to and including Generation 7, and the corresponding standard deviation,
- (c) probability that the progeny of the process up to and including Generation 7 will consist of more than 100 members,
- (d) probability that extinction does not take more than 20 generations.
- 3. Bob an Alice bet \$3 each on the outcome of the following random experiment: 8 random cards are dealt from a standard deck of 52 cards, followed by rolling a die as many times as the number of spades in this hand; if more than 6 dots (in total) are obtained, Alice wins the round (otherwise, Bob does). (Hint: first build the PGF of the number of spades dealt, then replace its z by the PGF of the number of dots when rolling a die once; this yields the PGF of the total number of dots obtained). Compute:
 - (a) the probability of Alice winning a single round,
 - (b) the probability of her winning the game, if she starts with \$36 (Bob's initial capital is \$27), and they play till one of them goes broke,
 - (c) the expected number of rounds (and the corresponding standard deviation) to complete this game,
 - (d) the probability that the game will end in fewer than 100 rounds.
- 4. Consider the following difference equation

$$a_{n+2} - 2a_{n+1} + 8a_{n-1} - 12a_{n-2} + 8a_{n-3} = n^2 \cdot (-2)^{n+2}$$

(note the 'missing' a_n). Find

- (a) a particular solution,
- (b) a general solution,

(c) the solution which meets: $a_{-5} = -\frac{4543}{2000}$, $a_{-3} = \frac{18351}{2500}$, $a_{-1} = \frac{4327}{625}$, $a_0 = 4$ and $a_2 = \frac{5272}{625}$.

- 5. Consider rolling a die whose two sides are painted red, two are painted blue and two are green, until generating 3 occurrences of the pattern *RBGRG*. Find
 - (a) the expected number of rolls and the corresponding standard deviation,
 - (b) the probability that this will take between 300 and 500 rolls (inclusive).
 - (c) Compute the expected number of occurrences of this pattern in 500 rolls of a die, and the corresponding standard deviation.
- 6. Consider rolling the same die until one of the following two patterns appears (for the first time): RGG or GGR. Find
 - (a) the expected number of rolls this game will take, and the corresponding standard deviation,
 - (b) the probability that the game will take more than 30 rolls,
 - (c) the probability that *RGG* appears first (thus 'winning' the game).
- 7. Consider the following random walk

starting in State 7. Find

- (a) the expected number of transitions till absorption in one of the two absorbing states (solid circles) and the corresponding standard deviation,
- (b) the probability of getting absorbed by State 1,
- (c) the probability of returning back to State 7 (at least once) before absorption.