Open book exam. Full credit given for three correct and complete solutions. Answers to the first three questions must be exact (i.e. in fractions).

Duration: 50 minutes

1. Find $\lim_{n\to\infty} (\mathbb{P}^{2n+1})_{5,4}$ where

	0	0	0.4	0.6	0	0
$\mathbb{P}=$	0	0	0.7	0.3	0	0
	0.6	0.4	0	0	0	0
	0.5	0.5	0	0	0	0
	0.1	0.3	0.2	0.1	0.1	0.2
	0.2	0.1	0.3	0.1	0.1	0.2

2. Consider FMC with

	0	0	1	0	0 -
	0	0	1	0	0
$\mathbb{P}=$	0	0	0	0.34	0.66
	0.29	0.71	0	0	0
	0.57	0.43	0	0	0

Find a TPM

- (a) of the time-reversed process;
- (b) having the same fixed vector as \mathbb{P} , but the corresponding Markov chain being time reversible.
- 3. Find the general solution to

$$a_n - 5a_{n-1} - 8a_{n-2} + 48a_{n-3} = 2^{2n+1} + 2^{3n-1}$$

4. Alice has \$36 and Bob has \$42, and they agree to play the following game, repeatedly, till one of them goes broke: A standard deck of cards is shuffled and 8 cards are dealt; if none of them is an ace, Alice pays \$3 to Bob, otherwise, Bob pays \$3 to Alice (the dealt cards are then returned to the deck, which is reshuffled for the next round.) What is the

- (a) expected number of rounds they will have to play, and the corresponding standard deviation;
- (b) probability that Alice wins the game (finishing with \$78 in her pocket).
- 5. Consider a branching process starting with 3 members (Generation 0) and the following offspring distribution:

X =	0	1	2	4
Prob:	0.34	0.38	0.23	0.05

What is the

- (a) expected number of members of the 100^{th} generation, and the corresponding standard deviation;
- (b) probability of ultimate extinction of this process.