
FUNCTIONS OF SQUARE MATRICES

are defined by expanding the function in the usual (Taylor) manner:

f(x) = c0 + c1x+ c2x
2 + c3x

3 + ...

and replacing x with a square matrix A. Realizing that a square matrix, sub-
stituted into its own characteristic polynomial, yields O (zero matrix), its
obvious that we should not need more than the first n (where n is the size of
the matrix) powers of A (i.e. A0 = I, A, A2, ...., An−1). The remaining powers
can be obtained, recursively, based on these.
The way how it all works out is as follows: To compute a function of A,

we need to find the n eigenvalues of A, say ω1, ω2, ..., ωn (some of them my
be complex, some may be multiple) and, for each of these, compute the corre-
sponding constituent matrix (we will call these C1, C2, ...). Assuming that
all eigenvalues are distinct, we can then evaluate any function of A by

f(A) =
nX
i=1

f(ωi)Ci

The easiest way to find the constituent matrices is to make the above formula
true for f(x) = xi, i = 0, 1, 2, ..., n− 1, thus:

C1 +C2 +C3 + ...+Cn = I
ω1C1 + ω2C2 + ω3C3 + ...+ ωnCn = A
ω21C1 + ω22C2 + ω23C3 + ...+ ω2nCn = A2

................ = ...

ωn−11 C1 + ωn−12 C2 + ωn−13 C3 + ...+ ωn−1n Cn = An−1

solving these as if the unknowns and the RHS elements were ordinary numbers.
Example:

A =
·
2 4
1 −1

¸
Characteristic polynomial is ω2−ω−6, the eigenvalues are ω1 = 3 and ω2 = −2.
Thus

C1 +C2 = I
3C1 − 2C2 = A

Solution:

C1 =
A+ 2I
5

=

·
4
5

4
5

1
5

1
5

¸
C2 =

3I− A
5

=

·
1
5 −45−15 4

5

¸

1



We can now evaluate any function of A, e.g.

eA =

·
4
5

4
5

1
5

1
5

¸
e3 +

·
1
5 − 45−15 4

5

¸
e−2 =

·
16.095 15.96
3.99 4.125

¸
and

A−1 =
·

4
5

4
5

1
5

1
5

¸
/3−

·
1
5 −45−15 4

5

¸
/2 =

·
1
6

2
3

1
6 − 13

¸
(check).

Multiple eigenvalues

result in a slightly more complicated formula. Suppose that ω1, ω2 and ω3 have
the same value. Then, instead of

f(A) = f(ω1)C1 + f(ω2)C2 + f(ω3)C3 + ...

we have to use

f(A) = f(ω1)C1 + f 0(ω1)D2 + f 00(ω1)E3 + ...

and, to find the constituent matrices, we now use:

C1 +C4 + ...+Cn = I
ω1C1 +D2 + ω4C4 + ...+ ωnCn = A
ω21C1 + 2ω2D2 + 2E3 + ω24C4 + ...+ ω2nCn = A2

...................

ωn−11 C1 + (n− 1)ωn−22 D2 + (n− 1)(n− 2)ωn−33 E3
+ωn−14 C4 + ...+ ωn−1n Cn = An−1

which are solved in exactly the same manner as before.
Example:

A =

 4 7 2
−2 −2 0
1 5 4


and has a triple eigenvalue of 2. We get

C = I
2C+D = A
4C+ 4D+ 2E = A2

which yields C = I,

D = A− 2I =
 2 7 2
−2 −4 0
1 5 2



2



and

E =
1

2
A2 − 2D− 2I = 1

2

 4 7 2
−2 −2 0
1 5 4

2 − 2
 3 7 2
−2 −3 0
1 5 3


=

 −4 −2 4
2 1 −2
−3 −32 3


Thus,

A−1 =
1

2

 1 0 0
0 1 0
0 0 1

− 1
4

 2 7 2
−2 −4 0
1 5 2

+ 1
4

 −4 −2 4
2 1 −2
−3 −32 3


=

 −1 −94 1
2

1 7
4 −12−1 −138 3

4


(check).

TCMC without and with absorbing state(s)

For these, the only function of A (which is, in this case, the infinitesimal
generator of the process with rather special properties, e.g. it must have at
least one 0 eigenvalue) is

exp(tA)
where t is time. Note that tA has the same eigenvalues (multiplied by t) and
constituent matrices as A itself, the only thing which changes is thus the eωj
part (which becomes etωj when dealing with tA).
Actually, Maple makes it even easier for us; there is a special ’exponential(A,t)’

command (in the ’linalg’ package) which evaluates exp(tA) for us, without hav-
ing to mess up with any eignevalues, etc. Using this feature of Maple, dealing
the a Time-Continuous Markov Chain with any number of states becomes quite
trivial (in elements of exp(tA), and their t→∞ limit, we can alway find all the
answers we need).
When TCMC has one or more absorbing states, the same exp(tA) enables

us to find probabilies of absorption (before time t, or ’ultimately’), and the
distribution of the time till absorption (to do this, we would have to pool all
absorbing states into one).
Example:

A =


0 0 0 0
3 −8 2 3
1 4 −6 1
0 0 0 0


meaning that the first and last states are absorbing. The eigenvalues are 0, 0,
−4 and −10. We thus know that

f(A) = f(0)C1 + f 0(0)D1 + f(−4)C3 + f(−10)C4

3



Using f(x) = 1, x, x2 and x3 yields

C1 +C3 +C4 = I
D1 − 4C3 − 10C4 = A
16C3 + 100C4 = A2

−64C3 − 1000C4 = A3

respectively. Solving (ignoring the fact that the unknowns are matrices) results
in

C1 = I− 39
400A

2 − 7
800A

3

D1 = A+ 7
20A

2 + 1
40A

3

C3 = 5
48A

2 + 1
96A

3

C4 = − 1
150A

2 − 2
600A

3

Substituting powers of A, we get

C1 =


1 0 0 0
1
2 0 0 1

2
1
2 0 0 1

2
0 0 0 1


D1 = O

C3 =


0 0 0 0
−13 1

3
1
3 −13−23 2

3
2
3 −23

0 0 0 0



C4 =


0 0 0 0
−16 2

3 −13 −16
1
6 −23 1

3
1
6

0 0 0 0


exp(At) is thus computed from

C1 +C3e−4t +C4e−10t

The elements of the first and last column of C1 (the limit of the previous expres-
sion when t → ∞) yield the probabilities of ultimate absorption in first (last)
state, given the initial state.
The sum of the first and last column of exp(At), namely

1
1− 2

3e
−4t − 1

3e
−10t

1− 4
3e
−4t + 1

3e
−10t

1


provide the distribution function of time till absorption (regardless whether it
is into first or last state), given the initial state. Based on that, we can answer

4



any probability question, find the mean and standard deviation of time till
absorption, etc.
Example: Given we start in the second state, what is the probability that

absorption will take more than 0.13 units of time. Answer: 23e
−0.52 + 1

3e
−1.3 =

48.72%.
Given we start in the third state, what is the expected time till absorption

(regardless where) and the corresponding standard deviation. Answer:Z ∞
0

t
¡
16
3 e
−4t − 10

3 e
−10t¢ dt = 0.3sZ ∞

0

(t− 0.3)2 ¡163 e−4t − 10
3 e
−10t¢ dt = 0.2646
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