BROCK UNIVERSITY

Final Examination: April 2019	Number of Pages: 3
Course: MATH 4P84	Number of students: 13
Date of Examination: April 12, 2019	Number of Hours: 3
Time of Examination: 19:00 - 22:00	Instructor: J. Vrbik

This is an open-book exam. Full credit given for 18 (out of 30) complete and correct answers - these must be entered in your booklet as soon as computed; e-mail your Maple to jvrbik@brocku.ca (and keep a copy).

1. Consider a Markov chain having the following TPM

	$\begin{bmatrix} 0\\ \frac{3}{10}\\ 0\\ 0\\ 3 \end{bmatrix}$	$\frac{2}{5}$ 0 0 0	$ \begin{array}{c} 0 \\ \frac{3}{10} \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ \frac{2}{5} \\ 0 \\ 0 \\ 1 \end{array} $	$\frac{3}{5}$ 0 0 1	0 0 0 0	$ \begin{array}{c} 0 \\ \frac{1}{10} \\ 0 \\ 0 \\ 1 \end{array} $	0 0 0 0	$\begin{array}{c} 0\\ \frac{1}{5}\\ 0\\ 0\\ 3 \end{array}$	$\begin{array}{c} 0\\ 0\\ \frac{7}{10}\\ 0\\ \end{array}$	0 0 0 0	0 0 0 0
$\mathbb{P} =$	$ \begin{array}{c} 0 \\ \frac{3}{10} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ \frac{7}{10} \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 2 \\ 5 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ \frac{1}{5} \\ \frac{1}{10} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ \frac{3}{10} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ \frac{1}{5} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ \frac{3}{10} \\ 0$	$ \begin{array}{c} 0 \\ \frac{3}{10} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{5} \\ 0 \\ \frac{1}{2} \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{3}{5} \\ \frac{1}{2} \\ 0 \end{array}$	$\begin{array}{c} 0 \\ \frac{3}{5} \\ 0 \\ \frac{2}{5} \\ 0 \\ 0 \\ \frac{3}{10} \end{array}$
	0	0	0	0	$\frac{3}{10}$	$\frac{3}{10}$	0	$\frac{1}{10}$	0	0	0	$\frac{3}{10}$

(a) Do a complete classification of its states (into recurrent/transient classes and subclasses).

Then compute

- (b) the expected number of transitions (and the corresponding standard deviation) to reach a recurrent state, given that the process starts in State **6**,
- (c) $\Pr(X_{208} = \mathbf{9} \cap X_{210} = \mathbf{1} \mid X_{204} = \mathbf{7} \cap X_{206} = \mathbf{4}),$
- (d) $\Pr(X_{204} = \mathbf{7} \cap X_{206} = \mathbf{4} \mid X_{208} = \mathbf{9} \cap X_{210} = \mathbf{1})$ assuming that the process is in a stationary mode.

The following four answers must be computed and quoted using *fractions* only.

(e) $\lim_{n\to\infty} (\mathbb{P}^n)_{\mathbf{11,3}}$

(f)
$$\lim_{n\to\infty} (\mathbb{P}^{2n+1})_{\mathbf{5},\mathbf{9}}$$

- (g) $\lim_{n\to\infty} (\mathbb{P}^n)_{6,10}$
- (h) $\lim_{n\to\infty} (\mathbb{P}^{2n+1})_{\mathbf{8},\mathbf{2}}$

Course: MATH 4P84 Date: April 12, 2019 Page 2 of 3

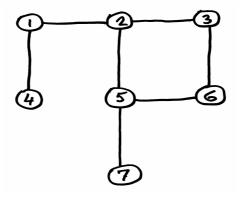
2. Consider a branching process with 50 initial members (in Generation 0), whose offspring distribution has the following PGF:

$$P(z) = \frac{1.03}{2.03 - z}$$

Compute

- (a) the probability that none of the initial members has more than 4 children,
- (b) the probability that Generation 20 will have more than 25 members,
- (c) the expected progeny of the process up to and including Generation 20, and the corresponding standard deviation,
- (d) the probability that the *total* progeny of the process will consist of more than 800 members (hint: use the *exact* PGF),
- (e) the expected number of generations till extinction, and the corresponding standard deviation.
- 3. Bob an Alice bet \$2 each on the outcome of rolling two dice; when the *total* number of dots is even, Bob wins the round, when it's odd, Alice takes the money. Compute
 - (a) the probability that Alice wins the game, if she starts with \$40 (Bob's initial capital is \$50), and they play till one of them goes broke,
 - (b) the expected number of rounds (and the corresponding standard deviation) to complete this game,
 - (c) the probability that the game will end in fewer than 210 rounds.
- 4. This time Alice bets \$1 against Bob's \$2, since her probability of winning a round is only $\frac{1}{2}$ (making it a fair game).
 - (a) Set up a difference equation for w_i (the probability of her winning the game, given she has currently *i* dollars and Bob has N-i dollars) and specify the corresponding 'initial/boundary' conditions for the w_i sequence.
 - (b) Find her probability of winning the game if she starts with \$10 against Bob's \$12.
- 5. Consider the following difference equation

$$3a_{n+2} - 7a_{n+1} + 5a_n - a_{n-1} - \frac{n}{3^{n-1}} = 0$$


Find

- (a) its general solution,
- (b) the solution which meets

$$a_{-2} = \frac{131}{4}, a_0 = 7 \text{ and } a_3 = -\frac{655}{108}.$$

Course: MATH 4P84 Date: April 12, 2019 Page 3 of 3

- 6. Consider flipping a fair coin till getting 4 occurrences of the **HTTHT** pattern (throughout this question, consecutive occurrences *are* allowed to overlap). Compute
 - (a) the expected number of flips and the corresponding standard deviation,
 - (b) the probability that this will take between 100 and 200 flips (inclusive).
 - (c) Compute the expected number of occurrences of this pattern in 500 flips, and the corresponding standard deviation.
- 7. Consider rolling a fair die till either **6E6** or **EE6EEEEE** appears (**6** means getting six dots, **E** getting any other number) note that these two patterns are 'incompatible'. Find
 - (a) the expected number of rolls this game will take, and the corresponding standard deviation,
 - (b) the probability that the game will take more than 30 rolls,
 - (c) the probability that **6E6** 'wins' (appearing first).
- 8. Consider a random walk over the network of the next diagram

starting in a node which is selected using the following initial distribution:

$X_0 =$	1	2	3	4	5	6	7
Pr:	$\frac{2}{14}$	$\frac{3}{14}$	$\frac{2}{14}$	$\frac{1}{14}$	$\frac{3}{14}$	$\frac{2}{14}$	$\frac{1}{14}$
	14	14	14	14	14	14	14

Compute (and quote the results) using *fractions* only

- (a) the expected number of transitions to visit State 4 (for the first time), and the corresponding *variance*,
- (b) the probability that it will take more than six transitions to visit State 4 (for the first time),
- (c) the probability of visiting State 4 before either State 3 or State 7 are visited,
- (d) $\Pr(X_9 = \mathbf{6} \mid X_{15} = \mathbf{4})$

Hint: recall what we know about being stationary and about being time-reversible.